Tame valued fields reading group

Sylvy Anscombe

IMJ-PRG, UPCité

sylvy.anscombe@imj-prg.fr

Sylvy Anscombe

Tame valued fields reading group

Fourth session of reading group on tame fields.

We are now following:

F.-V. Kuhlmann. The algebra and model theory of tame valued fields, *J. reine angew. Math.*, 719 (2016), 1–43.
and
F. V. Kuhlmann. Elimination of ramification II: Henselian rationality, *Israel J. Math.*, 234(2019), no.2, 927–958.

Reminder:

 $4.2 + 4.7 \implies 4.8$

Density lemma 4.1 (Kuhlmann-Vlahu)

If (K, v) is of rank 1 and (K(x), v)/(K, v) is immediate then K[x] is dense in $K(x)^h$.

Aim: Lemma 4.8 (char = p)

Let (K, v) sep tame, rank 1, let (K(x), v)/(K, v) be immediate simple transcendental, and let $E/K(x)^h$ be Galois degree *p*. There exists $\theta \in E$ such that $E = K(\theta)^h$.

Today: one ingredient, Lemma 4.2.

Aim: Lemma 4.8 (char = p)

Let (K, v) sep tame, rank 1, let (K(x), v)/(K, v) be immediate simple transcendental, and let $E/K(x)^h$ be Galois degree *p*. There exists $\theta \in E$ such that $E = K(\theta)^h$.

Today: one ingredient, Lemma 4.2.

Reminder

Lemma 4.9 (mix char)

Let (K, v) be algebraically closed mixed characteristic, rank 1, let (K(x), v)/(K, v) be an immediate transcendental extension, and let $E/K(x)^h$ be Galois of degree p. There exists $\eta \in E$ such that $E = K(\eta)^h$.

Lemma 4.2 (char = p)

For every $f \in K[X]$ there exists a finite purely inseparable extension K'/K and a polynomial

 $g \in f + \wp(K'(x)^h)$

such that

1.
$$z = (x - c)/d$$
 with $vz = 0, c \in K, d \in K^{\times}$,

2.
$$g(z) = \sum_i a_i z^i \in K'[z]$$

3. for all *i*, (*v* $a_i < 0$ or $a_i = 0$) and $p \mid i \implies a_i = 0$,

4. va_i (for $i: a_i \neq 0$) are distinct.

Note K[x] = K[z].

Proof

Formal Taylor expansion of f in the variable X around X_0 :

$$f(X) = \sum_{i=0}^{n} f_i(X_0)(X - X_0)^i,$$

where the f_i are Hasse-Schmidt derivatives, purely formal. We can kill any monomial with index *i* divisible by *p*, thus: if i = pj then $f_i(X_0)(X - X_0)^i$ is congruent to f(X) modulo \wp . More precisely, modulo $\wp(K_1[X, X_0])$ where $K_1 = K(f_i(X_0)^{p^{-1}})$. This is a simple purely inseparable extension of *K*.

Proof

Formal Taylor expansion of f in the variable X around X_0 :

$$f(X) = \sum_{i=0}^{n} f_i(X_0)(X - X_0)^i,$$

where the f_i are Hasse-Schmidt derivatives, purely formal. We can kill any monomial with index *i* divisible by *p*, thus: if i = pj then $f_i(X_0)(X - X_0)^i$ is congruent to f(X) modulo \wp . More precisely, modulo $\wp(K_1[X, X_0])$ where $K_1 = K(f_i(X_0)^{p^{-1}})$. This is a simple purely inseparable extension of *K*.

Iterating this, we find K'/K finite purely inseparable such that modulo $\wp(K'[X, X_0])$ the polynomial f(X) is congruent to

$$f(X_0) + \sum_{j} {'}\left(f_j(X_0) + \sum_{\nu} {}^{(j)} f_{jp^{\nu}}(X_0)^{p^{-\nu}}\right) (X - X_0)^j,$$

where \sum_{j}^{\prime} is the sum over $j \neq n$ coprime to p, and $\sum_{\nu}^{(j)}$ is the sum over all $\nu \geq 1$ with $jp^{\nu} \leq n$.

For sufficiently large $\lambda \in \mathbb{N}$

$$F_j(X_0) := \left(f_j(X_0) + \sum_{\nu} {}^{(j)} f_{j p^{\nu}}(X_0)^{p^{-\nu}}\right)^{p^{\lambda}}$$

is in $K[X_0]$.

Proof (cont.)

By hypothesis, the approximation type of x over K is transcendental. Thus there exists $\alpha_0 \in v(x - K)$ such that

- **1.** $vf(X_0)$ and
- **2.** $vF_j(X_0)$, for $j \leq n$ coprime to p,

are constant on the 'closed' ball $\overline{B}(x; \alpha_0)$ around x of radius α_0 .

Proof (cont.)

By hypothesis, the approximation type of x over K is transcendental. Thus there exists $\alpha_0 \in v(x - K)$ such that

- **1.** $vf(X_0)$ and
- **2.** $vF_j(X_0)$, for $j \leq n$ coprime to p,

are constant on the 'closed' ball $\overline{B}(x; \alpha_0)$ around x of radius α_0 .

For *j* coprime to *p*, and each $c \in \overline{B}(x; \alpha_0)$, we define

$$\beta_j := v \left(f_j(c) + \sum_{\nu} {}^{(j)} f_{jp^{\nu}}(c)^{p^{-\nu}} \right)$$

Proof (cont.)

By hypothesis, the approximation type of x over K is transcendental. Thus there exists $\alpha_0 \in v(x - K)$ such that

- **1.** $vf(X_0)$ and
- **2.** $vF_j(X_0)$, for $j \leq n$ coprime to p,

are constant on the 'closed' ball $\overline{B}(x; \alpha_0)$ around x of radius α_0 .

For *j* coprime to *p*, and each $c \in \overline{B}(x; \alpha_0)$, we define

$$\beta_j := v \left(f_j(c) + \sum_{\nu} {}^{(j)} f_{jp^{\nu}}(c)^{p^{-\nu}} \right)$$

We can choose $c \in \overline{B}(x; \alpha_0)$ such that the

- **1.** vf(c),
- **2.** $\beta_j + j \cdot v(x c)$, for $j \leq n$ coprime to p,

are pairwise distinct and nonzero.

Unwinding. Next we translate back: choose $d \in K$ with vd = v(x - c) and $z := \frac{x-c}{d}$.

Unwinding. Next we translate back: choose $d \in K$ with vd = v(x - c) and $z := \frac{x-c}{d}$. Taking X = x and $X_0 = c$ (or evaluating, if you prefer), we find that K'/K is finite and purely inseparable and

$$\tilde{g}(z)=f(c)+\sum_{j}{}^{\prime}b_{j}z^{j},$$

where

$$b_j := d^j \left(f_j(c) + \sum_{\nu} {}^{(j)} f_{jp^{\nu}}(c)^{p^{-\nu}}
ight).$$

Unwinding. Next we translate back: choose $d \in K$ with vd = v(x - c) and $z := \frac{x-c}{d}$. Taking X = x and $X_0 = c$ (or evaluating, if you prefer), we find that K'/K is finite and purely inseparable and

$$\tilde{g}(z)=f(c)+\sum_{j}{}^{\prime}b_{j}z^{j},$$

where

$$b_j := d^j \left(f_j(c) + \sum_{\nu} {}^{(j)} f_{jp^{\nu}}(c)^{p^{-\nu}}
ight).$$

Note $vb_j \neq 0$ and $\tilde{g}(z)$ and f(x) are congruent modulo $\wp(K'[x])$.

If any $vb_i > 0$ then $b_i z^i \in \wp(K'(z)^h) = \wp(K'(x)^h)$. Thus writing $a_i = b_i$ if $vb_i < 0$, $a_i = 0$ otherwise, we have a polynomial $g(z) = \sum_{i=0}^n a_i z^i \in K'[x]$ to which both $\tilde{g}(z)$ and f(x) are congruent modulo $\wp(K'(x)^h)$. Remains to note that the values of the (nonzero) coefficients $a_i = \beta_j + jv(x - c)$ (for *j* coprime to *p*) are pairwise distinct (and different from va_0).

Lemma 4.8 (char = p)

Let (K, v) sep tame, rank 1, let (K(x), v)/(K, v) be immediate simple transcendental, and let $E/K(x)^h$ be Galois of degree p. There exists $\theta \in E$ such that $E = K(\theta)^h$.