Henselian Rationality continues to drag on

Working group on tame fields

Blaise Boissonneau

January 23, 2024

Goal

Theorem (11.1)
Given:

Goal

Theorem (11.1)
Given:

- (K, v) a valued field of rank 1

Goal

Theorem (11.1)
Given:

- (K, v) a valued field of rank 1
- F a function field with $(F \mid K, v)$ immediate of transcendence degree 1

Goal

Theorem (11.1)
Given:

- (K, v) a valued field of rank 1
- F a function field with $(F \mid K, v)$ immediate of transcendence degree 1
- $x \in F^{h} \backslash K^{c}$ with $\operatorname{appr}(x, K)$ transcendental and such that $F^{h}=K(x)^{h}$

Goal

Theorem (11.1)

Given:

- (K, v) a valued field of rank 1
- F a function field with $(F \mid K, v)$ immediate of transcendence degree 1
- $x \in F^{h} \backslash K^{c}$ with appr (x, K) transcendental and such that $F^{h}=K(x)^{h}$
Then there is $y \in F$ such that $F^{h}=K(y)^{h}$.

Goal

Theorem (11.1)

Given:

- (K, v) a valued field of rank 1
- F a function field with $(F \mid K, v)$ immediate of transcendence degree 1
- $x \in F^{h} \backslash K^{c}$ with appr (x, K) transcendental and such that $F^{h}=K(x)^{h}$
Then there is $y \in F$ such that $F^{h}=K(y)^{h}$.
Actually (and that's how we prove it) there is some $\gamma \in v K$ such that $K(x)^{h}=K(y)^{h}$ for every $y \in F$ with $v(x-y) \geqslant \gamma$.

Outline

We work in the following situation:

$$
\left\{\begin{array}{l}
(K, v) \text { a valued field of rank } 1 \\
(K(x) \mid K, v) \text { immediate, } x \notin K^{c}, \text { and } \tag{10.1}\\
\text { appr }(x, K) \text { transcendental } \\
y \in K(x)^{h} \text { transcendental over } K .
\end{array}\right.
$$

We aim to control the degree $\left[K(x)^{h}: K(y)^{h}\right]$.

Outline

We work in the following situation:

$$
\left\{\begin{array}{l}
(K, v) \text { a valued field of rank } 1 \\
(K(x) \mid K, v) \text { immediate, } x \notin K^{c}, \text { and } \tag{10.1}\\
\text { appr }(x, K) \text { transcendental }
\end{array}\right.
$$

We aim to control the degree $\left[K(x)^{h}: K(y)^{h}\right]$.
To do so, we define $h_{K}(x: y)$ to be $h_{K}(x: f)$ for any $f \in K[X]$ s.t. $v(y-f(x))>\operatorname{dist}(y, K)$, and prove that

$$
\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)
$$

Approximative summary of Marga's talk (1/2)
Given valued fields $(L \mid K, v)$ and $x \in L$, define for $\alpha \in v K$

$$
\operatorname{appr}(x, K)_{\alpha}=B_{\alpha}(x, L) \cap K
$$

Approximative summary of Marga's talk (1/2)

Given valued fields $(L \mid K, v)$ and $x \in L$, define for $\alpha \in v K$

$$
\operatorname{appr}(x, K)_{\alpha}=B_{\alpha}(x, L) \cap K .
$$

This is a ball in K, potentially empty.

Approximative summary of Marga's talk $(1 / 2)$

Given valued fields $(L \mid K, v)$ and $x \in L$, define for $\alpha \in v K$

$$
\operatorname{appr}(x, K)_{\alpha}=B_{\alpha}(x, L) \cap K
$$

This is a ball in K, potentially empty. Define the support

$$
S_{x, K}=\operatorname{supp}(\operatorname{appr}(x, K))=\left\{\alpha \in v K \mid \operatorname{appr}(x, K)_{\alpha} \neq \emptyset\right\}
$$

Approximative summary of Marga's talk (1/2)

Given valued fields $(L \mid K, v)$ and $x \in L$, define for $\alpha \in v K$

$$
\operatorname{appr}(x, K)_{\alpha}=B_{\alpha}(x, L) \cap K
$$

This is a ball in K, potentially empty. Define the support

$$
S_{x, K}=\operatorname{supp}(\operatorname{appr}(x, K))=\left\{\alpha \in v K \mid \operatorname{appr}(x, K)_{\alpha} \neq \emptyset\right\}
$$

and the approximation type

$$
\operatorname{appr}(x, K)=\left\{\operatorname{appr}(x, K)_{\alpha} \mid \alpha \in S_{x, K}\right\}
$$

Approximative summary of Marga's talk (1/2)

Given valued fields $(L \mid K, v)$ and $x \in L$, define for $\alpha \in v K$

$$
\operatorname{appr}(x, K)_{\alpha}=B_{\alpha}(x, L) \cap K
$$

This is a ball in K, potentially empty. Define the support

$$
S_{x, K}=\operatorname{supp}(\operatorname{appr}(x, K))=\left\{\alpha \in v K \mid \operatorname{appr}(x, K)_{\alpha} \neq \emptyset\right\}
$$

and the approximation type

$$
\operatorname{appr}(x, K)=\left\{\operatorname{appr}(x, K)_{\alpha} \mid \alpha \in S_{x, K}\right\}
$$

We say that $\operatorname{appr}(x, K)$ is immediate if $\bigcap_{\alpha \in S_{x, K}} \operatorname{appr}(x, K)_{\alpha}=\emptyset$.

Approximative summary of Marga's talk (2/2)
We say that $\operatorname{appr}(x, K)$ fixes the value of $f \in K[X]$ if there is $\alpha \in v K$ such that $v(f(c))=\alpha$ for $c \nearrow x$.

Approximative summary of Marga's talk (2/2)

We say that $\operatorname{appr}(x, K)$ fixes the value of $f \in K[X]$ if there is $\alpha \in v K$ such that $v(f(c))=\alpha$ for $c \nearrow x$. $\operatorname{appr}(x, K)$ is said to be transcendental if it fixes the value of all polynomials and algebraic if not.

Approximative summary of Marga's talk (2/2)

We say that $\operatorname{appr}(x, K)$ fixes the value of $f \in K[X]$ if there is $\alpha \in v K$ such that $v(f(c))=\alpha$ for $c \nearrow x$. $\operatorname{appr}(x, K)$ is said to be transcendental if it fixes the value of all polynomials and algebraic if not.
We define $d_{x, K}=\operatorname{deg}(\operatorname{appr}(x, K))$ to be the minimum degree of a monic polynomial of value not fixed by appr (x, K).

Approximative summary of Marga's talk (2/2)

We say that $\operatorname{appr}(x, K)$ fixes the value of $f \in K[X]$ if there is $\alpha \in v K$ such that $v(f(c))=\alpha$ for $c \nearrow x$.
$\operatorname{appr}(x, K)$ is said to be transcendental if it fixes the value of all polynomials and algebraic if not.
We define $d_{x, K}=\operatorname{deg}(\operatorname{appr}(x, K))$ to be the minimum degree of a monic polynomial of value not fixed by appr (x, K).
Lemma (5.2)
Take appr (x, K) immediate, $f \in K[X]$ of degree $\leqslant d_{x, K}, f_{i}=\frac{f^{(i)}}{i!}$, β_{i} its fixed value by $\operatorname{appr}(x, K)$.

Approximative summary of Marga's talk (2/2)

We say that $\operatorname{appr}(x, K)$ fixes the value of $f \in K[X]$ if there is $\alpha \in v K$ such that $v(f(c))=\alpha$ for $c \nearrow x$.
$\operatorname{appr}(x, K)$ is said to be transcendental if it fixes the value of all polynomials and algebraic if not.
We define $d_{x, K}=\operatorname{deg}(\operatorname{appr}(x, K))$ to be the minimum degree of a monic polynomial of value not fixed by appr (x, K).
Lemma (5.2)
Take appr (x, K) immediate, $f \in K[X]$ of degree $\leqslant d_{x, K}, f_{i}=\frac{f^{(i)}}{i!}$,
β_{i} its fixed value by appr (x, K).
Then there is $h=h_{K}(x: f) \leqslant \operatorname{deg}(f)$ such that for $i \neq h$:

$$
\beta_{h}+h v(x-c)<\beta_{i}+i v(x-c) \text { for } c \nearrow x
$$

Approximative summary of Marga's talk $(2 / 2)$

We say that $\operatorname{appr}(x, K)$ fixes the value of $f \in K[X]$ if there is $\alpha \in v K$ such that $v(f(c))=\alpha$ for $c \nearrow x$.
$\operatorname{appr}(x, K)$ is said to be transcendental if it fixes the value of all polynomials and algebraic if not.
We define $d_{x, K}=\operatorname{deg}(\operatorname{appr}(x, K))$ to be the minimum degree of a monic polynomial of value not fixed by appr (x, K).
Lemma (5.2)
Take appr (x, K) immediate, $f \in K[X]$ of degree $\leqslant d_{x, K}, f_{i}=\frac{f^{(i)}}{i!}$,
β_{i} its fixed value by appr (x, K).
Then there is $h=h_{K}(x: f) \leqslant \operatorname{deg}(f)$ such that for $i \neq h$:

$$
\begin{aligned}
& \beta_{h}+h v(x-c)<\beta_{i}+i v(x-c) \text { for } c \nearrow x \\
& v(f(x)-f(c))=\beta_{h}+h v(x-c) \text { for } c \nearrow x
\end{aligned}
$$

Approximative summary of Marga's talk $(2 / 2)$

We say that $\operatorname{appr}(x, K)$ fixes the value of $f \in K[X]$ if there is $\alpha \in v K$ such that $v(f(c))=\alpha$ for $c \nearrow x$.
$\operatorname{appr}(x, K)$ is said to be transcendental if it fixes the value of all polynomials and algebraic if not.
We define $d_{x, K}=\operatorname{deg}(\operatorname{appr}(x, K))$ to be the minimum degree of a monic polynomial of value not fixed by appr (x, K).

Lemma (5.2)

Take appr (x, K) immediate, $f \in K[X]$ of degree $\leqslant d_{x, K}, f_{i}=\frac{f^{(i)}}{i!}$,
β_{i} its fixed value by appr (x, K).
Then there is $h=h_{K}(x: f) \leqslant \operatorname{deg}(f)$ such that for $i \neq h$:

$$
\begin{aligned}
& \beta_{h}+h v(x-c)<\beta_{i}+i v(x-c) \text { for } c \nearrow x \\
& v(f(x)-f(c))=\beta_{h}+h v(x-c) \text { for } c \nearrow x
\end{aligned}
$$

and if $\operatorname{appr}(x, K)$ fixes the value of f, then

$$
v(f(x)-f(c))>v(f(x))=v(f(c)) \text { for } c \nearrow x
$$

Distant summary of Paolo's talk

$S=\operatorname{supp}(\operatorname{appr}(x, K))$ is an initial segment of $v K \cup\{\infty\}$.

Distant summary of Paolo's talk

$S=\operatorname{supp}(\operatorname{appr}(x, K))$ is an initial segment of $v K \cup\{\infty\}$. Let \widetilde{S} be the smallest initial segment of the divisible hull $\widetilde{v K} \cup\{\infty\}$ containing S.

Distant summary of Paolo's talk

$S=\operatorname{supp}(\operatorname{appr}(x, K))$ is an initial segment of $v K \cup\{\infty\}$. Let \widetilde{S} be the smallest initial segment of the divisible hull $\widetilde{v K} \cup\{\infty\}$ containing S. The unique cut of $\widetilde{v K}$ having lower set $\widetilde{S} \backslash\{\infty\}$ is denoted by $\operatorname{dist}(x, K)$.

Distant summary of Paolo's talk

$S=\operatorname{supp}(\operatorname{appr}(x, K))$ is an initial segment of $v K \cup\{\infty\}$. Let \widetilde{S} be the smallest initial segment of the divisible hull $\widetilde{v K} \cup\{\infty\}$ containing S. The unique cut of $\widetilde{v K}$ having lower set $\widetilde{S} \backslash\{\infty\}$ is denoted by $\operatorname{dist}(x, K)$. We have

$$
x \in K^{c} \Leftrightarrow \operatorname{dist}(x, K)=\infty .
$$

Lemma (4.2)
Take $(L \mid K, v)$ and $x, x^{\prime} \in L$. Assume appr (x, K) is immediate.

Distant summary of Paolo's talk

$S=\operatorname{supp}(\operatorname{appr}(x, K))$ is an initial segment of $v K \cup\{\infty\}$. Let \widetilde{S} be the smallest initial segment of the divisible hull $\widetilde{v K} \cup\{\infty\}$ containing S. The unique cut of $\widetilde{v K}$ having lower set $\widetilde{S} \backslash\{\infty\}$ is denoted by $\operatorname{dist}(x, K)$. We have

$$
x \in K^{c} \Leftrightarrow \operatorname{dist}(x, K)=\infty .
$$

Lemma (4.2)

Take $(L \mid K, v)$ and $x, x^{\prime} \in L$. Assume appr (x, K) is immediate. then

$$
\operatorname{appr}(x, K)=\operatorname{appr}\left(x^{\prime}, K\right) \Leftrightarrow v\left(x-x^{\prime}\right) \geqslant \operatorname{dist}(x, K) .
$$

Distant summary of Paolo's talk

$S=\operatorname{supp}(\operatorname{appr}(x, K))$ is an initial segment of $v K \cup\{\infty\}$. Let \widetilde{S} be the smallest initial segment of the divisible hull $\widetilde{\checkmark K} \cup\{\infty\}$ containing S. The unique cut of $\widetilde{v K}$ having lower set $\widetilde{S} \backslash\{\infty\}$ is denoted by $\operatorname{dist}(x, K)$. We have

$$
x \in K^{c} \Leftrightarrow \operatorname{dist}(x, K)=\infty .
$$

Lemma (4.2)

Take $(L \mid K, v)$ and $x, x^{\prime} \in L$. Assume appr (x, K) is immediate. then

$$
\operatorname{appr}(x, K)=\operatorname{appr}\left(x^{\prime}, K\right) \Leftrightarrow v\left(x-x^{\prime}\right) \geqslant \operatorname{dist}(x, K) .
$$

Lemma (6.2 (not proven; not needed?...))
If $\operatorname{appr}(x, K)$ is immediate and transcendental, then $(K(x) \mid K, v)$ is immediate and transcendental.

The hunt for f

Lemma (10.2)

Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.

The hunt for f

Lemma (10.2)

Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.

Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.

The hunt for f

Lemma (10.2)
Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.

Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.

Take $g \in K[x]$ and $\alpha \in v K$. Since $K(x) / K$ is immediate, there is $c \in K$ such that $v(c-g(x))>v(g(x))=v(c)$.

The hunt for f

Lemma (10.2)
Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.

Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.

Take $g \in K[x]$ and $\alpha \in v K$. Since $K(x) / K$ is immediate, there is $c \in K$ such that $v(c-g(x))>v(g(x))=v(c)$. Define $h(x)=1-g(x) / c$, we have $v(h(x))>0$.

The hunt for f

Lemma (10.2)
Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.
Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.

Take $g \in K[x]$ and $\alpha \in v K$. Since $K(x) / K$ is immediate, there is $c \in K$ such that $v(c-g(x))>v(g(x))=v(c)$. Define $h(x)=1-g(x) / c$, we have $v(h(x))>0$. Now by archimedianity, there is $j \in \mathbb{N}$ such that $j v(h(x))>\alpha+v(c)$.

The hunt for f

Lemma (10.2)

Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.

Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.

Take $g \in K[x]$ and $\alpha \in v K$. Since $K(x) / K$ is immediate, there is $c \in K$ such that $v(c-g(x))>v(g(x))=v(c)$. Define $h(x)=1-g(x) / c$, we have $v(h(x))>0$. Now by archimedianity, there is $j \in \mathbb{N}$ such that $j v(h(x))>\alpha+v(c)$. We have:

$$
v\left(\frac{1}{g(x)}-\frac{\sum_{i=0}^{j-1} h(x)^{i}}{c}\right)=v\left(\frac{h(x)^{j}}{c(1-h(x))}\right)>\alpha
$$

The hunt for f

Lemma (10.2)

Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.

Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.
2. $y \notin K^{c}$.

The hunt for f

Lemma (10.2)
Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.
Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.
2. $y \notin K^{c}$.

Assume not. Then K is dense in $K(y)^{h}$.

The hunt for f

Lemma (10.2)
Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.
Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.
2. $y \notin K^{c}$.

Assume not. Then K is dense in $K(y)^{h}$. Let g be the minimal polynomial of x over $K(y)^{h}$.

The hunt for f

Lemma (10.2)
Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.
Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.
2. $y \notin K^{c}$.

Assume not. Then K is dense in $K(y)^{h}$. Let g be the minimal polynomial of x over $K(y)^{h}$. We can find a polynomial \widetilde{g} with coefficient close enough to g, and by continuity of roots, \widetilde{g} has a root \widetilde{x} such that $v(x-\widetilde{x}) \geqslant \operatorname{dist}(x, K)$.

The hunt for f

Lemma (10.2)

Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.

Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.
2. $y \notin K^{c}$.

Assume not. Then K is dense in $K(y)^{h}$. Let g be the minimal polynomial of x over $K(y)^{h}$. We can find a polynomial \tilde{g} with coefficient close enough to g, and by continuity of roots, \widetilde{g} has a root \widetilde{x} such that $v(x-\widetilde{x}) \geqslant \operatorname{dist}(x, K)$. By 4.2 we have $\operatorname{appr}(x, K)=\operatorname{appr}(\widetilde{x}, K)$, but \widetilde{x} is algebraic and thus $\operatorname{appr}(\widetilde{x}, K)$ is algebraic by 6.2 (or 5.5 ?).

The hunt for f

Lemma (10.2)

Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.

Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.
2. $y \notin K^{c}$.
3. f exists.

The hunt for f

Lemma (10.2)

Under assumptions 10.1, there is $f \in K[X]$ such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$.

Proof.

1. $K[x]$ is dense in $K(x)$, thus $y \in K[x]^{c}$.
2. $y \notin K^{c}$.
3. f exists.

Indeed, since $y \notin K^{c}, \operatorname{dist}(y, K)<\infty$, and since $y \in K[x]^{c}$, we can find some $f \in K[X]$ arbitrary close to y.

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.
Lemma (10.3)
$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.
Lemma (10.3)
$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.
Proof.
If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2.

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.
Lemma (10.3)
$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.
Proof.
If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2. If g is another similar polynomial, then $\operatorname{appr}(g(x), K)=\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$.

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.
Lemma (10.3)
$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.
Proof.
If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2. If g is another similar polynomial, then $\operatorname{appr}(g(x), K)=\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$. $\operatorname{appr}(x, K)$ is transcendental, hence fixes the value $f-g$.

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.
Lemma (10.3)
$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.

Proof.

If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2. If g is another similar polynomial, then $\operatorname{appr}(g(x), K)=\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$. $\operatorname{appr}(x, K)$ is transcendental, hence fixes the value $f-g$. By 5.2, for $c \nearrow x, v(f(c)-g(c))=v(f(x)-g(x))$.

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.

Lemma (10.3)

$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.

Proof.

If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2. If g is another similar polynomial, then $\operatorname{appr}(g(x), K)=\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$. $\operatorname{appr}(x, K)$ is transcendental, hence fixes the value $f-g$. By 5.2, for $c \nearrow x, v(f(c)-g(c))=v(f(x)-g(x))$. By 4.2, $v(f(x)-g(x)) \geqslant \operatorname{dist}(f(x), K)$, which is in turn $\geqslant v(f(x)-f(c))$.

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.

Lemma (10.3)

$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.

Proof.

If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2. If g is another similar polynomial, then $\operatorname{appr}(g(x), K)=\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$. appr (x, K) is transcendental, hence fixes the value $f-g$. By 5.2 , for $c \nearrow x, v(f(c)-g(c))=v(f(x)-g(x))$. By 4.2, $v(f(x)-g(x)) \geqslant \operatorname{dist}(f(x), K)$, which is in turn $\geqslant v(f(x)-f(c))$. Since $v(f(x)-f(c))$ increases by 5.2 , the inequality is strict.

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.

Lemma (10.3)

$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.

Proof.

If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2. If g is another similar polynomial, then $\operatorname{appr}(g(x), K)=\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$. appr (x, K) is transcendental, hence fixes the value $f-g$. By 5.2 , for $c \nearrow x, v(f(c)-g(c))=v(f(x)-g(x))$. By 4.2, $v(f(x)-g(x)) \geqslant \operatorname{dist}(f(x), K)$, which is in turn $\geqslant v(f(x)-f(c))$. Since $v(f(x)-f(c))$ increases by 5.2 , the inequality is strict. So:
$v(g(x)-g(c))=$

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.

Lemma (10.3)

$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.

Proof.

If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2. If g is another similar polynomial, then $\operatorname{appr}(g(x), K)=\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$. $\operatorname{appr}(x, K)$ is transcendental, hence fixes the value $f-g$. By 5.2 , for $c \nearrow x, v(f(c)-g(c))=v(f(x)-g(x))$. By 4.2, $v(f(x)-g(x)) \geqslant \operatorname{dist}(f(x), K)$, which is in turn $\geqslant v(f(x)-f(c))$. Since $v(f(x)-f(c))$ increases by 5.2 , the inequality is strict. So:

$$
v(g(x)-g(c))=v((g(x)-f(x))+(f(x)-f(c))+(f(c)-g(c)))
$$

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.

Lemma (10.3)

$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.

Proof.

If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2. If g is another similar polynomial, then $\operatorname{appr}(g(x), K)=\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$. $\operatorname{appr}(x, K)$ is transcendental, hence fixes the value $f-g$. By 5.2 , for $c \nearrow x, v(f(c)-g(c))=v(f(x)-g(x))$. By 4.2, $v(f(x)-g(x)) \geqslant \operatorname{dist}(f(x), K)$, which is in turn $\geqslant v(f(x)-f(c))$. Since $v(f(x)-f(c))$ increases by 5.2 , the inequality is strict. So:

$$
\begin{aligned}
v(g(x)-g(c)) & =v((g(x)-f(x))+(f(x)-f(c))+(f(c)-g(c))) \\
& =v(f(x)-f(c))
\end{aligned}
$$

h_{K} (disambiguation)

We define $h_{K}(x: y)=h_{K}(x: f)$ and $\beta_{K}(x: y)=\beta_{K}(x: f)$, where f is a polynomial as in the previous lemma.

Lemma (10.3)

$h_{K}(x: y)$ and $\beta_{K}(x: y)$ do not depend on the choice of f.

Proof.

If f is a polynomial such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$, then $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ by 4.2. If g is another similar polynomial, then $\operatorname{appr}(g(x), K)=\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$. $\operatorname{appr}(x, K)$ is transcendental, hence fixes the value $f-g$. By 5.2 , for $c \nearrow x, v(f(c)-g(c))=v(f(x)-g(x))$. By 4.2, $v(f(x)-g(x)) \geqslant \operatorname{dist}(f(x), K)$, which is in turn $\geqslant v(f(x)-f(c))$. Since $v(f(x)-f(c))$ increases by 5.2 , the inequality is strict. So:

$$
\begin{aligned}
v(g(x)-g(c)) & =v((g(x)-f(x))+(f(x)-f(c))+(f(c)-g(c))) \\
& =v(f(x)-f(c))=\beta_{K}(x: f)+h_{K}(x: f) v(x-c)
\end{aligned}
$$

starting to get it

Lemma (10.4)

Under assumptions 10.1 and with f as above, there is $z \in \widetilde{K(y)}$ such that

$$
v(x-z) \geqslant \frac{v(y-f(x))-\beta_{K}(x: y)}{h_{k}(x: y)}
$$

and

$$
\left[K(y, z)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)
$$

starting to get it

Lemma (10.4)

Under assumptions 10.1 and with f as above, there is $z \in \widetilde{K(y)}$ such that

$$
v(x-z) \geqslant \frac{v(y-f(x))-\beta_{K}(x: y)}{h_{k}(x: y)}
$$

and

$$
\left[K(y, z)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)
$$

We will not do the proof today.

there we have it! Oh wait, it's separable

Lemma (10.5)
Under assumptions 10.1 and assuming $K(x)^{h} \mid K(y)^{h}$ is separable, then $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$.

there we have it! Oh wait, it's separable

Lemma (10.5)
Under assumptions 10.1 and assuming $K(x)^{h} \mid K(y)^{h}$ is separable, then $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$.

Proof.
Let $\alpha>v(\sigma(x)-x)$ for all $\sigma \in \operatorname{Gal}\left(K(y)^{h}\right)$ not fixing x. We can chose such an α because of separability.

there we have it! Oh wait, it's separable

Lemma (10.5)

Under assumptions 10.1 and assuming $K(x)^{h} \mid K(y)^{h}$ is separable, then $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$.

Proof.
Let $\alpha>v(\sigma(x)-x)$ for all $\sigma \in \operatorname{Gal}\left(K(y)^{h}\right)$ not fixing x. We can chose such an α because of separability. By the proof of 10.2 we can find a polynomial f such that

$$
v(y-f(x))>\beta_{K}(x: y)+h_{K}(x: y) \alpha .
$$

there we have it! Oh wait, it's separable

Lemma (10.5)

Under assumptions 10.1 and assuming $K(x)^{h} \mid K(y)^{h}$ is separable, then $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$.

Proof.
Let $\alpha>v(\sigma(x)-x)$ for all $\sigma \in \operatorname{Gal}\left(K(y)^{h}\right)$ not fixing x. We can chose such an α because of separability. By the proof of 10.2 we can find a polynomial f such that $v(y-f(x))>\beta_{K}(x: y)+h_{K}(x: y) \alpha$. Let z be given by the previous lemma, thus

$$
v(x-z) \geqslant \frac{v(y-f(x))-\beta_{k}(x: y)}{h_{k}(x: y)}>\alpha .
$$

there we have it! Oh wait, it's separable

Lemma (10.5)

Under assumptions 10.1 and assuming $K(x)^{h} \mid K(y)^{h}$ is separable, then $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$.

Proof.
Let $\alpha>v(\sigma(x)-x)$ for all $\sigma \in \operatorname{Gal}\left(K(y)^{h}\right)$ not fixing x. We can chose such an α because of separability. By the proof of 10.2 we can find a polynomial f such that $v(y-f(x))>\beta_{K}(x: y)+h_{K}(x: y) \alpha$. Let z be given by the previous lemma, thus

$$
v(x-z) \geqslant \frac{v(y-f(x))-\beta_{K}(x: y)}{h_{k}(x: y)}>\alpha .
$$

By Krasner's lemma, $x \in K(y)^{h}(z)$. Now
$\left[K(x, y)^{h}: K(y)^{h}\right] \leqslant\left[K(y, z)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$ by the choice of z, but since $K(x)^{h}=K(x, y)^{h}$, we conclude.

i'm lost. what are we doing?

Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z) .
$$

i'm lost. what are we doing?
Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z) .
$$

Proof.

1. 10.1 holds for y and z.

i'm lost. what are we doing?

Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z) .
$$

Proof.

1. 10.1 holds for y and z. Indeed, $(K(y) \mid K, v)$ is immediate since $y \in K(x)^{h}$, and $y \notin K^{c}$ by (the proof of) 10.2.

i'm lost. what are we doing?

Lemma (10.6)

Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z)
$$

Proof.

1. 10.1 holds for y and z. Indeed, $(K(y) \mid K, v)$ is immediate since $y \in K(x)^{h}$, and $y \notin K^{c}$ by (the proof of) 10.2. Now, $\operatorname{appr}(y, K)=\operatorname{appr}(f(x), K)$ for some f, and since $\operatorname{appr}(x, K)$ is transcendental, so is $\operatorname{appr}(f(x), K)$ (lemma 8.3; a dragon yet to tame).
i'm lost. what are we doing?
Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z) .
$$

Proof.

1. 10.1 holds for y and z.
2. We may assume $y=f(x)$ and $z=g(y)$.
i'm lost. what are we doing?
Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z) .
$$

Proof.

1. 10.1 holds for y and z.
2. We may assume $y=f(x)$ and $z=g(y)$.

Let $g \in K[X]$ be such that $v(z-g(y)) \geqslant \operatorname{dist}(z, K)$.
i'm lost. what are we doing?
Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z)
$$

Proof.

1. 10.1 holds for y and z.
2. We may assume $y=f(x)$ and $z=g(y)$.

Let $g \in K[X]$ be such that $v(z-g(y)) \geqslant \operatorname{dist}(z, K)$. Since $y \in K[x]^{c} \backslash K^{c}$, we can chose f such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$ and $v(g(y)-g(f(x))) \geqslant \operatorname{dist}(z, K)$.
i'm lost. what are we doing?
Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z) .
$$

Proof.

1. 10.1 holds for y and z.
2. We may assume $y=f(x)$ and $z=g(y)$.

Let $g \in K[X]$ be such that $v(z-g(y)) \geqslant \operatorname{dist}(z, K)$. Since $y \in K[x]^{c} \backslash K^{c}$, we can chose f such that $v(y-f(x)) \geqslant \operatorname{dist}(y, K)$ and $v(g(y)-g(f(x))) \geqslant \operatorname{dist}(z, K)$. Now $h_{K}(x: y)=h_{K}(x: f), h_{K}(y: z)=h_{K}(y: g)$, and $h_{K}(x: z)=h_{K}(x: g \circ f)$ since $v(z-g(f(x))=v(z-g(y)+g(y)-g(f(x))) \geqslant \operatorname{dist}(z, K)$.
i'm lost. what are we doing?
Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z) .
$$

Proof.

1. 10.1 holds for y and z.
2. We may assume $y=f(x)$ and $z=g(y)$.
3. When $c \nearrow x, f(c) \nearrow f(x)$.

i'm lost. what are we doing?

Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z) .
$$

Proof.

1. 10.1 holds for y and z.
2. We may assume $y=f(x)$ and $z=g(y)$.
3. When $c \nearrow x, f(c) \nearrow f(x)$.

This is by 8.2, another dragon to tame.
i'm lost. what are we doing?
Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z) .
$$

Proof.

1. 10.1 holds for y and z.
2. We may assume $y=f(x)$ and $z=g(y)$.
3. When $c \nearrow x, f(c) \nearrow f(x)$.
4. $v(g(f(x))-g(f(c)))=\beta+h_{K}(x: y) h_{K}(y: z) v(x-c)$ for $c \nearrow x$ and some fixed β.
i'm lost. what are we doing?
Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z)
$$

Proof.

1. 10.1 holds for y and z.
2. We may assume $y=f(x)$ and $z=g(y)$.
3. When $c \nearrow x, f(c) \nearrow f(x)$.
4. $v(g(f(x))-g(f(c)))=\beta+h_{K}(x: y) h_{K}(y: z) v(x-c)$ for $c \nearrow x$ and some fixed β. Indeed appr $(f(x), K)$ fixes the value of g, so by 5.2 $v(g(f(x))-g(f(c)))=\beta^{\prime}+h_{K}(f(x): g) v(f(x)-f(c))$ for $f(c) \nearrow f(x)$.
i'm lost. what are we doing?
Lemma (10.6)
Under assumptions 10.1, given $z \in K(y)^{h}$ transcendental over K, 10.1 also holds for y and z in lieu of x and y, and:

$$
h_{K}(x: z)=h_{K}(x: y) h_{K}(y: z)
$$

Proof.

1. 10.1 holds for y and z.
2. We may assume $y=f(x)$ and $z=g(y)$.
3. When $c \nearrow x, f(c) \nearrow f(x)$.
4. $v(g(f(x))-g(f(c)))=\beta+h_{K}(x: y) h_{K}(y: z) v(x-c)$ for $c \nearrow x$ and some fixed β. Indeed appr $(f(x), K)$ fixes the value of g, so by 5.2 $v(g(f(x))-g(f(c)))=\beta^{\prime}+h_{K}(f(x): g) v(f(x)-f(c))$ for $f(c) \nearrow f(x)$. Now $v(f(x)-f(c))=\beta^{\prime \prime}+h_{K}(x: f) v(x-c)$ when $c \nearrow x$ and we conclude.

bob's your uncle

Theorem (10.7)
Under assumptions 10.1, $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$.

bob's your uncle

Theorem (10.7)
Under assumptions 10.1, $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$. the proof was in Paolo's talk.

bob's your uncle

Theorem (10.7)
Under assumptions 10.1, $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$. the proof was in Paolo's talk. To summarize: split $K(x)^{h} \mid K(y)^{h}$ in a separable part and an inseparable part, tackle the separable part by 10.5 and the inseparable part by 9.2 (?), wrap up by 10.6 .

bob's your uncle

Theorem (10.7)
Under assumptions 10.1, $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$. the proof was in Paolo's talk. To summarize: split $K(x)^{h} \mid K(y)^{h}$ in a separable part and an inseparable part, tackle the separable part by 10.5 and the inseparable part by 9.2 (?), wrap up by 10.6 .
Proof of 11.1.

bob's your uncle

Theorem (10.7)
Under assumptions 10.1, $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$. the proof was in Paolo's talk. To summarize: split $K(x)^{h} \mid K(y)^{h}$ in a separable part and an inseparable part, tackle the separable part by 10.5 and the inseparable part by 9.2 (?), wrap up by 10.6 .
Proof of 11.1.
Take $\gamma>\operatorname{dist}(x, K)$, possible since $x \notin K^{c}$.

bob's your uncle

Theorem (10.7)

Under assumptions 10.1, $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$. the proof was in Paolo's talk. To summarize: split $K(x)^{h} \mid K(y)^{h}$ in a separable part and an inseparable part, tackle the separable part by 10.5 and the inseparable part by 9.2 (?), wrap up by 10.6 .
Proof of 11.1.
Take $\gamma>\operatorname{dist}(x, K)$, possible since $x \notin K^{c} . F$ is dense in F^{h} since it is of rank 1 , so there is $y \in F$ such that $v(x-y) \geqslant \gamma>\operatorname{dist}(x, K)$.

bob's your uncle

Theorem (10.7)

Under assumptions 10.1, $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$. the proof was in Paolo's talk. To summarize: split $K(x)^{h} \mid K(y)^{h}$ in a separable part and an inseparable part, tackle the separable part by 10.5 and the inseparable part by 9.2 (?), wrap up by 10.6 .
Proof of 11.1.
Take $\gamma>\operatorname{dist}(x, K)$, possible since $x \notin K^{c} . F$ is dense in F^{h} since it is of rank 1 , so there is $y \in F$ such that $v(x-y) \geqslant \gamma>\operatorname{dist}(x, K)$. Now by 4.2 this implies that y is transcendental, and we are under assumptions 10.1.

bob's your uncle

Theorem (10.7)

Under assumptions 10.1, $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$. the proof was in Paolo's talk. To summarize: split $K(x)^{h} \mid K(y)^{h}$ in a separable part and an inseparable part, tackle the separable part by 10.5 and the inseparable part by 9.2 (?), wrap up by 10.6 .
Proof of 11.1.
Take $\gamma>\operatorname{dist}(x, K)$, possible since $x \notin K^{c} . F$ is dense in F^{h} since it is of rank 1 , so there is $y \in F$ such that $v(x-y) \geqslant \gamma>\operatorname{dist}(x, K)$. Now by 4.2 this implies that y is transcendental, and we are under assumptions 10.1. Hence, $\left[K(x)^{h}: K(y)^{h}\right] \leqslant h_{K}(x: y)$ and $h_{k}(x: y)=h_{K}(x: f(x))$ for any polynomial f such that $v(y-f(x))>\operatorname{dist}(y, K) ; x$ is such a polynomial and $h_{K}(x: x)=1$.

How to tame your dragon

How to tame your dragon

- Lemma 4.2, or has it been done? It needs only calculations. It is used all along chapter 10 .

How to tame your dragon

- Lemma 4.2, or has it been done? It needs only calculations. It is used all along chapter 10.
- Lemma 6.2 or Corollary 5.5 if it is enough. 5.5 relies on 5.4 which is almost in Marga's talk, and 6.2 is more or less by Kaplansky. It is used all along chapter 10.

How to tame your dragon

- Lemma 4.2, or has it been done? It needs only calculations. It is used all along chapter 10 .
- Lemma 6.2 or Corollary 5.5 if it is enough. 5.5 relies on 5.4 which is almost in Marga's talk, and 6.2 is more or less by Kaplansky. It is used all along chapter 10.
- Lemma 8.2 and Corollary 8.3. They need calculations and a bit of chapter 7. It is used to prove 10.6.

How to tame your dragon

- Lemma 4.2, or has it been done? It needs only calculations. It is used all along chapter 10.
- Lemma 6.2 or Corollary 5.5 if it is enough. 5.5 relies on 5.4 which is almost in Marga's talk, and 6.2 is more or less by Kaplansky. It is used all along chapter 10.
- Lemma 8.2 and Corollary 8.3. They need calculations and a bit of chapter 7. It is used to prove 10.6.
- Lemma 10.4. It is proven by similar method than 9.1 and 9.2, which might also be needed; they are long calculations. It is used to prove 10.5.

How to tame your dragon

- Lemma 4.2, or has it been done? It needs only calculations. It is used all along chapter 10.
- Lemma 6.2 or Corollary 5.5 if it is enough. 5.5 relies on 5.4 which is almost in Marga's talk, and 6.2 is more or less by Kaplansky. It is used all along chapter 10.
- Lemma 8.2 and Corollary 8.3. They need calculations and a bit of chapter 7. It is used to prove 10.6.
- Lemma 10.4. It is proven by similar method than 9.1 and 9.2, which might also be needed; they are long calculations. It is used to prove 10.5.

And that should be all!

