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Goal

Theorem (11.1)
Given:

I (K , v) a valued field of rank 1
I F a function field with (F |K , v) immediate of transcendence

degree 1
I x ∈ F h \ K c with appr(x ,K ) transcendental and such that

F h = K (x)h

Then there is y ∈ F such that F h = K (y)h.

Actually (and that’s how we prove it) there is some γ ∈ vK such
that K (x)h = K (y)h for every y ∈ F with v(x − y) > γ.
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Outline
We work in the following situation:

(K , v) a valued field of rank 1
(K (x)|K , v) immediate, x /∈ K c , and
appr(x ,K ) transcendental
y ∈ K (x)h transcendental over K .

(10.1)

We aim to control the degree [K (x)h : K (y)h].

To do so, we define hK (x : y) to be hK (x : f ) for any f ∈ K [X ]
s.t. v(y − f (x)) > dist(y ,K ), and prove that

[K (x)h : K (y)h] 6 hK (x : y).
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Approximative summary of Marga’s talk (1/2)
Given valued fields (L|K , v) and x ∈ L, define for α ∈ vK

appr(x ,K )α = Bα(x , L) ∩ K .

This is a ball in K , potentially empty. Define the support

Sx ,K = supp(appr(x ,K )) = {α ∈ vK | appr(x ,K )α 6= ∅}

and the approximation type

appr(x ,K ) = {appr(x ,K )α | α ∈ Sx ,K} .

We say that appr(x ,K ) is immediate if
⋂
α∈Sx,K

appr(x ,K )α = ∅.
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Approximative summary of Marga’s talk (2/2)
We say that appr(x ,K ) fixes the value of f ∈ K [X ] if there is
α ∈ vK such that v(f (c)) = α for c ↗ x .

appr(x ,K ) is said to be transcendental if it fixes the value of all
polynomials and algebraic if not.
We define dx ,K = deg(appr(x ,K )) to be the minimum degree of a
monic polynomial of value not fixed by appr(x ,K ).
Lemma (5.2)
Take appr(x ,K ) immediate, f ∈ K [X ] of degree 6 dx ,K , fi = f (i)

i! ,
βi its fixed value by appr(x ,K ).
Then there is h = hK (x : f ) 6 deg(f ) such that for i 6= h:

βh + hv(x − c) < βi + iv(x − c) for c ↗ x

v(f (x)− f (c)) = βh + hv(x − c) for c ↗ x

and if appr(x ,K ) fixes the value of f , then

v(f (x)− f (c)) > v(f (x)) = v(f (c)) for c ↗ x .
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Distant summary of Paolo’s talk
S = supp(appr(x ,K )) is an initial segment of vK ∪ {∞}.

Let S̃ be
the smallest initial segment of the divisible hull ṽK ∪ {∞}
containing S. The unique cut of ṽK having lower set S̃ \ {∞} is
denoted by dist(x ,K ). We have

x ∈ K c ⇔ dist(x ,K ) =∞.

Lemma (4.2)
Take (L|K , v) and x , x ′ ∈ L. Assume appr(x ,K ) is immediate.
then

appr(x ,K ) = appr(x ′,K )⇔ v(x − x ′) > dist(x ,K ).

Lemma (6.2 (not proven; not needed?...))
If appr(x ,K ) is immediate and transcendental, then (K (x)|K , v) is
immediate and transcendental.
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containing S. The unique cut of ṽK having lower set S̃ \ {∞} is
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The hunt for f

Lemma (10.2)
Under assumptions 10.1, there is f ∈ K [X ] such that
v(y − f (x)) > dist(y ,K ).

Proof.
1. K [x ] is dense in K (x), thus y ∈ K [x ]c .
2. y /∈ K c .
3. f exists.

Indeed, since y /∈ K c , dist(y ,K ) <∞, and since y ∈ K [x ]c ,
we can find some f ∈ K [X ] arbitrary close to y .
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v(y − f (x)) > dist(y ,K ).

Proof.
1. K [x ] is dense in K (x), thus y ∈ K [x ]c .
2. y /∈ K c .

Assume not. Then K is dense in K (y)h.

Let g be the minimal
polynomial of x over K (y)h. We can find a polynomial g̃ with
coefficient close enough to g , and by continuity of roots, g̃
has a root x̃ such that v(x − x̃) > dist(x ,K ). By 4.2 we have
appr(x ,K ) = appr(x̃ ,K ), but x̃ is algebraic and thus
appr(x̃ ,K ) is algebraic by 6.2 (or 5.5?).

3. f exists.
Indeed, since y /∈ K c , dist(y ,K ) <∞, and since y ∈ K [x ]c ,
we can find some f ∈ K [X ] arbitrary close to y .
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hK (disambiguation)
We define hK (x : y) = hK (x : f ) and βK (x : y) = βK (x : f ), where
f is a polynomial as in the previous lemma.

Lemma (10.3)
hK (x : y) and βK (x : y) do not depend on the choice of f .

Proof.
If f is a polynomial such that v(y − f (x)) > dist(y ,K ), then
appr(y ,K ) = appr(f (x),K ) by 4.2. If g is another similar
polynomial, then appr(g(x),K ) = appr(y ,K ) = appr(f (x),K ).
appr(x ,K ) is transcendental, hence fixes the value f − g . By 5.2,
for c ↗ x , v(f (c)− g(c)) = v(f (x)− g(x)). By 4.2,
v(f (x)− g(x)) > dist(f (x),K ), which is in turn > v(f (x)− f (c)).
Since v(f (x)− f (c)) increases by 5.2, the inequality is strict. So:

v(g(x)− g(c)) =

v((g(x)− f (x)) + (f (x)− f (c)) + (f (c)− g(c)))
= v(f (x)− f (c)) = βK (x : f ) + hK (x : f )v(x − c).
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starting to get it

Lemma (10.4)
Under assumptions 10.1 and with f as above, there is z ∈ K̃ (y)
such that

v(x − z) > v(y − f (x))− βK (x : y)
hk(x : y)

and
[K (y , z)h : K (y)h] 6 hK (x : y).

We will not do the proof today.
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there we have it! Oh wait, it’s separable

Lemma (10.5)
Under assumptions 10.1 and assuming K (x)h|K (y)h is separable,
then [K (x)h : K (y)h] 6 hK (x : y).

Proof.
Let α > v(σ(x)− x) for all σ ∈ Gal(K (y)h) not fixing x . We can
chose such an α because of separability. By the proof of 10.2 we
can find a polynomial f such that
v(y − f (x)) > βK (x : y) + hK (x : y)α. Let z be given by the
previous lemma, thus

v(x − z) > v(y − f (x))− βK (x : y)
hk(x : y) > α.

By Krasner’s lemma, x ∈ K (y)h(z). Now
[K (x , y)h : K (y)h] 6 [K (y , z)h : K (y)h] 6 hK (x : y) by the choice
of z , but since K (x)h = K (x , y)h, we conclude.
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i’m lost. what are we doing?

Lemma (10.6)
Under assumptions 10.1, given z ∈ K (y)h transcendental over K,
10.1 also holds for y and z in lieu of x and y, and:

hK (x : z) = hK (x : y)hK (y : z).

Proof.
1. 10.1 holds for y and z .
2. We may assume y = f (x) and z = g(y).
3. When c ↗ x , f (c)↗ f (x).
4. v(g(f (x))− g(f (c))) = β + hK (x : y)hK (y : z)v(x − c) for

c ↗ x and some fixed β.
Indeed appr(f (x),K ) fixes the value of g , so by 5.2
v(g(f (x))− g(f (c))) = β′ + hK (f (x) : g)v(f (x)− f (c)) for
f (c)↗ f (x). Now v(f (x)− f (c)) = β′′ + hK (x : f )v(x − c)
when c ↗ x and we conclude.
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bob’s your uncle

Theorem (10.7)
Under assumptions 10.1, [K (x)h : K (y)h] 6 hK (x : y).

the proof was in Paolo’s talk. To summarize: split K (x)h|K (y)h in
a separable part and an inseparable part, tackle the separable part
by 10.5 and the inseparable part by 9.2 (?), wrap up by 10.6.

Proof of 11.1.
Take γ > dist(x ,K ), possible since x /∈ K c . F is dense in F h since
it is of rank 1, so there is y ∈ F such that
v(x − y) > γ > dist(x ,K ). Now by 4.2 this implies that y is
transcendental, and we are under assumptions 10.1. Hence,
[K (x)h : K (y)h] 6 hK (x : y) and hk(x : y) = hK (x : f (x)) for any
polynomial f such that v(y − f (x)) > dist(y ,K ); x is such a
polynomial and hK (x : x) = 1.
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How to tame your dragon

I Lemma 4.2, or has it been done? It needs only calculations. It
is used all along chapter 10.

I Lemma 6.2 or Corollary 5.5 if it is enough. 5.5 relies on 5.4
which is almost in Marga’s talk, and 6.2 is more or less by
Kaplansky. It is used all along chapter 10.

I Lemma 8.2 and Corollary 8.3. They need calculations and a
bit of chapter 7. It is used to prove 10.6.

I Lemma 10.4. It is proven by similar method than 9.1 and 9.2,
which might also be needed; they are long calculations. It is
used to prove 10.5.

And that should be all!
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