$$
E_{0}
$$

Where are we?
Sim: (Dive deeper into) CIMM: $(1 h, v)$ tame and $(F, v) /(1 h, v)$ immediate function field with $\operatorname{tr} \operatorname{deg}_{1 h}(F)=1$, then $F^{h}=E^{h}$ for some $k \leq E$ rational function field.
Today: more on thuhlmann-Vlahu: Let (k, v) be a rank 1 valued field and let $(F \mid h, v)$ be an immediate extension with $F \mid$ th of tr deg $1, F$ a function field Suppose there is sone $x \in F^{h} \backslash k^{c}$ with transcendental approximation type/ $1 k$ such that $F^{h}=\operatorname{lh}(x)^{h}$
Then there is some $y \in F$ such that $F^{h}=P h(y)^{h}$. In fact, there is some $\gamma \in$ oh such that $f_{h}(x)^{h}=f(y)^{h}$ for every $y \in F$ with $v(x-y) \geq \gamma$.
Proof:

1) $x \notin K^{c} \Rightarrow \exists \gamma \in v / h: \quad \gamma>\operatorname{dist}(x, k)$.
2) $x \in F^{h}$ and $F \mid h /$ is immediate $\Rightarrow v h=v F \Rightarrow(F, v)$ hes rank 1 too $\Rightarrow F^{h} \subseteq F^{c} \ni x$.
3) F is dense in F^{c}, so there is some $y \in F$ with $v(x-y) \geq 8$.
4) Ifoove $(x-y)>\operatorname{dist}(x, f h)$, then $\left[h(x)^{h}: \nmid(y)^{h}\right] \leqslant h_{\text {ph }}(x: y)$. (Theorem 10.7)
5) $h_{p h}(x: y)=h_{p h}(x: x)=1(L$ emma 10,3$)$
6) Distances \& approximations (Cmarga's session)

Recall
$\checkmark D_{\alpha}(c, h)=\{a \in \nmid y: v(a-c) \geq \alpha\}$ is the "dosed ball in th of radius $\alpha \in v \not h^{\infty}$ and "center $c \in \nmid$
$\checkmark S \subseteq \sigma K^{\infty}$ initial segment, $\left\{c_{\alpha}: a \in S\right\} \subseteq K, A=\left\{B_{\alpha}\left(c_{\alpha}, k\right): \alpha \in S\right\}$ a chain We say that $A($ is an approximation type over $(f h, v)$.
$V \alpha \in S \Rightarrow \mathbb{A}_{\alpha}:=\mathcal{B}_{\alpha}\left(c_{\alpha}, \mathfrak{k}\right) ; \quad \alpha \notin S \Rightarrow \mathbb{A}_{\alpha}:=\varnothing$
$\checkmark S=: \operatorname{supp} A l$
1 Let $(L \mid h ; v)$ be an extension, $x \in L ; \alpha \in v h^{\infty}$ Define app $(x, h h)_{\alpha}=\{c \in h: v(x-c) \geq \alpha\}$

$$
=D_{\alpha}(x, L) \cap 1 \eta
$$

$\sqrt{ }$ appr $(x, h)_{\alpha}$ is either ϕ or a closed ball of radius α.

$$
c \in l h \cap D_{\alpha}(x, l)
$$

\mathcal{J} The set $\left\{\alpha \in \sigma \not h^{\infty}: \operatorname{appr}(x, t h)_{\alpha} \neq \phi\right\}$ is an initial segment of $v h^{\infty} \operatorname{appr}(x, 14)_{\alpha}=-\mathcal{L}(f, k)$
$\mathcal{V} \operatorname{Deqine~appr}(x, \nmid):=\left\{\operatorname{anper}(x, f \mid)_{\alpha}: \alpha \in O h^{\infty}, \operatorname{appr}(x, \nmid)_{\alpha} \neq \phi\right\}$ This is the approximation type of x over $(t h, v)$
$\mathcal{V} S=\sup (\operatorname{appr}(x, P h)) \Rightarrow S \cap \sigma \neq S \backslash\{\infty\}$ is a $c \omega t$ in $v t h$ because S is an initial segment. (lower)
\checkmark This at induces a at in $\widetilde{\text { oh h }}($ the divisible hull of $v / h)$ with lover at $=$ smallest initial sganant of \widetilde{v} containing $S\{\{\infty\}$

\checkmark We call ($\widetilde{\Omega})$ the distance from x to (h, v) and denote it by dist (x, f) Question
Let ε be a bounded element in an el extension of 代, $)$ be such that $S \backslash\{\infty\}=\varepsilon^{-}$. Then $\operatorname{dist}(x, 1 h)=\{\gamma \in \widetilde{v \not t}: \gamma<\varepsilon\}$. Well, not quite.
We write $\operatorname{dist}(x, f h)=\infty$ if $\operatorname{dist}(x, h)=v / h$, and $\operatorname{dist}(x, 1 \ell)<\infty$ otherwise
Observation:

$$
x \in P h^{c} \Leftrightarrow \operatorname{dist}(x, P h)=\infty
$$

Proof

Let $\gamma \in u t h$

$$
\exists c_{k} \in h c_{\gamma} \in B_{\gamma}(x, L)
$$

$$
\begin{aligned}
& \operatorname{supp}_{\gamma \in v}(\operatorname{mpr} h(x, 1 h))=v h \\
& \exists c_{\gamma}: c_{r} \in D_{\gamma}(x, L) \\
& \left(C_{\gamma}\right)_{r} \leadsto x \text { is psc. } \\
& \text { for arbitang } \\
& \text { I } \exists r_{0} \neq \text { of } \forall v \geq v: v\left(c_{v}-c_{v_{0}}\right)>\gamma \\
& v(x-c v) \geq v \geq v_{0} \\
& \begin{aligned}
v\left(c_{v_{0}}-c_{v}\right) & \left.=\frac{v\left(\varepsilon_{v_{0}}-x\right.}{\gamma^{r}}+x-c_{v}\right) \\
&
\end{aligned}
\end{aligned}
$$

$$
\begin{aligned}
& \underset{(\operatorname{supp} \operatorname{agppr}(x, h h))}{\Rightarrow}=v \operatorname{vth} \theta \operatorname{dist}(x, h))=\widetilde{v \not h} \\
& (\Leftarrow) \leq \text { alneys } \\
& r \in v \operatorname{lh} \leq \sqrt{t h}=\operatorname{dist}(x, p h) \\
& z \gamma \in \operatorname{supp}(\operatorname{app}(r, f)) \\
& \frac{\left(-\infty, \gamma^{8}\right]}{\tilde{v} h} \leq \frac{\sup (\operatorname{app}(x, p h))}{1 /)] \frac{1}{8}}
\end{aligned}
$$

Corollary

$$
x \notin h^{c} \Rightarrow \operatorname{dist}(x, h)<\infty \text {, ie, } \exists \gamma^{*} \text { ph } \operatorname{supp}(\operatorname{app}(x p h))<\gamma
$$

Towards 10.7:
Assume $((f h, v)$ valued field of ramp 1
$\left\{\begin{array}{l}\left.(f h(x) \mid t h, v) \text { immediate extension with } x \notin h^{c} \quad \text { (A) (}\right) \\ \operatorname{app}(x, 1 h) \text { transcendental }\end{array}\right.$

Observation:
Let $y \in F$ satisfy $v(x-y) \geqslant \gamma>\operatorname{dist}(x, \rho /)$. Then $y \in h(x)^{h}$ is transcendental /ph, so A holds Indeed,

$$
v(x-\rho h)
$$

$\begin{aligned}(f h(x) \mid l h, v) \text { immediate } & \Rightarrow \operatorname{appr}(x, 1 h) \operatorname{immediate}(i . e, \cap \operatorname{appr}(x, \nmid h)=\phi) \quad\left(\begin{array}{l}\text { Lemma } 4.1: b) \\ \\ \end{array}>\frac{\operatorname{appr}(x, h)=\operatorname{appr}(y, h)}{} \Longleftrightarrow v(\lambda-y) \geq \operatorname{dist}(x, h)\right.\end{aligned}$
$\Rightarrow \underset{\text { appr }(y / h)}{ }$ is transcendental \& immediate
$\Rightarrow y$ is trans $/ 1 h$
\checkmark (lmarga) appr (x, h) is imnectiate $\Leftrightarrow v(x-h)$ has no maximal element.
$(h(x) / \nmid h)$ inmediate, $c \in h \Rightarrow v(x-c) \in v(h(x))=v h \Rightarrow \exists d \in h \quad v(x-c)=v(d)$

$$
\begin{aligned}
& \Rightarrow v\left(\frac{x-c}{d}\right)=0 \Rightarrow \operatorname{res}_{\mu(x)}\left(\frac{x-c}{d}\right) \neq 0 \& \exists y \in O_{p 1} \quad \operatorname{nes}_{\mu h}(y)=\operatorname{res}_{\mu_{x x}}\left(\frac{x-c}{d}\right) \Rightarrow \\
& \Rightarrow \operatorname{ves}_{\text {1h }(x)}(y)=\operatorname{res}_{\ln (x)}\left(\frac{x-c}{d x}\right) \Rightarrow v\left(y-\frac{x-c}{d}\right)>0 \Rightarrow v(d y-x-c)>v(d)=v(x-c) \text {, and }
\end{aligned}
$$ $d y-c \in l h$, so $v(x-l h)^{d}$ has no maximal element

\checkmark Lemma 4.2: $\operatorname{appr}(x, \nmid)=\operatorname{appr}(y, \not h) \Longleftrightarrow v(y-x) \geqslant \operatorname{dist}(x$, 仹 $) \quad$ whenever $\operatorname{appr}(x, 1 h)$ is immesiate
$h_{p h}(x y):$

Lemma 10.2 (Omarga $)$
Under these conditions we have that $y \in f\left\{[x]^{c} \backslash f^{c}\right.$ and there exists a polynomial $f \in P h[x]$ sock that

$$
v(y-f(x)) \geqslant \operatorname{dist}(y, 14)
$$

We define $h_{p h}(x: y)=h_{p h}(x: f)=h \leq \operatorname{deg} f$ where

$$
\beta_{h}+h v(x-c)<p_{i}+i v(x-c)
$$

for $c>x, p_{i}$ the fixed value $v\left(f_{i}(c)\right), i \neq h, i \in\{1, \ldots, \operatorname{deg} f\}$, $\operatorname{dg} f \leq d=\operatorname{deg}(\operatorname{appr}(x, h)), \operatorname{app}(x, h)$ immediate.

Theorem 10.7
Assume:

Then $\left[f(x)^{h} \operatorname{lh}^{h}()^{h}\right] \leq h_{p h}(x y)$
Proof: $h(x)^{h}$

$\int x_{n}^{p^{n}}$ is separable over $f(y)^{h}$
$\int x^{p^{n}} \in L$
$\checkmark \operatorname{Ph}^{\left.x^{n} \in x^{n}\right)^{n}} \subseteq L^{n}=L$ (because L is rel sep closed in the henselian $\left.K(x)^{h}\right)$)
$\forall h(x)^{h}=\left\{h\left(x^{n}\right)^{h}(x)\right.$ V

$$
\begin{aligned}
& \begin{array}{l}
\quad p^{n} \geq\left[h(x)^{h}: h\left(x^{p^{n}}\right)^{h}\right]=\left[h(x)^{h}: L\right]\left[L: h\left(x^{n}\right)^{h}\right]=p^{n}\left[L: h\left(x^{p^{n}}\right)^{h}\right] \\
f h(x)^{h}=\operatorname{hh}\left(x^{p^{n}}\right)^{h}(x)
\end{array} \\
& \text { and }\left[f(x)^{h}: \operatorname{lh}^{n}\left(x^{n}\right)^{n}(x)\right] \leq p^{n} \\
& \text { because } X^{p^{n}}-x^{p^{n}} \in \operatorname{Ph}\left(x^{p^{n}}\right)^{h}[X] \\
& \text { is satisfied by } x \\
& \Rightarrow \quad\left[L: h_{h}\left(x^{p^{n}}\right)^{h}\right] \leqslant 1 \\
& \Rightarrow L=\operatorname{lh}\left(x^{p}\right)^{h}
\end{aligned}
$$

(Lemma 10.6) If $y \in f(x)^{h}$ is transc/th and $z \in t h(y)^{h}$ is trans/th, then $z \in h(x)^{h}$, $h(y: z)$ is defined and $h(x: z)=h(x: y) h(y: z)$.

$$
\begin{aligned}
\Rightarrow h(x: y) & =h\left(x: x p^{n}\right) h\left(x^{n}: y\right) \\
& =p^{n} h\left(x p^{n} y\right)^{\prime}
\end{aligned}
$$

Cmoreover,
Lemma 10.5 (Reduction to the separable case)
If $P_{h}(x)^{h} \mid \operatorname{Ph}(y)^{h}$ is separable, then $\left[P h(x)^{h}: M(y)^{h}\right] \leq h_{h}(x: y)$

$$
\begin{aligned}
& S_{0}\left[f h(x)^{h}: \nmid(y)^{h}\right]=\left[h(x)^{n}: 1 h\left(x p^{n}\right)^{h}\right]\left[h\left(x p^{n}\right)^{h}: 1 h(y)^{h}\right] \\
&=p^{n} \cdot\left[1 h\left(x p^{n}\right)^{h}: 1 h(y)^{h}\right] \\
& \leq p^{n} \cdot h\left(x p^{n} y\right) \\
&=h(x: y) \\
& \text { We used Corollary } 9.2:
\end{aligned}
$$

Under some other (fulfilled?) hypotheses, if $(t h, v)$ is henselian, $x \in h^{a g}, d=[h(x): k]$ and $f=\mu_{x, p l}$, then

$$
d=h(x \cdot f)=p^{t}
$$

$$
\text { TO DO } \|_{000}
$$

