

Where are we?
Ain: (Dive deeper into) CIMM: (14, v) tame and (F, v)/(14, v) immediate
function field with tr deg $(F) = 1$ then $F = E^{*}$ for some $fh \subseteq E$ rational function field.
Today More on thuhlmann-Vlahu: Let (K, v) be a rank 1 valued field and let
(F h, v) be an immediate extension with $F h$ of trideg 1, F a function field. Solution field F^{h} K^{c} K^{c
Suppose there is some $x \in I \setminus M$ with Iranken Central approximation type / 12 such that $F = fh(x)^{h}$
Then there is some $y \in F$ such that $F^n = f(y)^n$. In fact, there is some $\delta \in OH$
Such that $f(x) = f(y)$ for every $y \in I$ with $p(x-y) \ge r$.
$\frac{1001}{1001}$
$\chi \notin h \Rightarrow \exists 8 \in o(1: 8) \text{ dist}(\chi, h)$ $\chi \in F^{h} \text{ and } F h \text{ is immediate} \Rightarrow o(h = oF \Rightarrow (F, v) \text{ has rank } 1 \text{ too} \Rightarrow F^{h} \subseteq F^{o} \Rightarrow \chi$
3) F is dense in F^{c} , so there is some $y \in F$ with $v(x-y) \ge 8$.
Ande with Good Otes x-y) > asi (x, 12) Then [fa(x): fright - ali x, gr (I hearem 10. r)

5)	$h_{\mu}(x:y) = h_{\mu}(x:x) = 1$ (Lemma 10.3)
1)	Distances & appoximations (Omarga's session)
	<u>Mecall</u>
	${}^{C}\mathcal{B}_{\alpha}(c,h) = \{a \in h : v(a-c) \ge \alpha\}$ is the closed ball in the of radius at who and conter ceft.
	$S = v h^{\alpha}$ initial segment, $\{c_{\alpha} \ \alpha \in S\} = h$, $A = \{B_{\alpha}(c_{\alpha}, h) \ \alpha \in S\}$ a chain. We say that A is an approximation type over (h, v) .
	$\alpha \in S \Rightarrow A_{\kappa} := \mathcal{B}_{\alpha}(c_{\alpha}, k); \alpha \notin S \Rightarrow A_{\kappa} = \emptyset$
	S=: supp A
	Let $(L h, v)$ be an extension, $x \in L$, $\alpha \in vh^{\infty}$. Define $appr(x, h)_{\alpha} = \{c \in h: v(x-c) \ge \alpha\}$ = $\mathcal{D}_{\alpha}(x, L) \cap h$.
· / ·	appr $(x, h)_{\alpha}$ is either β or a closed ball of radius α . Cefh $\cap \mathbb{Z}_{\alpha}(x, L)$
Made	The set $\{\alpha \in \sigma h^{\infty} : appr(x, h)_{\alpha} \neq \phi\}$ is an initial segment of σh^{∞} appr(x, h)_{\alpha} = 2Ccf, H

	Define appr $(x, h) := \{ appr(x, h)_{\alpha} : \alpha \in Oh^{\infty}, appr(x, h)_{\alpha} \neq \beta \}$ This is the approximation type of
• •	x over (H, v) .
	S= sup (appr (x, 14)) => Snoth = Sloof is a cut in with because S is an initial segment
	(lover)
	This ait induces a art in oth (the divisible hull of oth) with lower ait = smallest initial segment of oth
• •	containing $S(x_{\infty})$ $S(x_{\infty})$
• •	~/~/~/// v /2
• •	
••••	$\frac{1}{\sqrt{1+1}} = \frac{1}{\sqrt{1+1}} = \frac{1}$
• •	$ \begin{array}{c} \begin{array}{c} \end{array} \end{array}$
· ·	$\mathcal{S}\in\tilde{\mathcal{S}}\iff\exists S\in\mathcal{S}:\mathcal{S}\leq\delta$
• •	
м	ade with Goodnotes

We call \$ the distance from x to (h, v) and denote it by dist(x, h)	
Givestion Let ε be a bounded element in an el. extension of $[M,s]$ be such that $S \setminus \{\infty\} = \varepsilon$ Then dist $(x, h) = \{ \ s \in \ v \in \}$. Well, not quite.	· · · ·
We write dist $(x, fh) = \infty$ if dist $(x, fh) = v \tilde{fh}$, and dist $(x, fh) < \infty$ other wise	
$\frac{Observation}{\chi \in h^{\sim} \Leftrightarrow dist(x, h) = \infty}$ Proof	
We want to see $(x \in fh) = supp (appr(x, fh)) = ufh$ (2) which $(x, fh) = ufh$	· · · ·
Let Ve vh	· · ·
$\exists c_{\uparrow} eh c_{e} \partial_{y} (x, L)$	· · ·
	· · ·
Made with Goodnotes	

sopp(appr(x, h)) = vhfor arbitrang FCt: CtE Dy(x,L) (C8) ~ ~ × 15 ps c $\overline{v_{s}}$ oh $\forall v \ge v$: $v < c_r - c_r$) >8 $\mathcal{V}(\mathbf{x} - \mathbf{c}_{\mathbf{V}}) > \mathbf{V} > \mathbf{v}_{\mathbf{s}}$ $\mathcal{V}(c_{\gamma,-c_{\gamma}}) \sim \mathcal{V}(c_{\gamma,-\chi} + \chi - c_{\gamma})$

-apper(x, h) = vh = dist(x, h) = vhSURP 5 always chat (xp1) $8 < v \frac{h}{2} \leq v \frac{h}{2} = v \frac{h}{2} =$ $z Y \in supp(ap(r, k))$ $(-\infty)$ $\&] \leq su$ pland

$\frac{\text{Corollary}}{x \neq h^{\epsilon} \Rightarrow \text{dist}(x, h) < \infty, i.e., \exists & e oh : supp(appr(x, h)) < s$	
Towards 10.7: <u>Assume</u> ((h, v) valued field of range 1 $(h(x) h, v)$ immediate extension with $x \notin h^c$ (A) appr (x, h) transcendental $y \in h(x)$ transcendental / h .	
Observation: Let $y \in F$ satisfy $v(x, y) \ge x > dist(x, th)$. Then $y \in h(x)^{h}$ is transcendental/fly. Indeed, U(x - fh) (h(x) + fh + x) immediate $(x, th) = d(x, th$	so & holds.
$(1)(x)(1), v) \text{ immediate} \xrightarrow{(x, 1)} \text{ appr}(x, 1) = appr(x, 1) \implies appr(x, 1) \implies appr(x, 1) \implies v(x-y) \ge dist(x, 1) = appr(y, 1) \implies v(x-y) \ge dist(x, 1) = appr(y, 1) \implies appr(y, 1) \implies s \text{ transcendental } \& \text{ immediate}$	Valenna 4.1.6) (alenna 4.2)

	/*	((m	ar	ga	.)	. a	ppr	-(;	x, l	h) [is	•	im m	echie	te	(~	•	v (X -	- 14	z)	h	zs	 . n	D	ma/:	() MR	lie	le	ment			0		• •		•		•	• •	
•	•	, , ,	占	(x)])	in,	red	iat	e	• •	c c	e	fh		⇒	י ע	• (•	2-	c)	E	ю Ю	Phi	x1)	= 1	, ł	, . 	-⇒	Ε	de	p		י ט-	د (م	(- C		• ט	-ld)				
	•		, ⇒ ,	U	·	<u>x</u> -).	= 0	,	′ ⇒	re	5 2	[<u>x</u> -	- 2	;);	≠.0		, . К.,	Ē	Į€	0	4	•	nej	Ih	(y)	. =	Ne	3. /	χ	- <u>c</u>	 .) .					•		•		
•	•	, ≓)		હ્યુ	14 č. m	(Y) .	- -	rej	n i .	· /·	χ.	1h(> - ⊆	(). }	⇒	34 1	, ,	y -	-	<u>x-</u>	<u>e</u>)	(). 		⇒	י ט	 / c	hy -	0 - х	 С.) >	Hol V V	(d)	d. 	ן (סטו	(; + (- -) .		Om	٦	•		
•	•	. 0	hy -	1 C (= 11		50	. 1	v (14(X X-	, {h)	c	he	/. vs	. 104	 D.	na	U. xim	l	. d.	é	um e	int	· ·	•	. L	0.	•		•		• •	•		•	•	• •		•		•		
./	1 .	. C	9 .		4:2	́. 21.			rl.		() ()		2		1	<i>в</i> ь)		<u> </u>		 10-1			· · ·	مان	-+	12	M)•		J.			•	• •		06	· ·				h		
v	•	e ve		.				T	- (<i>i</i>	י יא י	.0 :		101	, c	ď		ي د د		•	, U -,(J	- X,) <i>;</i> ; ;	41	26	ι~, 	, "L,	· .	. V 	мил				or i	,x,	47.	/. L	S .	I M.F.M	ucsn	uv -	- · ·	
•	•	•	• •	•	•	•	• •	•	•	•	· ·		•	•		• •	•	•	•	• •	•	•			•	• •	•	•	· ·	•	•	• •	•	• •		•	• •		•	• •	•	• •	
•	•	•	• •	•	•	•		•	•	•	• •	•	•	•			•	•	•		•	•			•			•	• •	•	•		•	• •		•	• •		•		•		
	•	•	• •	•	•	•		•	•	•			•	•			•	•	•	• •	•	•			•		•	•		•	•	• •	•		•	•		•	•		•		
•	•	•		•	•	•		•	•	•		•	•	•		• •	•	•	•		•	•			•		•	•		•	•		•		•	•	• •		•		•		
	•	•		•	•	•		•	•	•		•	•	•			•	•	•		•	•			•		•	•		•	•		•		•	•		•			•		
•	•	•		•	•	•		•	•	•		•	•	•			•	•	•		•	•			•		•	•		•	•		•		•	•			•				
•	•	•	• •	•	•	•		•	•	•		•	•	•			•	•	•			•			•		•	•		•	•		•	• •	•	•					•		
•	•		• •													• •																• •											
																• •																											
	Made	with	Goo	dnot	es																																						

$\frac{h_{\mu}(\chi, \eta)}{h_{\mu}(\chi, \eta)}:$		· · · ·		
Assume ((11, v) valued field of rank 1	• • •	· · · ·	· · · ·	· · · · · · · · ·
$\begin{cases} (fh(x) fh, v) \text{ immediate extension with } x \notin fh^c \\ (x, ph) + (1) \end{cases}$		· · · ·	· · · · ·	· · · · · · · · · ·
$y \in fh(x)$ transcendental / fh.				· · · · · · · · ·
\mathcal{L}	• • •	· · · · ·	· · · ·	· · · · · · · · · · ·
$\frac{2(11)}{11} \frac{11}{11} \frac$		· · · · · 	· · · · ·	
Under these anditions we have that $y \in fh[x] \setminus fh$	and	there	exists	a polynomial
fellex7 sale that				
$f \in h[x]$ soch that $v(y - f(x)) \ge dist(y, l)$	· · · ·	· · · · ·		
$f \in h[x]$ soch that $v(y - f(x)) \ge dist(y, h)$ $be define h_m(x;y) := h_m(x;f) = h \le deg f$ where	 	· · · · · · · · · · · · · · · · · · ·		
$f \in h[x] \text{ soch that} \qquad \forall (y - f(x)) \ge \operatorname{dist}(y, h)$ $be define h_m(x; y) \coloneqq h_m(x; f) = h \le \operatorname{deg} f \text{where}$ $p_h + h \cdot \forall (x - c) < p_i + i \forall (x - c)$	· · · · · · · · · · · · · · · · · · ·	 		
$f \in h[x] \text{ soch that} \qquad v(y - f(x)) \ge \operatorname{dist}(y, h)$ $we define h_{M}(x; y) \coloneqq h_{M}(x; f) = h \le \operatorname{deg} f \text{where}$ $p_{h} + h \cdot v(x - c) < p_{i} + i v(x - c)$ $for c \neq x, p_{i} \text{ the fixed value } v(f_{i}(c)), i \neq h, i \in \{$	· · · · · · · · · · · · · · · · · · ·	deg f }		
$f \in h[x] \text{ soch that } \mathcal{V}(y - f(x)) \ge \operatorname{dist}(y, h)$ $We define h_m(x, y) \coloneqq h_m(x; f) = h \le \operatorname{deg} f \text{where}$ $p_h + h \cdot \mathcal{V}(x - c) < p_i + i \cdot \mathcal{V}(x - c)$ $for c \neq x, p_i \text{ the fired value } \mathcal{V}(f_i(c)), i \neq h, i \in \{$ $\operatorname{deg} f \le d = \operatorname{deg}(\operatorname{aver}(x, h)) \operatorname{amer}(x, h) \text{immediate.}$)	deg []},		

Theorem 10.7									
Assume: ((14, v) valued field of rank -	L				• • •				
$\left(\frac{1}{2}\left(\frac{1}{2}\left(\frac{1}{2}\right),\frac{1}{2}\right)\right)$ immediate extension appr $(x, 1)$ transcented	with	χ∉ ľh⁻	· · · · ·	· · ·	• • •	· · ·	• • •		
$y \in h(x)^h$ transcendental / th	· · · · ·	· · · · · · ·	· · · · ·	· · ·	· · ·	· · ·	· · ·		•••
Then $[fh(x)^{h} fh(y)^{h}] \leq h_{fh}(x, y)$	· · · · ·	· · · · · · ·	· · · ·	· · ·	· · ·	· · ·	· · ·	••••	· · ·
$\frac{\operatorname{Proof}}{\operatorname{fh}(x)^{h}}$	h(x)			· · · ·	· · ·	 Год	k in i	i i i Kiji i	• • •
can be de composed as	1 <	inseparable	, <u>re</u> c. O	f deg	- p =	l + n(x)	1 1 1 (y	1 1	•
l can be decomposed as <i>fh</i> (y) ^h	2 2 2	maximal s	, rec. o eparable	e deg suber	- p =	[+n(x,	1 : 17(y	' <u>'</u>	· · · · ·
th (y) ^h (x) ^h is separable over $f(y)^{h}$	1 L 1 K(y) ¹	inseparable - neximal s	, rec. o eparable	f dog suber	r p =	[+n(x,	1 : 11(y	J. J.	
$x^{n} \text{ is separable over } h(y)^{h}$ $x^{i} \in L$ $fh(x^{n})^{h} \in L^{i} = L (because \ L \text{ is rel})^{h}$	K(y) Sep. cle	maximal s	, nec o eparable hense	f dog sube lian	p = ctension lh(x)	(<i>L</i> , <i>P</i> (<i>x</i>),	1 · · · · · · · · · · · · · · · · · · ·		

$p^{n} \ge [h(x)^{k} + h(x)^{k}]$	$[h^{n})^{h}] = [fh(x)^{h} L] [L]$	$- \left[\left(h(x^{p^n})^h \right] =$	p" [L:h($(\chi r)^{h}$			
$fh(x) = fh(x^{n})(x)$	· · · · · · · · · · · · ·	· · · · · · · · ·	· · · · · ·	· · · · ·	<u>.</u>		
and $[fh(x)^h, fh(x^{p^n})^h(x)] \le p^n$	י	· · · · · · · · · ·	· · · · · ·	· · · · ·	· · · · ·	· · · ·	• •
is satisfied by x		· · · · · · · · · ·	· · · · · ·	· · · ·	· · · ·		• •
	$\left[\left[: fh(x^{p^n})^h \right] \le \right]$	1	· · · · · ·	· · · · ·	· · · · ·		• •
	$L = lh(x^{\mathbf{r}})$	· · · · · · · · · ·	· · · · · ·	· · · ·	· · · ·		
$(demma 10.6)$ If $y \in h(x)^{h}$ h(x) = defin	$L = lh(x^{p})$ is transc / lh and =	$a \in h(y)^{h}$ is to h(x;y)h(y;	rans /14, →)	then	ze 1	"h(x) ^h	· · ·
(demma 10.6) If $y \in h(x)^h$ h(g:z) is defin	$L = lh(x^{p})$ is transc / lh and = ed and h(x: =) =	$a \in h(y)^{h}$ is tr h(x:y)h(y:	rans /11, Z)	then	₹€	'n(∞) ^h	
$(demma 10.6) If y \in fh(x)^{h}$ $h(y;z) is defin$ \Longrightarrow	$L = h(x^{p})$ is transc / th and = ed and h(x:z) = $h(x;y) = h(x;x^{p})$	$z \in h(y)^{h} \text{ is } tv$ $= h(x; y) h(y;$ $) h(xp^{2}; y)$	rans /11, ⊋)	then	261	'n(x) [*]	
$(dem ma \ 10.6) If y \in h(x)^{h}$ $h(y;z) is defin$ \Longrightarrow	$L = lh(x^{p})$ is transc / lh and = ed and h(x:z) = h(x:y) = h(x:x^{p}) $= p^{p} h(x)$	$a \in fh(y)^{h} is trh(x;y)h(y:)h(x)^{h}(y)(x)^{h}(y)$	rans / 14, 2)	<u>then</u>	2€ 1	'h(x) ^h ,	

anoreover		
Lemma 10.5 (Predu	tion to the separable case)	• • •
If $f_{1}(x)$ $f_{2}(y)$	is separable, then $[h(x)^{h}:h(y)^{h}] \leq h_{h}(x,y)$	· · ·
So [th(x)h th(y	$ = \left[f_h(x)^h + f_h(xr^n)^h \right] \left[f_h(xr^n)^h + f_h(y)^h \right] $	· · ·
· · · · · · · · · · · · · · · · · · ·	$= \gamma^{n} \cdot \left[fh(x)^{h} \cdot fh(y)^{h} \right]$	· · ·
· · · · · · · · · · · · · · · · · ·	$\leq p^{n} \cdot h(xp^{n}; y)$	· · ·
We used Corollary	= h(x; y) $= 9.2$	· · ·
Under some other	(fulfilled?) hypotheses, if (14, v) is henselian, $x \in f_1^{alg}$, $d = [f_1(x), f_2]$	K].
and $f = \mu_{x, H}$,	then $d = h(x; f) = p^{t}$	· · ·
		· · ·
Made with Goodnotes	· · · · · · · · · · · · · · · · · · ·	

Made with Goodnotes