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Abstract

We develop prismatic and syntomic cohomology relative to a δ-ring. This simultaneously generalizes Bhatt
and Scholze’s absolute and relative prismatic cohomology and shows that the latter, which was defined
relative to a prism, is in fact independent of the prism structure and only depends on the underlying
δ-ring. We give several possible definitions of our new version of prismatic cohomology: a site theoretic
definition, one using prismatic crystals, and a stack theoretic definition. These are equivalent under mild
syntomicity hypotheses. As an application, we note how the theory of prismatic cohomology of filtered
rings arises naturally in this context.
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1 Introduction

The p-adic syntomic complexes Zp(i)(R) for i ∈ Z⩾0 and a quasisyntomic ring R are objects of the p-complete
derived ∞-category D(Zp)

∧
p introduced by Bhatt, Morrow, and Scholze [9] in order to study topological

cyclic homology and algebraic K-theory. They are a form of étale-sheafified motivic cohomology at the ‘bad’
prime [13] and were studied in a different guise by Fontaine and Messing [12]; see [6] for a comparison. Our
goal in this paper is to introduce and study a relative form of the p-adic syntomic complexes Zp(i)(R/A)
when A is a δ-ring and R is a commutative A-algebra.1

Syntomic cohomology is built from the theory of prismatic cohomology due to Bhatt, Morrow, and
Scholze [9, 10] and we will similarly generalize prismatic cohomology to a relative setting. We assume that
the reader either knows what a prism is or is willing to take this notion as a black box. For now we only need
that (among other things) a prism is a commutative ring A with an endomorphism φA and an invertible ideal
I ⊆ A. For a prism (A, I) and a commutative A-algebra R, where A = A/I, Bhatt and Scholze naturally
associate the following objects:

(a) an E∞-A-algebra ∆R/A, the (derived) prismatic cohomology of R relative to A;2

(b) ∆R/A-modules ∆R/A{i} for every integer i ∈ Z called the Breuil–Kisin twists (with ∆R/A{0} = ∆R/A)
which are graded multiplicative with respect to i;

(c) complete Hodge–Tate towers ∆[⋆]
R/A{i}

· · · → ∆[n+1]
R/A {i} → ∆[n]

R/A{i} → ∆[n−1]
R/A {i} → · · ·

for i, n ∈ Z, multiplicative in i and n, with weight n = 0 part ∆R/A{i}, underlying object ∆R/A{i}[1/I],
and associated graded pieces grn∆[⋆]

R/A{i} ≃ ∆R/A{i+ n}, the (i+ n)-Breuil–Kisin twisted Hodge–Tate
cohomology of R over A;3

(d) complete Z-filtered A-modules

· · · → N⩾n+1∆̂(1)
R/A{i} → N⩾n∆̂(1)

R/A{i} → N⩾n−1∆̂(1)
R/A{i} → · · ·

for i, n ∈ Z, multiplicative in i and n, called the Nygaard filtration on the Nygaard-completed, Frobenius-
twisted, Breuil–Kisin twisted prismatic cohomology ∆̂(1)

R/A{i}, which have property that N⩾⋆∆̂(1)
R/A{i} is

constant for ⋆ ⩽ 0;

1Bhatt and Lurie introduce p-adic syntomic complexes Zp(i)(R) for a broad class of non-p-complete rings in [7]. When
R is quasisyntomic (and in particular p-complete), these agree with the complexes defined in [9], but for example for Z(p),
the difference between Zp(i)(Z(p)) and Zp(i)(Zp) is the same as the difference between the p-adic (pro-)étale cohomology in
weight i of SpecQ and of SpecQp. On the other hand, our relative syntomic complexes Zp(i)(R/A) depend only on the derived
p-completions: Zp(i)(R/A) ≃ Zp(i)(“R/“A). Thus, Zp(i)(Z(p)/Z(p)) ≃ Zp(i)(Zp/Zp) ≃ Zp(i)(Zp), and not Zp(i)(Z(p)).

2When we want to distinguish this object carefully from our prismatic cohomology relative to δ-rings, we will write it as
∆rel
R/A

. As we will show in Theorem 1.2(2), the two agree when both are defined.
3In fact, this tower is simply given by the I-adic filtration on ∆R/A{i}, i.e. ∆[n]

R/A
{i} = ∆R/A{i}⊗A In. We want to highlight

the structure in this abstract way to foreshadow the generalization that is to come.
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(e) a φA-semilinear morphism c : ∆R/A{i} → ∆̂(1)
R/A{i} for every i ∈ Z;

(f) a filtered relative Frobenius map N⩾⋆∆̂(1)
R/A{i}

φ/A−−→ ∆[⋆−i]
R/A {i} for every i ∈ Z (the variable ⋆ is the

filtration).

We will not give a detailed review of the definition of these objects here and just note that the functor ∆R/A

can be constructed by taking the cohomology of the prismatic site of R relative to A when R is p-adically
formally smooth over A, and then left Kan extending in the ∞-category of (p, I)-complete E∞-A-algebras
from formally smooth A-algebras.

Remark 1.1. (1) Let ∆̂(1)
R/A = ∆̂(1)

R/A{0}. In this case, the morphisms c and φ/A are maps of E∞-rings and
the composition

∆R/A
c−→ ∆̂(1)

R/A

φ/A−−→ ∆R/A

induces a φA-semilinear endomorphism φ that we call the (absolute) Frobenius.
(2) We want to explain in which sense ∆̂(1)

R/A is a completion to explain the terminology: using the map c

one can ‘pull-back’ the Nygaard filtration to get a non-complete filtration on the Frobenius twisted
prismatic cohomology ∆(1)

R/A{i} := ∆R/A{i} ⊗A,φA
A. Concretely this new filtration is given by the

formula
N⩾⋆∆(1)

R/A{i} := N⩾⋆∆̂(1)
R/A{i} ×∆̂(1)

R/A
{i},c̃ ∆(1)

R/A{i}

where c̃ is the A-linear map ∆(1)
R/A{i} → ∆̂(1)

R/A{i} induced from c. By construction the completion of

∆(1)
R/A{i} with respect to N⩾⋆∆(1)

R/A{i} is Nygaard-completed prismatic cohomology ∆̂(1)
R/A{i}.

4

(3) The objects (a)− (f) are naturally objects of the ∞-category CA consisting of quadruples (H,N, c, φ)
where

• H is a complete filtered, graded E∞-algebra over A, i.e., a lax symmetric monoidal functor

H : (Z,⩾)× Z→ D(A),

where (Z,⩾) denotes the poset with the additive symmetric monoidal structure and Z denotes the
set with the additive symmetric monoidal structure. Completeness means that for fixed grading
the inverse limit in the poset direction vanishes;

• N is another complete filtered, graded E∞-algebra over A which is constant in non-positive
filtration weights;

• c is a φA-semilinear map of graded A algebras H⩾0 → N⩾0;5
• φ is a map of graded filtered algebras N → sh(H) over A where sh is the shearing of H defined as

changing the filtration degree by subtracting the grading degree.

There is also an absolute form of the theory also introduced in [10] and studied in [7], yielding for
commutative rings R the following objects:

(i) an E∞-algebra ∆R over Zp;

(ii) Breuil–Kisin twists ∆R{i} for every integer i ∈ Z;

4We could also consider the filtration N⩾⋆∆(1)
R/A

{i} to be the more fundamental object, as is usually done. But we will see

later that the Nygaard-completed filtration N⩾⋆∆̂(1)
R/A

{i} has better formal properties, specifically with respect to descent in R.
Also the syntomic cohomology is the same in both cases (Proposition 7.12)

5In fact, c carries slightly more structure which we will suppress for simplicity here.
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(iii) complete Hodge–Tate towers ∆[⋆]
R {i} with weight 0 part ∆[0]

R {i} ≃ ∆R{i} and associated graded pieces
grn∆[⋆]

R {i} ≃ ∆R{i+ n}, the (i+ n)-Breuil–Kisin twisted absolute Hodge–Tate cohomology of R;

(iv) Nygaard filtrations N⩾⋆∆̂R{i};

(v) maps c : ∆R{i} → ∆̂R{i};

(vi) filtered Frobenius maps N⩾⋆∆̂R{i}
φ−→ ∆[⋆−i]

R {i}.

These objects are naturally objects of the ∞-category CZp
of the previous remark, where φZp

= id. The
p-adic syntomic complexes are defined for i ⩾ 0 as

(vii) Zp(i)(R) = fib
(
N⩾i∆̂R{i}

can−cφ−−−−−→ ∆̂R{i}
)
.

For example, Zp(0) ≃ limZ/pm as a flat sheaf and Zp(1)(R) ≃ TpGm, the p-adic Tate module of Gm; see [9,
Props. 6.16 and 6.17].

1.1 Results
To generalize syntomic cohomology to the case of a commutative algebra R with bounded p-primary torsion
over a δ-ring A with bounded p-primary torsion (called a bounded δ-pair (A,R)), we extend prismatic
cohomology and the structures (a)-(f) above to the setting of commutative R-algebras over general δ-rings A.
The main result of this paper is the following:

Theorem 1.2. There is a extension of prismatic cohomology to bounded δ-pairs. More precisely we construct
objects

∆ R/A =
Ä
∆[⋆]
R/A{⋆},N

⩾⋆∆̂(1)
R/A{⋆}, c, φ

ä
∈ CA

depending functorially on (R,A) which possess the following properties.

(1) Insensitivity to localization and completion (Definition 3.3, Corollary 3.13, and Corollary 6.10): ∆ R/A

depends only on the S-localization of A where S is any set of elements of A that become invertible in R;
similarly, ∆ R/A depends only on the derived (p,K)-adic completion of A and the derived p-completion
of R where K is any finitely generated ideal in the kernel of A→ R.

(2) Relative prismatic comparison (Propositions 4.10, 5.1, 5.17 and 6.12, [7, Thm. 7.17]): if A is a prism
and R is an A-algebra, then ∆ R/A agrees naturally with the derived prismatic cohomology of Bhatt and
Scholze [10].

(3) Absolute prismatic comparison (Example 3.21 and Remark 6.8): if A = Zp or if A = W (k) for a
perfect Fp-algebra k and if R is an A-algebra, then ∆ R/A agrees naturally with the absolute prismatic
cohomology of Bhatt and Lurie [7]; note in this case that the Frobenius twist is equivalent to ∆R/A.

(4) Preservation of sifted colimits (Corollary 3.17 and 6.10): for varying A and R, ∆ R/A is left Kan extended
from finitely presented free δ-pairs (as functors to CZ, i.e., we get colimits in complete filtrations).6

(5) Quasisyntomic descent (Proposition 3.15, Definition 9.1, and Corollary 6.10): for fixed A, ∆ R/A satisfies
p-completely quasisyntomic descent in relatively quasisyntomic δ-pairs (A,R).

(6) Quasismooth descent in A (Proposition 3.15 and Corollary 6.10): for fixed R, ∆ R/A satisfies p-completely
quasismooth descent in relatively quasisyntomic δ-pairs (A,R).

6A δ-pair (A,R) is finitely presented free if A is a finitely generated free δ-ring and R is a finite polynomial ring over A.
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(7) Base change (Corollary 3.17 and Corollary 6.10): ∆ R/A satisfies base change in A: for any map A→ A′

of δ-rings the natural map ∆R/A ⊗A A′ → ∆R⊗AA′/A′ is an equivalence after completing the left-hand
side with respect to the Hodge–Tate filtration ∆[⋆]

R/A ⊗A A′ and similarly for the Nygaard-completed term.

(8) Restriction along relatively perfect maps (Proposition 3.12 and Corollary 6.10): if A → A′ is a p-
adically relatively perfect map of bounded δ-rings, then the map ∆ R/A → ∆ R/A′ is an equivalence for
any bounded commutative A′-algebra R.

The functor (A,R) 7→ ∆ R/A is uniquely determined by these properties (Proposition 9.15).

Note that the previous theorem also implies that Bhatt–Scholze’s relative prismatic cohomology only
depends on the δ-ring A and not the prism structure, which is slightly surprising. As a consequence of
Theorem 1.2, there is an extension of the relative p-adic syntomic complexes Zp(i)(R/A) to δ-pairs. If A→ R
is a δ-pair, we let

Zp(i)(R/A) = fib
(
N⩾i∆̂(1)

R/A{i}
can−cφ−−−−−→ ∆̂(1)

R/A{i}
)

for i ∈ Z, the ith relative syntomic complex of R over A.
It turns out that Nygaard-completed Frobenius twisted cohomology N⩾⋆∆̂R/A satisfies a stronger form of

descent for morphisms of δ-pairs (A,R)→ (B,S), requiring only that R→ S be of universal descent, meaning
that for every map R → T of animated commutative rings the limit of the Čech complex of T → T ⊗R S
computes T . However, note that this generality requires prismatic cohomology relative to animated δ-rings [3].
To avoid this, in Corollary 1.3, one can assume that (A,R) → (B,S) be a map of bounded δ-pairs where
A→ B is flat and R→ S is faithfully flat.

Corollary 1.3 (Descent for syntomic cohomology (Corollary 7.10)). For each i ∈ Z, the relative p-adic
syntomic complexes Zp(i)(R/A) satisfy descent for maps of pairs (A,R) → (B,S) such that R → S is a
universal descent morphism (with no condition on A→ B).

Adapting an argument from [9, Lem. 7.22] (see also [6, Thm. 5.1(2)]), we also find that the relative p-adic
syntomic complexes Zp(i)(R/A) preserve sifted colimits and hence are left Kan extended from their values on
finitely presented free δ-pairs.

Corollary 1.4 (Left Kan extension of syntomic cohomology (Corollary 8.9)). For each i ∈ Z, the relative
p-adic syntomic complexes Zp(i)(R/A) are left Kan extended from finitely presented free δ-pairs (as a functor
to the p-complete derived category D(Z)∧p ).

Example 1.5. If A = Z, the initial δ-ring, then by Theorem 1.2(3), ∆R/Z recovers absolute prismatic
cohomology ∆R and N⩾⋆∆̂(1)

R/Z agrees with N⩾⋆∆̂R. It follows that Zp(i)(R/Z) agrees with the p-adic syntomic
complexes defined in [9]. The Frobenius on Z is the identity, which explains why no Frobenius twists appear
for either the Nygaard filtration or the p-adic syntomic complexes in the absolute case.

1.2 Construction
One can use the descent properties of Theorem 1.2 to reduce to the derived prismatic cohomology of [10].
However, this makes it very hard to verify all the properties stated in Theorem 1.2 and also makes it hard to
compare it to different definitions. Therefore we use the theory of prismatic crystals to give a direct definition.
Prismatic crystals are by definition quasi-coherent sheaves on the Cartier–Witt stack WCart of Drinfeld [11]
and Bhatt–Lurie [7]. For every bounded δ-pair (R,A) we introduce prismatic crystals H

[n]
∆ (R/A){i} and set

∆[n]
R/A{i} = RΓ(WCart,H

[n]
∆ (R/A){i}).
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Concretely the value of H[n]
∆ (R/A){i} on a transversal prism (B, J) is given by derived relative prismatic

cohomology ∆rel,[n]

R“⊗B/A“⊗B
{i} as constructed in [10] (with notation from [7]). Here A“⊗B denotes the prism

obtained by (p, J)-adically completing the δ-ring A⊗B and giving it the prism structure induced from J ,
while R“⊗B is the p-completion of R⊗B = R⊗B/J .

Using this description many of the properties of relative prismatic cohomology, such as the following
Hodge–Tate comparison, follow immediately from properties of prismatic cohomology relative to prisms.

Proposition 1.6. Hodge–Tate comparison (Proposition 3.9): There is a natural exhaustive increasing
filtration Fδconj

⩽⋆ ∆R/A{i} on ∆R/A{i}, called the δ-conjugate filtration, whose graded pieces are given as

grδconju ∆R/A{i} ≃ LΩu
R/A ⊗ fib(Zp

i−u−−→ Zp)[−u]

for all u ∈ Z.7

The construction of the Nygaard-completed prismatic cohomology and the Nygaard filtration will also be
given using the language of prismatic crystals as is done in [7, Sec. 5.5].

Finally we note that one can also give other descriptions of relative prismatic cohomology that are often
more accessible or easier to describe.

Theorem 1.7. (1) Site-theoretic comparison (Theorem 5.6): when LR/A has p-complete Tor-amplitude in
[0, 1], ∆R/A has a site theoretic description, that is it agrees with the cohomology of the relative prismatic
site (R/A)∆ as defined in Section 2.

(2) Comparison to prismatization (Proposition 5.1): for each bounded δ-pair (R/A), there is a formal stack
WCartR/A over WCart. The pushforward of the structure sheaf OWCartR/A

along WCartR/A →WCart
agrees with H∆(R/A) when LR/A has p-complete Tor-amplitude in [0, 1]. In particular in this situation
the global sections of the structure sheaf of WCartR/A is equivalent to ∆R/A.

1.3 Applications
The idea that there should be relative p-adic syntomic complexes in the generality of this paper is motivated
by topological considerations such as applying TC to THH(R/S[z]) where z maps to some element of R.
In this case, the complexes could have been defined in [9, Sec. 11]. The idea that the relative syntomic
complexes should satisfy descent results as in Corollary 1.3 is heavily influenced by the work of Liu and
Wang [19] on TC∗(OK ;Fp), in which the authors recover Hesselholt and Madsen’s verification [14] of the
Quillen–Lichtenbaum conjecture for local fields, and by [18] on THH of (quotients of) discrete valuation rings.
These papers both take a topological approach to calculations using descent, so it was natural to look for a
purely prismatic approach. The explicit connection between the two approaches will be studied in [5] in the
context of the modern approach to cyclotomic spectra developed in [26].

In [4] (see [2] for a survey), we use Corollary 1.3(d) for R = OK/ϖn when K is a finite extension of Qp

with uniformizer ϖ and residue field k to show that the absolute p-adic syntomic complexes Zp(i)(OK/ϖn)
can be computed from descent along W (k)→W (k)JzK using the relative p-adic syntomic syntomic complexes.
The point is that Zp(i)(OK/ϖn/W (k)JzK) admits a purely algebraic description in terms of the prismatic
envelopes introduced in [10].

In order to make this approach amenable to computer calculations, we use the ϖ-adic filtration and argue
that one has to compute Zp(i)(OK/ϖn) only up to finite filtration level. To make this precise, we introduce
filtered prismatic cohomology below, following a suggestion of Bhatt. It turns out that this is most naturally
viewed as a specific form of prismatic cohomology relative to a δ-stack, “A1/“Gm, so it fits naturally into the
context of the present paper. We use filtered prismatic cohomology to prove the following result.

7This filtration does not agree with the conjugate filtration constructed in [10] in the prismatic case; see Warning 3.22. Rather
it is an analog of the conjugate filtration on absolute prismatic cohomology studied in [7].
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Theorem 1.8 (Crystalline degeneration). If F⩾⋆R is a filtered p-complete commutative ring with F0R = R
and which is constant for ⋆ ⩽ 0, then the syntomic complexes of R admit natural filtrations F⩾⋆Zp(i)(R) and
there are natural identifications gr⋆Zp(i)(R) ≃ gr⋆Zp(i)(gr

⋆R).

We call this crystalline degeneration as in the cases of interest to us in [4], we have p ∈ F⩾1R so that the
associated graded is an Fp-algebra.

Outline. We give three different constructions of prismatic cohomology relative to a δ-ring A in Sections 2, 3,
and 4: one is site theoretic and extends the prismatic site of [10]; one is by constructing prismatic crystals
H∆(R/A) on the stack WCart of Bhatt–Lurie [7] and Drinfeld [11]. The final method is via a prismatization
and gives relative Cartier–Witt stacks WCartR/A, extending the definition of the relative prismatization
from [8]. We compare these approaches under mild hypotheses in Section 5 and we introduce the Frobenius
twisted variants and the Nygaard filtration in Section 6. We discuss syntomic cohomology in Section 7 and
we wrap it all up and discuss the prismatic package in Section 8. We discuss the use of relative quasisyntomic
descent to compute prismatic cohomology relative to δ-rings in Section 9 and prove the uniqueness statement
of Theorem 1.2 there. In Section 10, we explain how to work over A1/Gm to construct filtered variants.
Finally, we explain how the theory of prismatic cohomology relative to δ-rings gives a natural way to extend
the theory of prismatic cohomology to filtered and graded rings by working over the stack WCartA1/Gm

. In
Appendix A, we give background on the theory of quasi-coherent sheaves on formal stacks and prove some
results on base change for quasi-coherent cohomology needed for the computation of prismatic crystals.

Background. We will freely use the theory of prismatic cohomology as developed by Bhatt, Morrow,
and Scholze [9], Bhatt and Scholze [10], and Bhatt and Lurie [7, 8]. In particular, we use the notions of
quasisyntomic rings from [9], δ-rings from [10] (and going back to [16, 17]), animated δ-rings and animated
prisms from [8], generalized Cartier–Witt divisors from [7, 8], and the prismatic site from [10] as well as its
animated analogue from [8]. We also use animated commutative and derived commutative rings (as defined
by Mathew), see [27] for the latter.

Notation. Throughout this paper, we fix a prime number p. All δ-ring theoretic notions are taken with
respect to p and quasisyntomic will be shorthand for quasisyntomic with respect to the prime p. Thus, for
example, a map A→ A′ of commutative rings is quasisyntomic if A′ is p-completely flat over A and LA′/A

has p-complete Tor-amplitude in [0, 1] (where we index throughout using the homological convention).8 A
commutative ring is bounded if it has bounded p-power torsion. A map A → A′ of commutative rings is
p-completely quasismooth if LA′/A has p-complete Tor-amplitude in [0, 0]. A map A→ A′ of commutative
rings is p-completely quasi-étale if LA′/A vanishes p-adically.
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Institute for its hospitality while working on this project.

2 The prismatic site

In this first section we define a relative prismatic site. The cohomology of this with respect to the structure
sheaf O∆ is a version of relative prismatic cohomology which we call the site theoretic (relative) prismatic
cohomology ∆site

R/A. We will see later that the site theoretic prismatic cohomology agrees on a large class of
rings with the ‘correct’ prismatic cohomology. We begin this paper with the site theoretic variant since it is
the easiest one to understand conceptually.

Definition 2.1 (δ-pairs). Let Pairsδ be the category consisting of δ-pairs (A,R) (or A → R), meaning a
δ-ring A and a commutative A-algebra R. The morphisms (A,R)→ (A′, R′) consist of commutative diagrams

A //

��

A′

��
R // R′,

where A→ A′ is a δ-ring map. In particular, we emphasize that R is not equipped with a δ-ring structure, in
fact it typically does not even admit a (natural) δ-ring structure. In general, we say a δ-pair is bounded,
(derived) p-complete, or quasisyntomic if A and R are bounded, (derived) p-complete, or quasisyntomic as
commutative rings.

Definition 2.2 (Pre-prismatic δ-pairs). Say that a δ-pair (A,R) is pre-prismatic if the kernel of A → R
contains a Cartier divisor I such that Zariski locally on SpecA any generator d of I has the property that
δ(d) maps to a unit in R∧

p . A pre-prismatic δ-pair is prismatic if (A, I) is a prism.

Remark 2.3. Note that if (A,R) is a pre-prismatic bounded δ-pair, as exhibited by a Cartier divisor I, then
A[δ(I)−1]∧(I,p) inherits a δ-ring structure by [10, Rem. 2.16, Lem. 2.18] and becomes a prism with respect to
the completion of I. By property (1) of Theorem 1.2, the prismatic cohomology will not see the difference
between (A,R) and (A[δ(I)−1]∧(I,p), R

∧
p ).

Definition 2.4 (The prismatic site). Let A→ R be a δ-pair. The prismatic site (R/A)∆ of R relative to the
δ-ring A is the opposite of the category of commutative squares

A //

��

B

��
R // B

(1)

where B → B = B/I is a bounded prism and A→ B is a map of δ-rings; we equip this category with the
(p, I)-completely faithfully flat topology in B. The proof that (R/A)∆ is indeed a site is the same as the first
paragraph of the proof of [10, Cor. 3.12].
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Remark 2.5 (Comparison to other prismatic sites). (1) If A is itself a bounded prism and the map A→ R
factors through A, then (R/A)∆ agrees by definition with the relative prismatic site of R over A defined
in [10, Def. 4.1]. This follows since A→ B has to take the prismatic ideal in A to ideal I = ker(B → B)
by commutativity of (1).

(2) If A = Zp, then (R/Zp)∆ agrees with the absolute prismatic site (R)∆ of R defined in [7, Def. 4.4.27]
since Zp is initial as a p-complete δ-ring. In particular, in the special case of (Zp/Zp)∆, we recover the
site of all bounded prisms.

Definition 2.6 (Breuil–Kisin twists). Each prism B admits a natural line bundle B{1} constructed in [7,
Sec. 2] called the first Breuil–Kisin twist of B. It is the home for the prismatic logarithm map and is the
prismatic analogue of the Tate twist Zp(1) in the étale setting. It is also compatible with base change: if
B → B′ is a map of prisms, then there is a natural isomorphism B′ ⊗B B{1} ∼= B′{1}.9 The tensor power
B{i} = B{1}⊗Bi is the ith Breuil–Kisin twist. These define presheaves O∆{i} on (R/A)∆ by sending a
square (1) to B{i}. The presheaf O∆ = O∆{0} is a sheaf of δ-rings and is called the prismatic structure sheaf,
terminology which will be justified below. Given any sheaf of O∆-modules M on (R/A)∆, we denote by M{i}
the tensor product M⊗O∆ O∆{i} in sheaves of abelian groups on (R/A)∆.

Definition 2.7 (The Hodge–Tate tower). The assignment to (1) of the prismatic ideal I defines an invertible
sheaf of ideals I∆ in O∆ called the Hodge–Tate ideal. We let O

[n]
∆ {i} = I⊗n

∆ ⊗O∆ O∆{i} for n ∈ Z. These
assemble into a tower

· · · → O
[2]
∆ {i} → O

[1]
∆ {i} → O

[0]
∆ {i} → O

[−1]
∆ {i} → · · ·

with weight 0 term the ith Breuil–Kisin twist. We also have O∆ = O∆/O
[1]
∆ , which takes (B, I) ∈ (R/A)∆ to

B = B/I and defines a sheaf of commutative R-algebras.

Note that the Hodge–Tate tower for O∆{i} is tensored up from the Hodge–Tate tower for O∆: we have
O

[⋆]
∆ {i} ∼= O∆{i} ⊗O∆ O

[⋆]
∆ .

Lemma 2.8. For each n, i ∈ Z, O[n]
∆ {i} and O∆{i} are sheaves on (R/A)∆ with vanishing higher cohomology

for any object (B, I) ∈ (R/A)∆.

Proof. For O∆ and O∆, this follows from [10, Cor. 3.12], which says that these define sheaves with vanishing
higher cohomology in the case of the site of all bounded prisms, i.e., (Zp/Zp)∆. We use that the value of O∆

and O∆ on (B, I) ∈ (R/A)∆ with respect to (R/A)∆ can be computed by considering (B, I) as an object in
(Zp/Zp)∆, which follows by observing that the Čech complexes associated to (B, I)→ (C, IC) in (R/A)∆ and
(Zp/Zp)∆ agree.

The result for I∆ = O
[1]
∆ = ker(O∆ → O∆) follows because sheaves are closed under kernels and because

O∆ → O∆ is surjective pointwise. The fact that the Breuil–Kisin twists O∆{i} are sheaves with vanishing
higher cohomology on (B, I) ∈ (R/A)∆ follows from the sheaf property for O∆ and the crystal property for the
Breuil–Kisin twists. Given a (p, I)-completely faithfully flat map of prisms (B, I)→ (C, IC), let (C•, IC•)
be the Čceh nerve. Then, C•{i} is equivalent as a cosimplicial object to (C•)⊗B B{i} by the base change
property of the Breuil–Kisin twists. So, the sheaf property for O∆{i} reduces to (p, I)-completely faithfully
flat descent for the invertible B-module B{i}. The result for the Hodge–Tate towers is proven in the same
way.

Remark 2.9. There is a natural equivalence I∆/I
2
∆
∼= O

[1]
∆ /O

[2]
∆
∼= O∆{1}. It follows in general that

O
[n]
∆ {i}/O

[n+1]
∆ {i} ∼= O∆{i+ n}.

See [7, Rem. 2.5.7].
9In the language of [7], the assignment B 7→ B{1} defines a prismatic crystal, or a quasi-coherent sheaf on the Cartier–Witt

stack WCart.
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Definition 2.10 (Site-theoretic prismatic cohomology). We define

∆site,[n]
R/A {i} = RΓ((R/A)∆,O

[n]
∆ {i}).

The superscript (−)site will be used to distinguish this form of prismatic cohomology from other forms
discussed below, before we have established our comparison theorems under quasisyntomicity assumptions in
Section 5.

In the case of n = i = 0, the resulting object of the p-complete derived ∞-category D(Zp)
∧
p is denoted

by ∆site
R/A, the site-theoretic prismatic cohomology of R relative to A. It naturally has the structure of an

E∞-algebra over A with an endomorphism φ called Frobenius induced by the Frobenius endomorphism of
the sheaf O∆. The objects ∆site,[n]

R/A {i} assemble into Hodge–Tate towers

∆site,[⋆]
R/A {i} : · · · → ∆site,[n+1]

R/A {i} → ∆site,[n]
R/A {i} → ∆site,[n−1]

R/A {i} → · · ·

of ∆site
R/A-modules; these towers are complete filtrations on the colimit ∆site

R/A{i}[1/I] with weight 0 part ∆site
R/A{i}.

Warning 2.11 (No Breuil–Kisin twists for δ-rings). When the δ-pair (A,R) is prismatic, ∆site
R/A{i} =

RΓ((R/A)∆,O∆{i}) is equivalent to ∆site
R/A ⊗A A{i}, but when A is a general δ-ring, this need not be the case.

In fact, the construction A 7→ A{i} does not extend from prisms to δ-rings since it depends on the ideal I
defining the prism structure.

Moreover, even in the special case A = R = Zp the Breuil–Kisin twisted absolute prismatic cohomologies
∆Zp/Zp

{i} are, for i ̸= 0, not invertible over ∆Zp/Zp
and are not generally tensor powers of ∆Zp/Zp

{1}.

Definition 2.12 (Site-theoretic Hodge–Tate cohomology). The Breuil–Kisin twisted Hodge–Tate cohomology
of R relative to A is ∆

site

R/A{i} = RΓ((R/A)∆,O∆{i}). If i = 0, we call ∆
site

R/A the Hodge–Tate cohomology of R
over A, which is naturally a p-complete E∞-R-algebra. More generally, for any i, we have the Breuil–Kisin
twisted Hodge–Tate cohomology

∆
site

R/A{i} = RΓ((R/A)∆,O∆),

which is naturally a ∆
site

R/A-module. For each i, n ∈ Z, there are fiber sequences

∆site,[n+1]
R/A {i} → ∆site,[n]

R/A {i} → ∆
site

R/A{i+ n}

by Remark 2.9.

Remark 2.13 (Insensitivity to p-completion). Suppose that A and R are bounded so that their derived
p-completions are discrete and agree with the classical p-completions. Since all prisms B and their Hodge–Tate
quotients B = B/I are derived p-complete, the prismatic site (R/A)∆ is naturally equivalent to (R̂/Â)∆,
the relative prismatic site of the derived p-completion R̂ over the derived p-completion Â, where the δ-ring
structure on A extends to Â by [10, Lem. 2.18]. It follows that ∆site

R/A depends only on the derived p-completion,
and similarly for the Breuil–Kisin twists and Hodge–Tate towers. The boundedness hypothesis can also be
replaced at the cost of using the animated prismatic site of Variant 2.16.

Remark 2.14 (Relative prismatic cohomology comparison). If (A,R) is a bounded prismatic δ-pair (so that
A is a bounded prism and R is a bounded commutative A-algebra), then by Remark 2.5 our site-theoretic
prismatic cohomology agrees with the cohomology of the prismatic site of [10, Def. 4.1] and [7, Def. 4.1.1].10

10Note that the definition in [7] should include the hypothesis that the prisms (B, IB) ∈ (R/A)∆ be bounded.
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Remark 2.15 (Absolute prismatic cohomology comparison). It follows by definition from Remark 2.5
that ∆site,[n]

R/A {i} agrees with the cohomology of O[n]
∆ {i} on the absolute prismatic site of Spf R studied in [7,

Def. 4.4.27] and denoted there by RΓ
site,[n]
∆ (Spf R){i}.

Variant 2.16 (The animated prismatic site). Suppose more generally that A is an animated δ-ring in the
sense of [8, App. A] and that R is an animated commutative A-algebra. We let Pairsanδ be the ∞-category
of such animated δ-pairs. Recall from [8] that an animated prism is an animated δ-ring B equipped with a
generalized Cartier divisor α : I → B such that B is (p, I)-complete and for any perfect Fp-algebra k and any
animated δ-ring map B →W (k) the extension of scalars I ⊗B W (k)→W (k) is equivalent to the inclusion of
the ideal (p) ⊆W (k). Every ordinary prism is an animated prism.

The ∞-category (R/A)an∆ is defined to be the opposite of the ∞-category of commutative squares (1)
where B → B = B/I = cofib(α) is an animated prism, A→ B is a map of animated δ-rings and R→ B is a
map of animated commutative rings. We equip (R/A)an∆ with the structure of a site by declaring the covers
to be (p, I)-completely faithfully flat maps (of animated δ-rings) in B. The objects O

[n]
∆ {i} naturally extend

to sheaves on (R/A)an∆ with values in D(Zp)
∧
p . We obtain upon taking global sections

∆ansite,[n]
R/A {i} = RΓ((R/A)an∆ ,O

an,[n]
∆ {i}),

which are all modules over animated site-theoretic prismatic cohomology ∆ansite
R/A . If (A,R) is a δ-Pair, there is

an inclusion of the (underived) prismatic site (R/A)∆ into the animated prismatic site (R/A)an∆ . Upon taking
global sections, this inclusion induces a natural map

∆ansite
R/A ≃ lim

(B,B)∈(R/A)an∆

B → lim
(B,B)∈(R/A)∆

B ≃ ∆site
R/A.

In the prismatic case, if A is a bounded prism, R is bounded, and LR/A has p-complete Tor-amplitude in
[0, 1], then the natural map

∆ansite
R/A → ∆site

R/A

is an equivalence; see [8, Rem. 7.14]. Similar results hold for the Breuil–Kisin twists, Hodge–Tate cohomology,
and so forth.

3 The prismatic crystal

In this section we give the general definition of relative prismatic cohomology using the theory of prismatic
crystals.

Notation 3.1. If A is a commutative ring and M,N ∈ D(A), we let M“⊗AN be the derived p-completion of
the derived tensor product over A; this makes the p-complete derived ∞-category D(A)∧p into a symmetric
monoidal stable ∞-category. In particular, without further decoration, M“⊗N denotes the tensor product in
D(Z)∧p ≃ D(Zp)

∧
p . If (B, I) is a prism and M,N ∈ D(B), we write (M ⊗B N)∧(p,I), or M“⊗BN if the prism

structure is clear from context, for the derived (p, I)-completed derived tensor product; again, this endows
the (p, I)-complete derived ∞-category D(B)∧(p,I) with a symmetric monoidal structure.

Definition 3.2 (Prismatic crystals). A prismatic crystal is a functorial assignment to each bounded prism
(B, I) of a derived (p, I)-complete object F(B) ∈ D(B)∧(p,I) where this assignment satisfies base change in the
sense that if (B, I)→ (C, IC) is a map of bounded prisms, then the natural map F(B)“⊗BC → F(C) is an
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equivalence.11 The stable ∞-category of prismatic crystals is equivalent to D(WCart), the stable ∞-category
of quasi-coherent sheaves on the formal stack WCart by [7, Prop. 3.3.5]. Moreover, to define a prismatic
crystal, it is enough to make such a functorial assignment on transversal prisms, by [7, Lem. 3.3.10].

We introduce a prismatic crystal H∆(R/A) associated to any δ-pair where A is bounded. The prismatic
crystal definition of relative prismatic cohomology will be based upon RΓ(WCart,H∆(R/A)).

Our construction is based on derived relative prismatic cohomology, which is introduced in [10, Sec. 7.2]
(see also [7, Sec. 4.1]). If k is a commutative ring, let ◊�CAlgank denote the ∞-category of derived p-complete
animated k-algebras. If (B, I) is a bounded prism, then ∆−/B : ◊�CAlgan

B
→ D(B)∧(p,I) is defined to be the

unique functor which preserves sifted colimits and agrees with the site-theoretic relative prismatic cohomology
of [10] on p-complete finitely presented polynomial B-algebras.

Definition 3.3 (Relative prismatic cohomology crystals). Let A → R be a δ-pair and assume that A
is bounded; we can in fact allow R to be a p-complete animated commutative A-algebra. The prismatic
crystal H∆(R/A) associated to the pair (R/A) is the assignment, for each transversal prism (B, I), of the
derived prismatic cohomology H∆(R/A)(B) = ∆rel

R“⊗B/A“⊗B
, where A“⊗B = (A⊗B)∧(p,I). As ∆R“⊗B/A“⊗B

“⊗BC ≃
∆R“⊗C/A“⊗C for a map of bounded prisms B → C by [7, Rem. 4.1.5], this functor defines a prismatic crystal,
i.e., an object of D(WCart).

Remark 3.4. The boundedness hypothesis on A guarantees that if B is a transversal prism, then A“⊗B
is a bounded prism. However, as we do not impose any assumptions on R, the ring R“⊗B is in general an
animated commutative ring, which is why we require the generality of derived relative prismatic cohomology.
We could drop the boundedness condition on A and describe the value H∆(R/A)(B) for a non-transversal
prism B at the cost of using animated prisms as in [8]. Alternatively, note that every prism B admits a map
of prisms C → B where C is transversal by [7, Prop. 2.4.1]. Thus, the value of H∆(R/A) at B is computed
as ∆R“⊗C/A“⊗C

“⊗CB.

Definition 3.5 (Hodge–Tate crystals). If A→ R is a δ-pair where A is bounded, let H∆(R/A) be the crystal
which assigns to a transversal bounded prism (B, I) the derived Hodge–Tate complex

H∆(R/A)(B) = ∆
rel

R“⊗B/A“⊗B .

The Hodge–Tate crystal H∆(R/A) is equivalent to ι∗ι
∗H∆(R/A) where ι : WCartHT ↪→WCart is the inclusion

of the Hodge–Tate locus.

Variant 3.6 (Breuil–Kisin twisted prismatic crystals). Besides H∆(R/A), there are the Breuil–Kisin twists
and these admit associated Hodge–Tate towers. In general, let H

[n]
∆ (R/A){i} be the prismatic crystal

In⊗OWCart
H∆(R/A)⊗OWCart

OWCart{i}, where I is the ideal of the Hodge–Tate divisor ι : WCartHT ↪→WCart
and OWCart{i} is the ith tensor power of the Breuil–Kisin line bundle OWCart{1} of [7, Ex. 3.3.8]. In other
words,

H
[n]
∆ (R/A){i}(B) = ∆rel,[n]

R“⊗B/A“⊗B
{i}

for transverse prisms B in the notation of [7, Const. 4.4.10]. There are fiber sequences

H
[n+1]
∆ (R/A){i} → H

[n]
∆ (R/A){i} → H∆(R/A){i+ n}

in D(WCart) as in [7, Rem. 4.5.7] thanks to the equivalence I/I2 ∼= ι∗OWCartHT{1}. These assemble into
Hodge–Tate towers H

[⋆]
∆ (R/A){i} of prismatic crystals.

11More rigorously, a prismatic crystal is a cocartesian section of the cocartesian fibration whose classifying functor associates
to a prism (B, I) the stable ∞-category D(B)∧

(p,I)
and to a morphism of prisms the derived completed base change.
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Definition 3.7 (Cohomology of prismatic crystals). Suppose that A→ R is a δ-pair where A is bounded. Let
the relative prismatic cohomology be ∆R/A = RΓ(WCart,H∆(R/A)), the cohomology of the prismatic crystal
H∆(R/A). Similarly, let ∆R/A = RΓ(WCartHT, ι∗H∆(R/A)) ≃ RΓ(WCart,H∆(R/A)), the cohomology of the
Hodge–Tate crystal. More generally, we have

∆[n]
R/A{i} = RΓ(WCart,H

[n]
∆ (R/A){i}),

which assemble into towers ∆[⋆]
R/A{i} with associated graded pieces computed by fiber sequences

∆[n+1]
R/A {i} → ∆[n]

R/A{i} → ∆R/A{i+ n}.

Remark 3.8 (Cohomology as a limit over prismatic points). Given a transversal prism (B, I) there is a
canonical map ρB : Spf B →WCart. It is shown in [7] that WCart is the colimit of these ρ maps over the
opposite of the category of transversal prisms. It follows that the cohomology of a prismatic crystal such as
H∆(R/A) is given as a limit

∆R/A = RΓ(WCart,H∆(R/A)) = lim
transversal B

H∆(R/A)(B) = lim
transversal B

∆rel
R“⊗B/A“⊗B

.

A similar remark applies to the Breuil–Kisin twists and the Hodge–Tate cohomology.

The Hodge–Tate comparison theorem applies out of the box.

Proposition 3.9 (The conjugate filtration on Hodge–Tate crystals). If A→ R is a δ-pair where A is bounded,
then the Hodge–Tate crystal H∆(R/A), viewed as a quasi-coherent sheaf on WCartHT, admits an increasing
exhaustive multiplicative conjugate filtration Fδconj

⩽⋆ H∆(R/A) with graded pieces given by

grδconj⋆ H∆(R/A) ≃”LΩ⋆

R/A ⊗ OWCartHT{−⋆}[−⋆],

where ”LΩ⋆

R/A denotes the p-complete derived differential forms of R over A.

Proof. Recall that, as for the Cartier–Witt stack, the ∞-category D(WCartHT) of quasi-coherent sheaves on
the Hodge–Tate locus is given by the limit over D(B)∧p as (B, I) ranges over all bounded prisms. For a fixed
bounded prism (B, I) and a p-complete animated B-algebra S, there is a natural increasing multiplicative
conjugate filtration Fconj

⩽⋆ ∆
rel

S/B with graded pieces given by

grconj⋆ ∆
rel

S/B ≃”LΩ⋆

S/B{−⋆}[−⋆],

where ”LΩ⋆

S/B denotes the p-complete derived differential forms on S relative to B; see [10, Thm. 6.3] or [7,
Rem. 4.1.7]. The conjugate filtration is functorial and satisfies base change: if (B, I)→ (C, IC) is a map of
bounded prisms, then the natural map ∆

rel

S/B → ∆
rel

S“⊗BC/C preserves the conjugate filtration and the induced
map

(Fconj
⩽⋆ ∆S/B)“⊗BC → Fconj

⩽⋆ ∆S“⊗BC/C

is a filtered equivalence. From this, it follows that the conjugate filtration descends to give a filtration
Fδconj
⩽⋆ H∆(R/A) on the Hodge–Tate crystal H∆(R/A). As LR“⊗B/A“⊗B ≃ LR/A“⊗B, the graded pieces of the

conjugate filtration are the crystals

(B, I) 7→ grδconju H∆(R/A)(B) ≃ grconju ∆R“⊗B/A“⊗B ≃”LΩu

R/A
“⊗B“⊗BB{−u}[−u],
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where B{−u} ≃ (I/I2)⊗−u. In other words,

grδconju H∆(R/A) ≃”LΩu

R/A ⊗ OWCartHT{−u}[−u].

The exhaustiveness follows from the fact that D(WCartHT) ≃ limB D(B)∧p , where the limit is over all bounded
prisms (B, I). In particular, colimu F

δconj
⩽u H∆(R/A) → H∆(R/A) is an equivalence since it evaluates to an

equivalence in each D(B)∧p .

Variant 3.10 (Conjugate filtration on Breuil–Kisin twists). There is a conjugate filtration on the ith Breuil–
Kisin twist of the Hodge–Tate crystal obtained by tensoring Fδconj

⩽⋆ H∆(R) over OWCartHT with OWCartHT{i}.
The associated graded pieces are

grδconju H∆(R/A){i} ≃”LΩ⋆

R/A ⊗ OWCartHT{i− u}[−u].

Construction 3.11. Taking global sections yields conjugate filtrations

Fδconj
⩽⋆ ∆R/A{i}

for any i ∈ Z. The associated graded pieces are computed using the Sen operator:

grδconju ∆R/A{i} ≃”LΩu

R/A
“⊗RΓ(WCartHT,OWCartHT{i− u}[−u]) ≃”LΩu

R/A
“⊗fib(Zp

i−u−−→ Zp)[−u]

by [7, Cor. 3.5.14]. These filtrations are exhaustive because RΓ(WCartHT,−) commutes with colimits by [7,
Cor. 3.5.13].

Proposition 3.12 (Invariance under quasi-étale extensions for prismatic crystals). If (A,R)→ (A′, R) is a
map of bounded δ-pairs where LA′/A vanishes p-adically (we call such a map A→ A′ p-adically quasi-étale),
then the map

H
[n]
∆ (R/A){i} → H

[n]
∆ (R/A′){i}

is an equivalence for each n and i.

Proof. This follows directly from the properties of the conjugate filtration, since LΩi
R/A ≃ LΩi

R/A′ if
LA′/A = 0.

Corollary 3.13 (Invariance under localizations and completions).

(i) For any bounded δ-pair (A,R), if K ⊆ A is a finitely generated ideal contained in the kernel of
A → R and if the derived (p,K)-completion of A is discrete, then the natural map H

[n]
∆ (R/A){i} →

H
[n]
∆ (R∧

p /A
∧
(p,K)){i} is an equivalence for all i, n ∈ Z.

(ii) For any bounded δ-pair (A,R), if S ⊆ A is a set of elements which map to units in R, then the natural
map H

[n]
∆ (R/A){i} → H

[n]
∆ (R∧

p , A[S
−1]∧p ) is an equivalence for all i, n ∈ Z.

Proof. For (i), let A′ be the derived (p,K)-adic completion of A. The δ-ring structure on A extends uniquely
to A′ by [10, Lem. 2.18]. It follows from the δ-conjugate filtration that it is enough to show that the natural
map LR/A → LR/A′ is a p-adic equivalence. This occurs if and only if R⊗A′ LA′/A vanishes p-adically. As R
is K-complete, this happens if and only if LA′/A vanishes (p,K)-completely, which holds because A→ A′ is a
(p,K)-adic equivalence, by definition. From (i), we can assume that A and R and derived p-complete. In
particular, it follows that the δ-ring structure on A extends uniquely across A[S−1] by [10, Rem. 2.16]. Now,
part (ii) follows from Proposition 3.12.
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The following is a slightly stronger version of [9, Thm. 3.1], namely descent for differential forms where
we also vary the base ring.

Lemma 3.14 (Descent for differential forms). Let (R/A)→ (R0/A0) be a map of pairs of animated rings
where R→ R0 is p-completely an effective descent morphism and let (R•, A•) denote the Čech nerve. Then,
the natural map ”LΩk

R/A → Tot”LΩk

R•/A•

is an equivalence.

Proof. We observe that in the diagram of animated graded-commutative rings”LΩ∗
R/A

”LΩ∗
R0/A0

R R0

the left vertical map is an effective descent morphism since the fiber is positively graded, the bottom horizontal
map is an effective descent morphism by assumption, and hence it follows that the top map is an effective
descent morphism (compare [20, Lem. 3.1.2]). In particular, this implies that”LΩ∗

R/A
≃−→ Tot”LΩ∗

R•/A• ,

which degreewise (with respect to the grading given by ∗) implies the claim.

Proposition 3.15 (Descent for prismatic crystals). Let (A,R) → (A0, R0) be a map of bounded δ-pairs
with Čech nerve (A•, R•), and assume that R → R0 is faithfully flat, A→ A0 is flat, and all LR•/A• have
p-complete Tor-amplitude in [0, 1]. Then,

H
[n]
∆ (R/A){i} → TotH

[n]
∆ (R•/A•){i}

is an equivalence for each n and i.

Proof. Since the H[n](R/A){i} for varying n ⩾ 0 form a complete filtration on H∆(R/A), it suffices to check
the claim for the associated graded H∆(R/A){i}. We have that”LΩk

R/A → Tot”LΩk

R•/A•

is an equivalence, by Lemma 3.14. This implies that

Fδconj
⩽k H∆(R/A){i} → TotFδconj

⩽k H∆(R
•/A•){i}

is an equivalence for each k. Since the Tor-amplitude condition ensures that all of the terms on the right are
coconnective, Tot commutes with the colimit over k, leading to the desired statement.

Lemma 3.16. For each u, the functor LΩu
−/− : Pairsδ → D(Z) commutes with sifted colimits.

Proof. The forgetful functor Pairsδ → Pairs commutes with all colimits. Thus, it is enough to prove that
LΩu

−/− : Pairs→ D(Z) commutes with sifted colimits. To see this let (Ai, Ri)i∈I be a sifted diagram of pairs
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with colimit (A,R). As I → I∆
1

is cofinal and we have

colim
I

LΩu
Ri/Ai

≃ colim
I∆1

LΩu
Ri/Ai

⊗Ai
Aj

≃ colim
I

LΩu
Ri/Ai

⊗Ai
A

≃ colim
I

LΩu
Ri⊗Ai

A/A

≃ LΩu
colimRi⊗Ai

A/A

≃ LΩu
R/A.

Corollary 3.17.

(a) The functors of bounded δ-pairs to D(WCartHT) and D(Zp)
∧
p , respectively, given by

(A,R) 7→ H∆(R/A){i} and (A,R) 7→ ∆R/A{i}

preserves sifted colimits for all i ∈ Z and hence are left Kan extended from their values on finitely
presented free δ-pairs.

(b) The functors ∆[⋆]
−/−{i} from bounded δ-pairs to ”FD(D(Zp)

∧
p ), the ∞-category of complete filtrations with

values in D(Zp)
∧
p , preserves sifted colimits for all j ∈ Z.

Proof. The preservation of sifted colimits in Part (a) follows from the facts that the conjugate filtration on
H∆(R/A){i} is complete and exhaustive and that the associated graded pieces are left Kan extended by
Variant 3.10 and Lemma 3.16. For the fact that every δ-pair is a sifted colimit of free δ-pairs we note that the
free δ-pairs are compact, projective objects and that they generate, since mapping out of them is conservative,
which is easily seen. Part (b) follows from part (a) since the Hodge–Tate tower on ∆R/A{i} is complete by
construction.

Remark 3.18 (Hodge–Tate filtration). When restricted to ⋆ ⩾ 0, we view ∆[⋆]
R/A{i} as a complete decreasing

filtration on ∆R/A{i} and refer to this as the Hodge–Tate filtration.

Warning 3.19. It is not the case that ∆−/− is itself left Kan extended. For example, if A is a prism, then
the prismatic comparison of Proposition 5.17 implies that

∆
A[t

1/p∞
1 ,...,t

1/p∞
s ]∧p /A

≃ A[t
1/p∞

1 , . . . , t1/p
∞

s ]∧(p,I)

Taking the colimit as s→∞ results in a ring whose p-completion is not typically I-complete and hence is
not the prismatic cohomology of A[t

1/p∞

1 , . . . , t
1/p∞

s , . . .]∧p relative to A.

Warning 3.20. While relative Hodge–Tate cohomology is left Kan extended, it does not typically preserve
all colimits, although this is the case in the prismatic setting over a fixed prism. For example, absolute
Hodge–Tate cohomology ∆−/Zp

does not preserve pushouts as a functor to p-complete E∞-rings. Indeed, we
have ∆Zp⟨x⟩/Zp

≃ Zp⟨x⟩“⊗∆Zp/Zp
as one sees using the conjugate filtration. On the other hand, ∆Zp⟨x1,...,xp⟩/Zp

is not equivalent to Zp⟨x1, . . . , xp⟩“⊗∆Zp/Zp
, using that grδconjp is non-zero.

Example 3.21 (Absolute prismatic comparison). (a) If A = Zp, then H∆(R/Zp) ≃ H∆(R), the prismatic
crystal introduced in [7, Const. 4.4.1], and the conjugate filtration Fδconj

⩽⋆ H∆(R/Zp) agrees with the
conjugate filtration on the absolute Hodge–Tate crystal of [7, Const. 4.5.1].
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(b) More generally, if A is a perfect δ-ring, then LA/Zp
vanishes after p-completion and hence ”LΩ⋆

R/A ≃”LΩ⋆

R/Zp
. It follows that for each i ∈ Z the natural map H∆(R){i} → H∆(R/A){i} is an equivalence

of quasi-coherent sheaves on WCartHT and thus, by I-completeness, H[n]
∆ (R){i} → H

[n]
∆ (R/A){i} is

an equivalence of quasi-coherent sheaves on WCart for all n, i ∈ Z. In particular, ∆R ≃ ∆R/A and
∆R ≃ ∆R/A, where ∆R denotes the absolute prismatic cohomology of [7, Const. 4.4.10], defined as
the global sections of the absolute prismatic crystal H∆(R). This is a generalization to δ-rings of the
relative-to-absolute prismatic cohomology comparison theorem [7, Prop. 4.4.12] for perfect prisms.

(c) If A = R is derived p-complete, then the conjugate filtration implies that H∆(A/A){i} ≃ A⊗OWCartHT{i}
for all i ∈ Z. Hence, since RΓ(WCartHT,−) preserves colimits as a functor to D̂(Zp) by [7, Cor. 3.5.13],

∆A/A ≃ A“⊗∆Zp
≃ A⊕A[−1].

By I-completeness, the natural map A“⊗OWCart → H∆(A/A) is an equivalence. Thus, the natural map
A“⊗∆Zp

→ ∆A/A is an equivalence after completing the tensor product with respect to the Hodge–Tate
filtration on ∆Zp

.

Warning 3.22 (Two conjugate filtrations). As indicated by the notation, the conjugate filtration differs in
general from that considered in [10] in the prismatic case. Let Fδconj

⩽⋆ ∆R/A denote the filtration defined by

using that A is a δ-ring, and let F∆conj
⩽⋆ ∆

rel

R/A denote the prismatic conjugate filtration on derived prismatic
cohomology, as studied in [10] when A is a prism and R is a p-complete animated commutative A-algebra.
As proven in Proposition 5.17, ∆

rel

R/A ≃ ∆R/A, however the conjugate filtrations do not, for example when
A = Zp and R = Fp. In this case, the δ-ring variant agrees with the absolute conjugate filtration, which has

grδconju ∆Fp/Zp
≃ fib(LΩu

Fp/Zp

−u−−→ LΩu
Fp/Zp

)[−u] ≃ fib(Fp
−u−−→ Fp),

while

gr∆conj
u ∆

rel

Fp/Zp
≃ LΩu

Fp/Fp
{−u}[−u] ≃

®
Fp if u = 0, and
0 otherwise.

The prismatic conjugate spectral sequence degenerates at the E1-page, while the δ-ring theoretic conjugate
spectral sequence supports dp-differentials and degenerates at the Ep+1-page.

We end this section by giving a different perspective on the definition of ∆R/A that avoids the theory of
prismatic crystals. To this end we let Pairs∆ be the category whose objects are given by pairs consisting of
a bounded prism (A, I) together with a map of commutative rings A/I → R. Note that this is not a full
subcategory of Pairsδ since we require the choice and existence of a prismatic ideal I, in contrast to the
definition of prismatic δ-pairs (Definition 2.2) where we only required the mere existence. Still there is a
forgetful functor

Pairs∆ → Pairsδ .

Moreover Bhatt–Scholze’s derived prismatic cohomology [10, Sec. 7.2] defines a functor

∆rel
R/A : Pairs∆ → D(Z)∧p .

Proposition 3.23. Prismatic cohomology ∆R/A : Pairsδ → D(Z)∧p is the right Kan extension of ∆rel
R/A along

Pairs∆ → Pairsδ.

Note that since Pairs∆ → Pairsδ is not fully faithful, it is not a priori clear that the right Kan extension
indeed leaves the value on a prismatic δ-pairs unchanged. However, we will show that it does in Section 5.3.
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Proof. Let (A,R) ∈ Pairsδ be a δ-pair. We would like to compute the value of the right Kan extension on
(A,R). This is given by the limit of ∆rel

S/C where C and S vary over the category Pairs∆
(A,R)/

, i.e. C has a
prism structure K ⊆ C a map of rings C/K → S and is equipped with a map of δ-pairs (A,R)→ (C, S). We
now consider the functor

TransPrisms→ Pairs∆
(A,R)/

from the category of transversal prisms given by

(B, J) 7→ (A“⊗B,R“⊗B),

as in the definition of the prismatic crystal (Definition 3.3). Now to prove the proposition it suffices to show
that this functor TransPrisms→ Pairs∆

(A,R)/
is initial (in the sense that taking limits induces an equivalence,

i.e., the opposite of the notion of cofinality from [21, Sec. 4.1.1]), as the limit over the composite of this functor
with ∆rel

R/A is the definition of ∆R/A (see Remark 3.8). By Quillen’s Theorem A (see [21, Thm. 4.1.3.1]), this
initiality comes down to checking that for each object

(C, S) ∈ Pairs∆
(A,R)/

the category of transversal prisms (B, J) with a map of prism pairs

(A“⊗B,R“⊗B)→ (C, S)

under (A,R) is weakly contractible. Such a map however is uniquely determined on the part of the tensor
product given by A and R so that it is equivalently given by a map of prismatic δ-pairs

(B,B)→ (C, S)

or equivalently a map of prisms (B, J)→ (C,K) since the map B → S is uniquely determined. Thus, the
category is equivalent to the category of transversal prisms over (C, S) which is weakly contractible since it is
sifted [7, Cor. 2.4.7].

We note that the proof actually shows something stronger, namely that one can even right Kan extend
from transversal prisms instead of all prisms, but we shall not need this here.

4 Prismatization
The goal of prismatization as developed by Drinfeld [11] and Bhatt–Lurie [7, 8] is to construct for each
p-adic formal scheme X a formal stack (in groupoids on the site of p-nilpotent affine schemes with the flat
topology), called WCartX , such that (1) quasi-coherent sheaves on X provide a good formalism for coefficients
for prismatic cohomology and (2) RΓ(WCartX ,OWCartX ) computes ∆X , the absolute (derived) prismatic
cohomology of X. There is also a relative version, denoted by WCartX/A when A is a prism, introduced
in [8]. For more on formal (higher) stacks, see Appendix A.

Definition 4.1 (Cartier–Witt divisors). Recall from [7, Def. 3.1.4] that if S is a p-nilpotent commutative
ring, then a Cartier–Witt divisor of S is a generalized Cartier divisor α : I →W (S) such that the image of
I

α−→W (S)→ S is nilpotent and the image of I α−→W (S)
δ−→W (S) generates the unit ideal of W (S).

Definition 4.2 (Absolute Cartier–Witt stacks). Let R be a commutative ring with bounded p-power
torsion. Define WCartR to be the formal stack which assigns to a p-nilpotent ring S the groupoid of pairs
(I

α−→ W (S), R → W (S)), where α is a Cartier–Witt divisor of S and W (S) = W (S)//I is the animated
commutative ring with underlying chain complex given by the cofiber of α; see [8, Sec. 3].
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Morally one should think of an S-point of WCartR as making W (S) an object of the animated version of
the absolute prismatic site of R using [8, Remark 3.1.5]. The stack WCartR/A that we define below similarly
has S points given by ways of making W (S) an object of the animated version of the relative prismatic site
of R relative to A.

Remark 4.3 (Insensitivity to derived p-completion). As π0W (S) is a p-nilpotent ring by [8, Lem. 3.3],
WCartR depends only on the derived p-completion of R.

Remark 4.4 (Extension to stacks). We will need the natural extension of WCart− to formal stacks. If
F is any presheaf of spaces on p-nilpotent affine schemes, we can define a presheaf WCartF as follows: for
any p-nilpotent ring S, we let WCartF(S) be the space of pairs of a Cartier–Witt divisor α : I → W (S)
and a W (S)-point of F. With this notation, WCartR = WCartSpf R if R is bounded. The natural map
colimSpf R→F WCartR → WCartF is an equivalence of presheaves of spaces, where the colimit ranges over
maps from p-nilpotent affine schemes.

Notation 4.5. If (A, I) is a bounded prism, we distinguish between the p-adic formal scheme Spf A and the
object Spf A. If S is a p-nilpotent commutative ring, then (Spf A)(S) = colimm MapCAlg(A/pm, S), while
(Spf A)(S) = colimm,n MapCAlg(A/(pm, In), S). Alternatively, Spf A ⊆ Spf A is the formal completion at I,
corresponding to maps A→ S where I is sent to a nilpotent ideal.

Definition 4.6 (Relative Cartier–Witt stacks). If A is a bounded prism, then there is a natural map
Spf A→WCartA. If S is a p-nilpotent commutative ring and g : A→ S is a point of Spf A, so that the image
of I in S is nilpotent, then we can take the adjoint δ-ring map g# : A→W (S) and take the Cartier–Witt
divisor I ⊗A W (S)→W (S) obtained by extension of scalars. If R is a commutative A-algebra with bounded
p-power torsion, then Bhatt and Lurie define the relative Cartier–Witt stack WCartR/A in [8, Variant 5.1] as
the pullback

WCartR/A
//

��

WCartR

��
Spf A //WCartA.

Example 4.7. If B is a bounded prism, then the natural map

WCartB/B → Spf B

is an equivalence.

Construction 4.8 ([8, Const. 3.11]). If A is a bounded δ-ring, there is a functor Spf A×WCart→WCartA
obtained as follows. Given a p-nilpotent commutative ring R and an R-point of Spf A×WCart, which consists
of a pair consisting of a map A→ R and a Cartier–Witt divisor I

α−→W (R) over R, one uses the universal
property of the Witt vectors to obtain a δ-ring map A→W (R). The composition A→W (R)→W (R)//I
together with (I, α) defines an R-point of WCartA.

Definition 4.9 (Prismatization of δ-pairs). Suppose that A→ R is a bounded δ-pair. We define the relative
Cartier–Witt stack of R over A as the pullback

WCartR/A
//

��

WCartR

��
Spf A×WCart //WCartA.
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In other words, if S is a p-nilpotent commutative ring, WCartR/A(S) is the space consisting of quadruples
of a Cartier–Witt divisor I

α−→ W (S), a map R → W (S)//I of animated commutative rings, a map
A → S of commutative rings, and an equivalence between the compositions A → W (S) → W (S)//I and
A → R → W (S)//I. More generally, one can make an analogous definition when X is a bounded p-adic
formal scheme over Spf A to obtain WCartX/A.

This definition agrees with the definition given in [8] when both make sense.

Proposition 4.10 (Agreement with prismatization in the prismatic case). If A is a bounded prism and R is
a bounded A-algebra, then there is a natural commutative diagram

WCartR/A
//

��

WCartR

��
Spf A

ρA //

id×ρA

��

WCartA

��
Spf A×WCart //WCartA

of pullback squares where the outer square agrees with the defining square of Definition 4.9.

In particular, the definition given in Definition 4.9 of WCartR/A agrees with that of [8, Const. 7.1] for
prismatic δ-pairs.

Proof. The pullback of the top square defines the relative Cartier–Witt stack in the prismatic case by
definition [8, Var. 5.1, Const. 7.1]. It is enough to identify the bottom pullback as Spf A; write P for this
pullback. Evaluated at a p-nilpotent commutative ring S, P (S) is the space consisting of

(i) a Cartier–Witt divisor I
α−→W (S) equipped with a map f : A→W (S)//I,

(ii) a map g : A→ S and a Cartier–Witt divisor J
β−→W (S), and

(iii) an equivalence (I, α) ≃ (J, β) of Cartier–Witt divisors on S and an equivalence of maps between

A
g#

−−→W (S)→W (R)//J and A→ A
f−→W (S)//I, where g# is the map of δ-rings adjoint to g.

This data determines and is determined by a map A→ S which sends I to a nilpotent ideal of S by rigidity
for maps between prisms [10, Lem. 3.59]. So, the pullback P is equivalent to Spf A, as desired.

Lemma 4.11 (Insensitivity to I-adic completion). Suppose that A→ R is a bounded p-complete δ-pair and
that the kernel contains an ideal I which is locally generated by a distinguished element which is a non-zero
divisor. Let A∧

I denote the I-adic completion of A, which is a prism. Then, the natural map

WCartR/A∧
I
→WCartR/A

is an equivalence.

Proof. If S is a p-nilpotent commutative ring and x is a point of WCartR/A, corresponding to the data of a
map A

g−→ S, a Cartier–Witt divisor J
α−→W (S), a map R→W (S)/J , and a specified equivalence between

A
g#

−−→W (S)→W (S)/J and A→ R→W (S)/J , then it follows from commutativity that g# sends the ideal
I ⊆ A into J . On the other hand, J maps to a nilpotent ideal of S by definition of Cartier–Witt divisors.
It follows that g and g# factor uniquely through the I-adic completion of A and hence that the map on
Cartier–Witt stacks is an equivalence.
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Remark 4.12. In fact, in Lemma 4.11, we do not need I to be locally generated by a distinguished element
or for A∧

I to be a prism. We need only for I to be some ideal such that the derived I-adic completion of A is
discrete. However, we will only apply the lemma in the prismatic situation.

Variant 4.13 (Derived (animated) Cartier–Witt stacks). Suppose that R is an animated commutative
ring. The derived Cartier–Witt stack WCartanR of R is defined to be the functor on p-nilpotent animated
commutative rings S with value the space consisting of pairs of an animated prism structure I

α−→W (S) such
that the image of π0(I)→ π0(W (S))→ π0(S) is nilpotent together with a map R→W (S) = cofib(α).

Let A→ R be an animated δ-pair. There is a natural extension of Construction 4.8 to a map Spf A×
WCartan → WCartanA by using the universal property [8, Prop. A.23] of the Witt vectors for animated
commutative rings as the cofree animated δ-ring functor. Define WCartanR/A as the pullback (in presheaves of
spaces on derived schemes) of Spf A×WCartan →WCartanA along WCartanR →WCartanA .

If A is a bounded prism and R is an animated commutative A-algebra, then the proof of Proposition 4.10
can be extended to the animated situation to give an equivalence between WCartanR/A, as defined above, and
the definition given in [8, Const. 7.1].

Lemma 4.14 (The Cartier–Witt stacks are sheaves). If A→ R is a bounded δ-pair, then WCartR/A is a
sheaf for the flat topology on p-nilpotent commutative rings.

Proof. Compare the proof of [8, Lem. 7.3]. By definition of WCartR/A as a pullback, it is enough to show that
WCart is a flat sheaf and that WCartA is a flat sheaf for any commutative ring A with bounded p-torsion.
The functor WCart is a flat sheaf by flat descent for generalized Cartier divisors, which can be seen as follows
(see also Remark 3.1.7 in [7]): the construction S 7→W (S) satisfies flat descent. The category of invertible
modules satisfies flat descent, the conditions of being nilpotent satisfies flat descent (since for every exponent
it can be written as the vanishing of a certain module map), and finally the prism condition can be checked
after base change along a faithfully flat map (as one sees by a direct verification).

Suppose that G→ F is a map of presheaves of spaces on some site. If F is a sheaf of spaces and if the
fibers of G→ F , computed as presheaves, are in fact sheaves, then G is a sheaf. Thus, it suffices to show
that the fibers of WCartA →WCart are flat sheaves.

Let S → S0 be a faithfully flat map of p-nilpotent commutative rings with Čech nerve S•. If I α−→W (S) ∈
WCart(S) is fixed, then

W (S)→ TotW (S•)

is an equivalence since W (S) → TotW (S•) is an equivalence and I is a perfect W (S)-module. But,
Map(A,W (S)) ≃ TotMap(A,W (S•)). It follows that the fiber over α of WCartA →WCart is a flat sheaf,
as desired.

Definition 4.15 (Prismatic cohomology via Cartier–Witt stacks). For a bounded δ-pair (A,R), let

∆wc
R/A = RΓ(WCartR/A,OWCartR/A

).

There are Breuil–Kisin twists OWCartR/A
{i} on WCartR/A obtained by pullback from WCart; there is also a

quasi-coherent sheaf of ideals I obtained by pullback from the Hodge–Tate ideal on WCart. Thus, we can
also define ∆wc,[n]

R/A {i} = RΓ(WCartR/A, I
⊗n ⊗OWCartR/A

OWCartR/A
{i}) and the Hodge–Tate tower ∆wc,[⋆]

R/A {i}.
The associated graded pieces of the Hodge–Tate tower fit into fiber sequences

∆wc,[n+1]
R/A {i} → ∆wc,[n]

R/A {i} → ∆
wc

R/A{i+ n}.

Definition 4.16 (Relative Hodge–Tate stacks). Pulling back WCartHT ↪→WCart along WCartR/A →WCart

produces a relative Hodge–Tate stack WCartHT
R/A. By construction,

RΓ(WCartHT
R/A,OWCartHT

R/A
{i}) ≃ ∆

wc

R/A{i} = cofib
Ä
∆wc,[1]
R/A {i} → ∆wc,[0]

R/A {i}
ä
.
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Example 4.17. In the situation of Proposition 4.10, when A is a bounded prism and R = A, one has a
natural equivalence WCartHT

A/A
≃ Spf A.

Variant 4.18. If A→ R is an animated δ-pair, we can define ∆anwc
R/A = RΓ(WCartanR/A,OWCartan

R/A
) as well as

Breuil–Kisin twists and so on. If R/A is a bounded δ-pair, then the classical locus of WCartanR/A is WCartR/A

by definition, so there is a natural map ∆anwc
R/A → ∆wc

R/A.

Before comparing different definitions of prismatic cohomology, we develop some of the theory of the
prismatization of δ-pairs.

Lemma 4.19 (Compatibility with limits). Suppose that {Xi → Spf Ai}i∈I is a natural transformation of
I-indexed diagrams of bounded p-adic formal schemes. Assume that the Ai are are equipped with δ-ring
structures and the maps in the diagram are δ-ring maps. If the diagrams {Xi}i∈I and {Spf Ai}i∈I are
Tor-independent, meaning that their limit in p-adic formal schemes agrees with their limit in derived p-adic
formal schemes, then letting X = limXi and Spf A = limSpf Ai the natural map

WCartX/A → lim
I

WCartXi/Ai

is an equivalence.

Proof. Indeed, each of the other vertices in the definition of WCartX∗/A∗ in Definition 4.6 is compatible with
limits by [8, Rem. 3.5].

The following lemma is similar to, but easier than, [8, Lem. 6.3].

Lemma 4.20. Suppose that A→ A0 is a map of bounded δ-rings and R is a bounded commutative A0-algebra.
If A→ A0 is p-completely faithfully flat, then the natural map

WCartR/A0 →WCartR/A

is surjective in the flat topology.

Proof. Let R0 = A0“⊗AR. Then, because R is already a commutative A0-algebra, there are maps of δ-pairs
(A,R) → (A0, R) → (A0, R0). To prove that WCartR/A0 → WCartR/A is surjective, it is thus enough to
prove that WCartR0/A0 →WCartR/A is surjective. However, this morphism is the top arrow of a pullback
diagram

WCartR0/A0 //

��

WCartR/A

��
Spf A0 ×WCart // Spf A×WCart.

The bottom arrow is surjective by hypothesis, and hence the top one is too.

Corollary 4.21 (Prismatization preserves quasisyntomic covers). Suppose that (A,R) → (A0, R0) is a
p-completely faithful flat map of bounded δ-pairs, meaning that A → A0 and R → R0 are p-completely
faithfully flat. If LR0/R has p-complete Tor-amplitude in [0, 1], then the natural forgetful map

WCartR0/A0 →WCartR/A

is surjective in the flat topology.
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Proof. The map in question factors as WCartR0/A0 →WCartR0/A →WCartR/A. The first map is surjective
by Lemma 4.20. The second map is the left vertical map in the cartesian diagram

WCartR0/A
//

��

WCartR0

��
WCartR/A

//WCartR.

The right vertical map is surjective by [8, Lem. 6.3], which applies by our assumption on LR0/R. Thus, the
left vertical map is surjective.

5 Comparison theorems
If A → R is a bounded δ-pair, then there is a natural commutative diagram of maps between the various
forms of prismatic cohomology of R relative to A constructed in the previous sections:

∆R ∆R/A

Cor. 5.5

��

Ex. 3.21

A=Zpoo
Prop. 5.17

prismatic // ∆rel
R/A

∆anwc
R/A

Lem. 5.16//

��

∆wc
R/A

Thm. 5.6
��

∆ansite
R/A

Var. 5.15// ∆site
R/A.

The lower horizontal arrows are constructed using the inclusion of discrete commutative rings into animated
commutative rings; see Variants 2.16 and 4.18. The vertical arrows as well as the upper horizontal arrow
are constructed below. The top right arrow exists in the case of a bounded prismatic δ-pair and the top left
arrow exists, and is an equivalence, by Example 3.21.

We prove that these maps, as well as the corresponding maps on Breuil–Kisin twists and Hodge–Tate
towers, are equivalences for a large class of δ-pairs satisfying quasisyntomicity conditions.

5.1 Stack and crystal
We use the base change results of the appendix to identify the pushforward of the structure sheaf along
WCartR/A →WCart.

Proposition 5.1 (Crystal comparison). Given a bounded δ-pair (A,R) where LR/A has p-complete Tor-
amplitude in [0, 1], the pushforward of the Breuil–Kisin twisted structure sheaf I⊗n

WCartR/A
⊗ OWCartR/A

{i}

along the composition WCartR/A → Spf A×WCart
pr2−−→WCart is naturally equivalent to H

[n]
∆ (R/A){i} for

each n, i ∈ Z.

Proof. First, we handle the case where n = i = 0. Consider the pullback diagram

WCartR“⊗B/A“⊗B
//

q′

��

WCartR/A

q

��
Spf B

ρB //WCart,
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where (B, I) is a transversal prism and where the upper-left vertex is identified using Tor-independence of
(B,B)← (Zp,Zp)→ (A,R) and Lemma 4.19 to obtain identifications

Spf B ×WCart WCartR/A ≃WCartB/B ×WCartZp/Zp
WCartR/A ≃WCartR“⊗B/A“⊗B .

Note that the p-completed tensor product A“⊗B is possibly not a prism so that WCartR“⊗B/A“⊗B is not by
definition the relative Cartier–Witt stack studied in [8]. However, the natural map WCartR“⊗B/(A“⊗B)∧I

→
WCartR“⊗B/A“⊗B is an equivalence by Lemma 4.11. It follows that

q∗OWCartR/A
(B) = ρ∗Bq∗OWCartR/A

≃ q′∗OWCart
R⊗̂B/(A⊗̂B)∧

I

≃ RΓ(WCartR“⊗B/(A“⊗B)∧I
,OWCart

R⊗̂B/(A⊗̂B)∧
I

)

by base change for bounded above quasi-coherent cohomology; see Corollary A.41. The latter is equivalent to
∆rel
R“⊗B/A“⊗B

under our p-complete Tor-amplitude hypothesis by [8, Thm. 6.4, Rem. 7.23]. This identification
is natural in B, so the lemma follows for i = 0.

For general n, i, we use the fact that OWCartR/A
{i} ≃ q∗OWCart{i} and I⊗n

WCartR/A
≃ q∗I⊗n

WCart, so the
projection formula (see Proposition A.37) implies that q∗(I

⊗n ⊗ OWCartR/A
{i}) ≃ I⊗n ⊗ q∗(OWCartR/A

){i} ≃
H

[n]
∆ (R/A){i}.

Remark 5.2. As H∆(R/A) is naturally an A-module in D(WCart), it can be considered as a quasi-coherent
sheaf on Spf A×WCart. The proposition shows in fact that it agrees with the pushforward of OWCartR/A

along the canonical map WCartR/A → Spf A×WCart.

Variant 5.3. If (A,R) is a δ-pair where A is bounded and R is an animated commutative A-algebra such
that Ω1

π0(R/p)/A/p is finitely generated over π0(R)/p and if (B, I) is a transversal prism, then Bhatt and Lurie
show in [8, Thm. 7.20] that ∆R“⊗B/(A“⊗B)∧I

≃ RΓ(WCartan
R“⊗B/(A“⊗B)∧I

,OWCartan
R⊗̂B/(A⊗̂B)∧

I

). Thus, it follows

from the argument in Proposition 5.1, and an appeal to Variant 4.13, that q∗OWCartan
R/A
≃ H∆(R/A).

Corollary 5.4. Given a bounded δ-pair (A,R) where LR/A has p-complete Tor-amplitude in [0, 1], the
pushforward q∗OWCartHT

R/A
{i} along q : WCartHT

R/A →WCartHT is naturally equivalent to ι∗H∆(R/A){i} for

each i, where ι : WCartHT ↪→WCart.

Proof. We have to show that the canonical map

ι∗H∆(R/A){i} → q∗OWCartHT
R/A
{i}

is an equivalence. This can be verified after applying ι∗ in which case both sides can be identified with the
cofiber of the map H

[1]
∆ (R/A){i} → H∆(R/A){i} by Proposition 5.1.

Corollary 5.5. If (A,R) is a bounded δ-pair where LR/A has p-complete Tor-amplitude in [0, 1], then there
are natural equivalences ∆[n]

R/A{i} ≃ ∆wc,[n]
R/A {i} and ∆R/A{i} ≃ ∆

wc

R/A{i} for each i, n ∈ Z.

Proof. Take global sections in Proposition 5.1 and Corollary 5.4.

5.2 Stack and site
If (A,R) is a bounded δ-pair and (B, I) ∈ (R/A)∆, then by functoriality of the relative Cartier–Witt stacks
there is a canonical morphism WCartB/B → WCartR/A, which induces a map ∆wc

R/A → ∆wc
B/B

≃ B. These
assemble into a natural morphism

∆wc
R/A → ∆site

R/A
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by definition of site-theoretic relative prismatic cohomology. This natural map extends to a natural transfor-
mation on Hodge–Tate towers and Breuil–Kisin twists.

Theorem 5.6 (Stack-site comparison). Let (A,R) be a bounded δ-pair. If LR/A has p-complete Tor-amplitude
in [0, 1], then the natural map

∆[n],wc
R/A {i} → ∆[n],site

R/A {i}

is an equivalence for all n, i ∈ Z.

We will need a few preliminary results. Our strategy is to show that both sides satisfy a restricted form
of quasisyntomic descent, which lets us reduce to the case of pairs (A,R) where A is a prism and R is a
commutative A-algebra, i.e., the situation studied in [10]. In that case, the comparison theorem will follow
from [8].

Lemma 5.7 (Rezk). Given δ-rings A,A′, B, and maps A→ A′ → B such that

(1) the map A→ A′ is p-completely formally étale and a δ-ring map and
(2) the composite A→ B is a δ-ring map,

the map A′ → B is also a δ-ring map.

Proof. Consider the diagram
A A′ B

W2(A) W2(A
′) W2(B)

A′ B

where the upper vertical maps are the maps encoding the δ-structure, and the lower vertical maps are the
canonical projections. The lower square commutes trivially, the upper left square commutes by by the
assumption that A→ A′ is a δ-ring map, the upper outer square commutes by the assumption that A→ B
is a δ-ring map, and the right outer square commutes trivially. To show that A′ → B is a δ-ring map, we
need to show that the upper right square commutes, i.e. that the two composites A′ → W2(B) agree. By
assumption, they fit into a commutative square

A W2(B)

A′ B,

and by the uniqueness part of lifting formally étale extensions along square-zero maps, they agree.

Lemma 5.8 (Insensitivity to formally étale extensions I). Given a sequence A→ A′ → R, where A→ A′

is a map of δ-rings which is p-completely formally étale, the natural map WCartR/A′ → WCartR/A is an
equivalence. In particular, the natural maps

∆[n],wc
R/A {i} → ∆[n],wc

R/A′ {i}

are equivalences for all n, i ∈ Z.
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Proof. Consider the diagram
WCartR/A′ WCartR

Spf A′ ×WCart WCartA′

Spf A×WCart WCartA.

The upper diagram is a pullback square by definition. If we show that the lower square is a pullback diagram,
it follows that the outer diagram is a pullback, and thus WCartR/A ≃WCartR/A′ .

Let P denote the pullback of the lower square; there is a canonical map Spf A′×WCart→ P . An S-point
in P is given by a map A → S, a generalized Cartier-Witt divisor I → W (S), and a factorization of the
composite map A→W (S)/I through A′.

Since A→ A′ is p-completely formally étale, this factorization lifts uniquely to a map A′ →W (S) agreeing
with the δ-ring map A→W (S) on A. This map is automatically a δ-ring map by Lemma 5.7. Since W (S)
is the cofree δ-ring on S, this is the same datum as a map A′ → S extending the original map A→ S. So
a point in the pullback is the same datum as a pair of map A′ → S and generalized Cartier-Witt divisor
I →W (S), which is to say a point of Spf A′ ×WCart.

Remark 5.9. The consequence for prismatic cohomology in Lemma 5.8 can be proved using the conjugate
filtration on Hodge–Tate cohomology (Proposition 3.9) and Corollary 5.5 under the stronger hypothesis that
LA′/A vanishes p-adically.

Lemma 5.10 (Insensitivity to formally étale extensions II). Given A→ A′ → R with A→ A′ a p-completely
formally étale map of δ-rings, the sites (R/A)∆ and (R/A′)∆ agree. In particular,

∆[n],site
R/A {i} ≃ ∆[n],site

R/A′

for all n, i ∈ Z.

Proof. Given an object B of (R/A)∆, we get a unique dashed lift making the diagram

A A′ B

R R B/Jid

of commutative rings commute. The map A′ → B is automatically a δ-ring map by Lemma 5.7, so this
defines an equivalence (R/A)∆ ≃ (R/A′)∆.

Lemma 5.11 (Comparison for prismatic δ-pairs). Given a δ-ring A and an A-algebra R with bounded
p-power torsion, if the kernel of the map A → R contains a Cartier divisor I which makes the pair (A, I)
into a bounded prism and if LR/A has p-complete Tor-amplitude in [0, 1], then the natural map

∆[n],wc
R/A {i} → ∆[n],site

R/A {i}

is an equivalence for all n, i ∈ Z.
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Proof. By Proposition 4.10, our WCartR/A agrees in this case with the relative prismatization as studied
in [8, Sec. 5]. It follows from [8, Thm. 6.4] (and [8, Rem. 7.23]) that the cohomology of WCartR/A with
coefficients in I⊗n

WCartR/A
{i} computes the cohomology of the corresponding sheaf on the relative prismatic

site.

Corollary 5.12. Fix a δ-pair A→ R. If A→ R factors as A→ A′ → R where A→ A′ is a p-completely
formally étale map of δ-rings, the kernel of A′ → R contains a Cartier divisor I making A′ into a prism, and
LR/A′ has p-complete Tor-amplitude in [0, 1], then the canonical map

∆[n],wc
R/A {i} → ∆[n],site

R/A {i}

is an equivalence for all n, i ∈ Z.

Proof. Combine Lemmas 5.8, 5.10, and 5.11.

Lemma 5.13. As a functor of commutative A-algebras, ∆[n],site
−/A {i} has descent with respect to quasisyntomic

covers of the form
R→ R[z1/p

∞
]∧/(z − p)

for all n, i ∈ Z.

Proof. For fixed A and R we have a canonical ‘forgetful’ functor (R/A)∆ → (Zp/Zp)∆ that induces an
adjunction

f! : Shv((R/A)∆)
//oo Shv((Zp/Zp)∆) : f

∗

between ∞-topoi whose right adjoint f∗ is the restriction functor. The left adjoint f! sends the terminal
object to the object

R/A : (B,B/J) 7→ Mapδ−pair((A,R), (B,B/J)) .

Moreover the right adjoint f∗ preserves the structure sheaves O
[n]
∆ {i}. As a result we can write ∆[n],site

R/A {i},
which is defined as the maps out of the terminal object in Shv((R/A)∆) to O

[n]
∆ {i}, as maps in Shv((Zp/Zp)∆)

from R/A to O
[n]
∆ {i}.

For a general morphism R→ R′ of rings under A this procedure translates the Čech complex

R // R′ //// R′ ⊗R R′ //
//// R′ ⊗R R′ ⊗R R′

//
//
//// · · ·

into the Čech complex of the map R′/A → R/A (considered as an augmented simplicial object) in the
∞-topos Shv((Zp/Zp)∆), as one immediately verifies. Thus to verify descent for a map R→ R′, that is the
fact that the diagram

∆[n],site
R/A {i} // ∆[n],site

R′/A {i}
// // ∆[n],site

R′⊗RR′/A{i}
//
//// ∆

[n],site
R′⊗RR′⊗RR′/A{i}

//
//
//// · · ·

is a limit diagram, it then suffices to show that the morphism R′/A→ R/A is an effective epimorphism in
the topos Shv((Zp/Zp)∆).
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Concretely, we need to show that for every object B in (R/A)∆, there exists a B′ ∈ (R′/A)∆ whose
restriction covers B, i.e. for each B we find a B′ in the following diagram

A B B′

R B/J B′/J

R′,

such that B → B′ is faithfully flat.
Now we let R′ = R[z1/p

∞
]∧/(z − p). and simply take B′ to be the prismatic envelope

B[z1/p
∞
]
{z − p

J

}∧

(p,J)
,

with δ(z) = 0. This is p-completely faithfully flat over B by [10, Prop. 3.13].

Proof of Theorem 5.6. Both sides of the comparison map have descent with respect to an extension of the
form R→ R[z1/p

∞
]∧/(z − p). For the right-hand side, this is Lemma 5.13. For the left hand side, it follows

from Proposition 3.15 and Corollary 5.5.
The nth term in the Čech-nerve of the map R→ R0 = R[z1/p

∞
]∧/(z − p) is given by

Rn = Rn−1[z1/p
∞
]∧/(z − p)

and LRn−1/A has p-complete Tor-amplitude in [0, 1]. Therefore, it suffices to see that the comparison map is an
equivalence for A→ R[z1/p

∞
]∧/(z− p) =: R′. This map factors through A→ A′, where A′ = A[z1/p

∞
]∧(p,z−p)

(with δ(z) = 0). As the kernel of A′ → R[z1/p
∞
]∧/(z − p) contains a distinguished non-zero divisor, z − p,

making A′ into a prism, Corollary 5.12 applies to give the desired comparison equivalence since

LR′/(A′/(z−p)) ≃ LR/A ⊗A (A′/(z − p))

has p-complete Tor-amplitude in [0, 1] since (A′/(z − p)) is p-completely free as an A-module.

Remark 5.14. Note that for a prism A and an A/I-algebra R, the condition that LR/A has p-complete
Tor-amplitude in [0, 1] is slightly weaker than that LR/(A/I) having p-complete Tor-amplitude in [0, 1]. So
Theorem 5.6 is slightly more general than the comparison result obtained in [8].

Variant 5.15. Using a similar argument as the proof of Theorem 5.6, one can prove that the animated site-
theoretic prismatic cohomology ∆ansite

R/A satisfies sufficiently fine descent in R in order to reduce to the prismatic
case, where it follows from [8, Rem. 7.14] that it agrees with ∆site

R/A. Thus, one finds that if (A,R) is a bounded

δ-pair and LR/A has p-complete Tor-amplitude in [0, 1], then the natural maps ∆[n],ansite
R/A {i} → ∆[n],site

R/A {i} are
equivalences for all n, i ∈ Z.

To conclude the section, we give a generalization of the classicality result [8, Cor. 8.13] to our relative
Cartier–Witt stacks.

Lemma 5.16 (Classicality of relative Cartier–Witt stacks). If A is a quasisyntomic δ-ring and R ∈ QSynA,
then WCartanR/A is classical and

∆[n],anwc
R/A {i} → ∆[n],wc

R/A {i}

is an equivalence for each n, i ∈ Z.
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Proof. It suffices to prove that WCartanR/A is a colimit (in derived stacks) of objects represented by discrete
commutative rings. By quasisyntomic descent, Corollary 4.21, and Lemma 4.19, we can assume that
R ∈ QRSPerfdA and in particular that LR/A has p-complete Tor-amplitude in [1, 1]. Consider the map of
δ-pairs (A,R)→ (A[z1/p

∞
], R[z1/p

∞
]/(z − p)) =: (A0, R0) and let (A•, R•) be the associated Čech complex

in δ-pairs. By Corollary 4.21 (or rather its derived variant), the induced map WCartanR0/A0 →WCartanR/A is a
surjective map of stacks in the flat topology on p-nilpotent commutative rings. By the derived version of
Lemma 4.19, the Čech complex of this map is WCartanR•/A• . However, for each s ⩾ 0, the δ-pair (As, Rs) is
in fact prismatic and the prismatic cohomology ∆Rs/As is discrete since LRs/As has p-complete Tor-amplitude
in [1, 1], so that the Cartier–Witt stack WCartanRs/As is affine and classical by [8, Cor. 7.18]. The lemma now
follows by taking the geometric realization and global sections.

5.3 Comparison to [10]
Let (A, I) be a bounded prism and let R be an animated commutative A-algebra. There are now two
definitions of ∆R/A, namely as the global sections of the prismatic crystal H∆(R/A) and as the derived relative
prismatic cohomology of [10, Sec. 7.2]. For the remainder of this section, we write ∆rel

R/A for the latter. By
combining Propositions 5.1 and 4.10 with [8, Rem. 7.23], we find that ∆R/A ≃ ∆rel

R/A when R is discrete and
LR/A has p-complete Tor-amplitude in [0, 1]. The next proposition shows that in fact no condition on R is
required.12

Proposition 5.17. If (A, I) is a bounded prism and R is an animated commutative A-algebra, then there is
a natural equivalence γR/A : ∆[⋆]

R/A{⋆}
≃−→ ∆rel,[⋆]

R/A {⋆}.

Proof. To construct the natural transformation γ, let TA be the category of transversal prisms (B, J) equipped
with a map of prisms B

f−→ A. For each (B, f) ∈ TA, let A“⊗B denote the (p, J)-adic completion of A⊗B.
The map f and multiplication induce a map of prisms A“⊗B → A. We can evaluate the crystal H∆(R/A) at
B to obtain a natural composition

∆R/A → H∆(R/A)(B) ≃ ∆rel
R“⊗B/A“⊗B

→ ∆rel
R“⊗AA/A

→ ∆rel
R/A,

where the final map uses the A-linear multiplication map R“⊗AA→ R.
The construction of the map is natural in B: for another choice B′ with a map B → B′ in TA we get a

natural homotopy between the two induced maps ∆R/A → ∆rel
R/A which is induced from a ‘hammock’ between

the constructions for these maps:

∆rel
R“⊗B/A“⊗B

//

��

∆rel
R“⊗AA/A

##

��

∆R/A

99

%%

∆rel
R/A

∆rel
R“⊗B′/A“⊗B′

// ∆rel
R“⊗AA/A

;;

.

As TA is sifted by [7, Cor. 2.4.7], this implies that the map ∆R/A → ∆rel
R/A does not depend on the

transversal prism B chosen (for example by taking the colimit over all these maps in the arrow category).
12One could also prove this by a Kan extension argument from the case just explained, but we would like to give an explicit

argument.
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This specifies the natural transformation γR/A when A is fixed. A similar argument can be made with the
help of an intermediary transversal prism B ∈ TA to construct commutative diagrams

∆R/A
//

��

∆rel
R/A

��
∆R′/A′ // ∆rel

R′/A′

for maps of bounded prismatic δ-pairs (A,R)→ (A′, R′). Siftedness of TA again implies that this diagram
does not depend on the choice of B. Continuing in this way, we obtain a natural transformation as desired.13

Both sides commute with colimits in the variable R as functors to D(A)∧(p,I). Thus, we can immediately
reduce to the case of R = A[x]. Now, we can use base change in A and Zariski descent to reduce to the case
of the universal oriented prism A0. Then, we can test whether γR/A0 is an equivalence by base change along
the faithfully flat map to the perfection A0

perf of A0. But, then, we have a commutative square

∆R/Z
//

��

∆R

��
∆R/A0

perf

γ
R/A0

perf// ∆rel
R/A0

perf
.

The vertical arrows are equivalences because A0
perf is perfect, using the conjugate filtrations on the Hodge–Tate

cohomology in both cases, and the top arrow is an equivalence by Example 3.21.

Remark 5.18. From now on, we drop the distinction between ∆rel
R/A and ∆R/A in the case of prismatic

δ-pairs.

6 The Nygaard filtration
In this section, we introduce the Nygaard filtration and Nygaard-completed Frobenius-twisted prismatic
cohomology relative to δ-pairs and prove the related statements of Theorem 1.2.

Definition 6.1. Let (A,R) be a bounded δ-pair and let H∆(R/A){i} be the ith Breuil–Kisin twisted prismatic
crystal associated to (A,R). This object is an A-module in D(WCart), so we can form its Frobenius twist

H
(1)
∆ (R/A){i} = H∆(R/A){i} ⊗A,φA

A.

If (B, I) is a transversal prism, then the value of this crystal on B is naturally equivalent to the (p, I)-completion
of

∆R“⊗B/(A“⊗B)∧I
{i} ⊗A,φ A.

Note that this is not typically equivalent to the usual Frobenius twist ∆(1)

R“⊗B/(A“⊗B)∧I
{i} of [10] because we

use only the Frobenius of A and not of (A“⊗B)∧I .
13To make this construction rigorous, consider the ∞-category Pairsδ∆an of prismatic δ-pairs (A,R) where A is bounded

and R is an animated commutative A-algebra. Let q : T → Pairsδ∆an denote the coCartesian fibration with fiber over (A,R)

given by TA. On Pairsδ∆an are defined sections ∆(−)/(−) and ∆rel
(−)/(−)

of the coCartesian fibration ’DAlg → Pairsδ∆an with fiber
over (A,R) given by the ∞-category of (p, I)-complete derived commutative A-algebras. The construction above induces a
natural transformation γ̃ : ∆(−)/(−) ◦ q → ∆rel

(−)/(−)
◦ q where naturality can be seen similar to the case above. Taking a left Kan

extension along q produces a natural transformation from ∆(−)/(−) → ∆rel
(−)/(−)

since the fibers of q are contractible.
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In this section, we use an approach analogous to the one from [7] to construct the Nygaard filtration. Our
goal will first be to produce a filtration on RΓ(WCart,H

(1)
∆ (R/A){i}).

Let F denote the Frobenius endomorphism of WCart. Recall from [7, Theorem 3.6.7] that the diagram

WCartHT WCart

Spf Zp WCart

F

ρdR

yields pullback diagrams on global sections for any quasi-coherent sheaf on WCart, where ρdR is the point of
WCart corresponding to the crystalline prism (Zp, (p)). Commutativity of the diagram yields a canonical
equivalence

F ∗E|WCartHT ≃ EdR ⊗ OWCartHT (2)

for any prismatic crystal E, where EdR denotes the p-complete complex ρ∗dRE. We will apply this for
E = H

(1)
∆ (R/A){i}.

Remark 6.2 (Prismatic cohomology relative to animated crystalline prisms). Since (Zp, (p)) is not transver-
sal, our definition of H∆(R/A) when (A,R) is a bounded δ-pair does not allow us to a priori compute
ρ∗dRH∆(R/A) = H∆(R/A)dR if A has p-torsion. Rather, we view H∆(R/A)dR as the definition of ∆R⊗Fp/A

where we view A as an animated crystalline prism.14 Nevertheless, this notation is unambiguous as it agrees
with the definition of ∆anwc

R⊗Fp/A
which uses that A is only a δ-ring. A similar comment applies to the Frobenius

twist H
(1)
∆ (R/A)dR.

Remark 6.3 (Prismatic cohomology relative to animated prisms). More generally, one can use the formalism
of prismatic cohomology relative to animated δ-pairs to give a definition of prismatic cohomology ∆R/A when
(A,A) is an animated prism and R is an animated commutative A-algebra, for example as RΓ(WCartanR/A,O);
see Variant 4.13.

Lemma 6.4 (de Rham comparison for prismatic cohomology relative to δ-rings). Let (A,R) be a bounded
δ-pair. There is a canonical multiplicative equivalence H

(1)
∆ (R/A)dR ≃ ”dRR/A, where the target denotes

p-completed derived de Rham cohomology of R over A. It fits into a commutative diagram

F ∗H
(1)
∆ (R/A)|WCartHT

”dRR/A ⊗ OWCartHT

H
(1)
∆ (R/A)dR ⊗ OWCartHT

of equivalences, where the vertical map comes from (2) and the horizontal map from relative de Rham
comparison.

Proof. We follow the argument from [7, Section 5.4]. For a prism B, we have a canonical pullback diagram

Spf B //

��

WCartHT

��
Spf B //WCart.

14Note that while animated prisms are introduced in [8], they are used there only to define derived Cartier–Witt stacks and
not as possible bases for relative prismatic cohomology.
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The quasi-coherent sheaf F ∗H
(1)
∆ (R/A) pulls back to

∆R“⊗B/A“⊗B ⊗A“⊗B,φ A“⊗B
on Spf B, and hence to

∆R“⊗B/A“⊗B ⊗A“⊗B,φ A“⊗B
on Spf B. By the relative de Rham comparison [7, Prop. 5.2.5], this is naturally equivalent to”dR

R“⊗B/A“⊗B
≃”dRR/A“⊗B.

Hence we have a natural equivalence

F ∗H
(1)
∆ (R/A)|WCartHT ≃”dRR/A ⊗ OWCartHT ,

providing the horizontal map in the commutative diagram. Together with the equivalence (2), this determines
a unique multiplicative equivalence

H
(1)
∆ (R/A)dR ⊗ OWCartHT ≃”dRR/A ⊗ OWCartHT .

of quasi-coherent sheaves on WCartHT making the diagram commute. To finish the proof, we need to check
that this is induced from a natural multiplicative equivalence

H
(1)
∆ (R/A)dR ≃”dRR/A

in D(Zp). To see this, it suffices to check that the map

H
(1)
∆ (R/A)dR → RΓ(WCartHT,”dRR/A ⊗ OWCartHT)

factors uniquely and multiplicatively through the canonical map”dRR/A → RΓ(WCartHT,”dRR/A ⊗ OWCartHT).

Since the H
(1)
∆ (R/A)dR is left Kan extended from δ-pairs (A,R) with R quasisyntomic over A we may reduce

to that situation. Then, since ”dRR/A satisfies quasisyntomic descent, we may reduce to the case where
LR/A has Tor-amplitude in [1, 1]. But then ”dRR/A is discrete, and agrees with the connective cover of
RΓ(WCartHT,”dRR/A ⊗ OWCartHT), H(1)

∆ (R/A)dR is connective, and the desired lift is uniquely determined.

Corollary 6.5. If (A,R) is a bounded δ-pair, then there is a natural pullback diagram

RΓ(WCart,H
(1)
∆ (R/A){i}) ”dRR/A

RΓ(WCart, F ∗H
(1)
∆ (R/A){i}) ”dRR/A ⊗ RΓ(WCartHT,OWCartHT)

for each i ∈ Z.

Proof. We combine the pullback diagram obtained from (6) with the equivalence H
(1)
∆ (R/A){i}dR ≃”dRR/A

obtained by multiplying the equivalence from Lemma 6.4 with the canonical trivialization of the Breuil–Kisin
twist Zp{i} (compare [7, Variant 5.4.13]).
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Definition 6.6 (Nygaard-filtered Frobenius-twisted prismatic cohomology). Let (A,R) be a bounded δ-pair
and fix i ∈ Z. We define the Nygaard filtration on RΓ(WCart,H

(1)
∆ (R/A){i}) as the pullback of filtered

spectra

N⩾⋆RΓ(WCart,H
(1)
∆ (R/A){i}) F⩾⋆

H
”dRR/A

RΓ(WCart,N⩾⋆F ∗H
(1)
∆ (R/A){i}) F⩾⋆

H
”dRR/A ⊗ RΓ(WCartHT,OWCartHT),

where the lower left term uses the pointwise Nygaard filtration on the prismatic crystal

B 7→ ∆R“⊗B/A“⊗B{i} ⊗A“⊗B,φ A“⊗B
corresponding to F ∗H

(1)
∆ (R/A), and the bottom map uses that the composite

F ∗H
(1)
∆ (R/A){i} → H

(1)
∆ (R/A){i}dR ⊗ OWCartHT ≃”dR⊗ OWCartHT

is a combination of the canonical trivialisation of F ∗OWCart{i} on the Hodge-Tate locus, and the de Rham
comparison map

∆R“⊗B/A“⊗B ⊗A“⊗B,φ A“⊗B → ∆R“⊗B/A“⊗B ⊗A“⊗B,φ A“⊗B ≃”dRR/A“⊗B
which takes the Nygaard filtration into the Hodge filtration (see [7, Const. 5.5.3]).

Definition 6.7 (Nygaard-completed Frobenius-twisted prismatic cohomology). If (A,R) is a bounded δ-pair,
we define Nygaard-completed (Frobenius-twisted, Breuil–Kisin twisted) prismatic cohomology of R over A as
the completion

N⩾⋆∆̂(1)
R/A{i} := (N⩾⋆RΓ(WCart,H

(1)
∆ (R/A){i}))∧.

Remark 6.8 (Absolute Nygaard comparison). Since the Frobenius on the δ-ring Zp is the identity,
N⩾⋆∆̂(1)

R/Zp
{i} ≃ N⩾⋆∆̂R, where the latter denotes the Nygaard complete absolute prismatic cohomology

of [9, 7]. Indeed, in this case H
(1)
∆ (R/Zp) ≃ H∆(R), in the notation of [7], and our construction of the

Nygaard filtration and completion agrees with the one in [7, Sec. 5.5].

We now recall the Hodge–Tate point η : Spf(Zp) → WCart which assigns to every p-nilpotent ring R

the Cartier-Witt divisor given by V (1) : W (R)→W (R). In analogy to [7], we write Ω
/D
R/A for η∗H∆(R/A).

This inherits a conjugate filtration from the δ-conjugate filtration on the relative Hodge–Tate crystal by
Proposition 3.9, and, since

grδconji H∆(R/A) ≃”LΩi

R/A ⊗ OWCartHT{−i}[−i],

we have grconji Ω
/D
R/A ≃”LΩi

R/A[−i].

Lemma 6.9. If (A,R) is a bounded δ-pair, then there are natural maps of fiber sequences

griN∆̂(1)
R/A{j} Fconj

⩽i Ω
/D
R/A Fconj

⩽i−1Ω
/D
R/A

RΓ(WCart, griNF
∗H

(1)
∆ (R/A){j}) Fconj

⩽i Ω
/D
R/A Fconj

⩽i Ω
/D
R/A

∆R/A{i} Ω
/D
R/A Ω

/D
R/A

Θ+i

Θ+i

Θ+i
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in D(A)∧p , where Θ is the Sen operator on Fconj
⩽⋆ Ω

/D
R/A induced from the Hodge–Tate crystal H∆(R/A) under

the description of quas-coherent sheaves on WCartHT of [7, Sec. 3.5].

Proof. The Hodge–Tate comparison provides that for every transversal prism B the relative Frobenius map

griN(∆R“⊗B/A“⊗B{j} ⊗A“⊗B,φ A“⊗B)→ ∆R“⊗B/A“⊗B{i}

factors through an equivalence to Fconj
⩽i ∆R“⊗B/A“⊗B{i}. In particular, griNF

∗H
(1)
∆ (R/A) is supported on the

Hodge–Tate locus, and global sections can be expressed through the Sen operator, leading to the bottom two
rows.

For the top row (and the map between the top two rows), we first observe that the pullback diagram
defining N⩾∗∆̂(1)

R/A provides a pullback diagram

griN∆̂(1)
R/A{j} ”LΩi

R/A[−i]

RΓ(WCart, griNF
∗H

(1)
∆ (R/A){j}) ”LΩi

R/A[−i]⊗ RΓ(WCartHT,OWCartHT).

Relative de Rham comparison on the level of prismatic crystals identifies griNF
∗H

(1)
∆ (R/A){j} with the

prismatic crystal
B 7→ Fconj

⩽i ∆R“⊗B/A“⊗B ,

and the bottom map is obtained from the canonical map

Fconj
⩽i ∆R“⊗B/A“⊗B → grconji ∆R“⊗B/A“⊗B ≃”LΩi

R/A[−i].

The bottom two terms can now be expressed as fibers of the respective Sen operators Θ+ i, and the right
vertical map is the canonical map”LΩi

R/A[−i]→ fib(”LΩi

R/A[−i]
Θ+i−−−→”LΩi

R/A[−i]) ≃”LΩi

R/A[−i]⊕”LΩi

R/A[−i− 1].

This yields the claimed first row (and the map to the second row).

Corollary 6.10. For each i ∈ Z, griN∆̂(1)
R/A{j} is sifted-colimit preserving, has faithfully flat descent as

a functor on bounded δ-pairs, satisfies base change in the base δ-ring, and is invariant under quasi-étale
extensions, finitely generated completions, and localizations in the base δ-ring (as in Proposition 3.12 and
Corollary 3.13). Moreover, if we consider N⩾⋆∆̂(1)

R/A{j} as a functor to complete filtered objects then it is
sifted-colimit preserving, has faithfully flat descent as a functor on bounded δ-pairs, satisfies base change in
the base δ-ring, and is invariant under quasi-étale extensions in the base δ-ring.

Proof. The second claim follows from the first. The first claim follows from the fact that griN∆̂(1)
R/A is built

out of differential forms by Lemma 6.9. Differential forms have the necessary descent by Lemma 3.14, the
necessary invariance under quasi-étale extensions, finitely generated completions, and localizations, and by
definition preserve sifted colimits and satisfy base change.

In the case of a prismatic δ-pair (A,R), i.e. one where A admits the structure of a prism, and R the
structure of an A-algebra, N⩾⋆∆̂(1)

R/A{i} now potentially has two meanings: The one defined above, and the
Nygaard filtration from relative prismatic cohomology. Our goal is now to identify the two. Temporarily, we
will write N⩾⋆

rel ∆̂
(1)
R/A{i} for the Nygaard filtration from relative prismatic cohomology.
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Definition 6.11. I updated this to use the argument from 5.22 to handle the non-transverse case. We define
a comparison map N⩾⋆∆̂(1)

R/A{i} → N⩾⋆
rel ∆̂

(1)
R/A{i} as in the proof of Proposition 5.17: before completion, given

a transversal prism B with a map of prisms to A, we have the composite map of filtered spectra

N⩾⋆RΓ(WCart,H
(1)
∆ (R/A){i})→ RΓ(WCart,N⩾⋆F ∗H

(1)
∆ (R/A){i})→ N⩾⋆

rel ∆
(1)

R“⊗B/A“⊗B
{i} → N⩾⋆

rel ∆
(1)
R/A{i},

where the first map comes from the definition, the second is evaluation at ρB : Spf B → WCart, and the
third uses the multiplication map. After completion, this gives rise to a map

N⩾⋆∆̂(1)
R/A{i} → N⩾⋆

rel ∆̂
(1)
R/A{i},

which one shows as in Proposition 5.17 does not depend on B and which is natural in prismatic δ-pairs (A,R).

Proposition 6.12 (Relative prismatic Nygaard comparison). The map from Definition 6.11 is an equivalence
for all prismatic δ-pairs (A,R).

Proof. As functors to complete filtered spectra, both sides preserve sifted colimits. For the left hand side this
is part of Corollary 6.10, for the right hand side this is seen analogously using griNrel

∆̂R/A{j} ≃ F∆conj
⩽i ∆R/A{j}

and the fact that the associated graded pieces of the ∆-conjugate filtration are also built out of differential
forms. This reduces us to the case R = A[x1, . . . , xn]. Also, both sides satisfy base change as functors to
complete filtered spectra, so we may assume that A is the free oriented prism Z{d}[δ(d)−1]∧p,d. For this A,
the map A→ Aperf to its colimit perfection is (p, d)-completely faithfully flat, so by again appealing to base
change, we may reduce to the case of perfect prisms A. In that case, we have a commutative diagram

N⩾⋆∆̂(1)
R/Zp

{j}

N⩾⋆∆̂(1)
R/A{j} N⩾⋆

rel ∆̂
(1)
R/A{j}.

≃

The left vertical map is an equivalence, which follows from the fact that ”LΩi

R/Zp
→”LΩi

R/A is an equivalence,
since (LA/Zp

)∧p ≃ 0 as A is perfect. The diagonal composite agrees with the completion of the composite

N⩾⋆RΓ(WCart,H∆(R/Zp)
(1){j})→ RΓ(WCart,N⩾⋆F ∗H∆(R/Zp)

(1){j})→ N⩾⋆
rel ∆

(1)

R“⊗A/Zp“⊗A
{j} → N⩾⋆

rel ∆R/A{j},

which is the map from [7, Construction 5.6.1]. According to [7, Theorem 5.6.2], it is an equivalence.

From now on we drop the notation N⩾⋆
rel .

Corollary 6.13. If (A,R) is a bounded δ-pair and A → R is relatively quasiregular semiperfectoid, then
N⩾⋆∆̂(1)

R/A{j} is discrete with discrete associated graded, and the filtration on it agrees with the underived

pullback of the Hodge–Tate filtration along φ : ∆̂(1)
R/A{j} → ∆[−j]

R/A{j}.

Proof. Let A → A′ → R be a factorization of A → R such that A → A′ is relatively perfect, (A′, R) is a
prismatic δ-pair, and LR/A′ has p-complete Tor-amplitude in [1, 1]. In the diagram

∆̂(1)
R/A{j} ∆[−j]

R/A{j}

∆̂(1)
R/A′{j} ∆[−j]

R/A′{j}
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the vertical maps are all isomorphisms, so it suffices to prove the claim in the case of a prismatic δ-pair. For
that, it suffices to check that the associated graded terms are discrete, and that the map on associated graded
pieces is injective. In the prismatic case, we have a factorization

griN∆̂(1)
R/A′{j} ≃ Fconj

⩽i ∆R/A′{i} → ∆R/A′{i},

where the latter map is an injective map between discrete objects since all associated graded terms of the
conjugate filtration ”LΩi

R/A[−i] are discrete.

Remark 6.14. Since we can cover every R/A with R quasisyntomic over A by relatively quasiregular
semiperfectoids, Corollary 6.13 yields another characterization of the Nygaard filtration through descent and
left Kan extension by Lemma 9.14.

Remark 6.15. If R is smooth over A (which never happens in the prismatic case), then the conjugate
filtration on Ω

/D
R/A is the Postnikov filtration, and the fiber sequences from Lemma 6.9 exhibit griN∆̂(1)

R/A{j} as

the (−i)-connective cover of ∆R/A{i}. This identifies N⩾⋆∆̂(1)
R/A{j} as the Beilinson-connective cover of the

Hodge–Tate filtered ∆R/A{j}, providing yet another characterization. The analogue of this fact curiously also
holds in the prismatic case if R is smooth over A. The relationship between these two facts can be explained
as follows: if R is a smooth A-algebra, then the I-adic filtration on R has associated graded given by the
smooth A-algebra R[I], with R = R⊗A A. Filtered prismatic cohomology provides a filtration on griN∆̂(1)

R/A

with associated graded given by griN∆̂(1)

R[I]/A
, from which the connectivity statement from relative prismatic

cohomology implies the one in prismatic cohomology relative δ-rings.

7 Relative syntomic cohomology

We write can: N⩾i∆̂(1)
R/A{i} → ∆̂(1)

R/A{i} for the canonical map. We define the divided Frobenius maps
following [7, Sec. 5.7]. Finally, we define relative syntomic cohomology.

Definition 7.1 (The relative Frobenius). The Frobenius on the prismatic crystal H∆(R/A) factors as

H∆(R/A)
O-linear−−−−−→ H

(1)
∆ (R/A)

φ-semilinear−−−−−−−−→ F ∗H
(1)
∆ (R/A)

O-linear−−−−−→ H∆(R/A).

By definition, N⩾iF ∗H
(1)
∆ (R/A) → H∆(R/A) factors canonically through Ii ⊗H∆(R/A). Tensoring with

OWCart{i} and using the equivalence F ∗(OWCart{i}) ≃ I−i{i} we obtain a map

N⩾iF ∗H
(1)
∆ (R/A){i} → H∆(R/A){i},

which is moreover compatible with the Nygaard filtration on the left-hand side (in weights at least i) and the
I-adic filtration on the right-hand-side. Hence, after taking global sections, there are maps

N⩾iRΓ(WCart,H
(1)
∆ (R/A){i})→ RΓ(WCart,N⩾iF ∗H

(1)
∆ (R/A){i})→ ∆R/A{i}.

Since the I-adic filtration on H∆(R/A){i} is complete, inducing the complete Hodge–Tate filtration on
∆R/A{i}, this map factors through the Nygaard completion, inducing a filtered map

N⩾⋆∆̂(1)
R/A{i} → ∆[⋆−i]

R/A {i}.
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Definition 7.2 (The map c0). The OWCart-linear map of crystals H∆(R/A){i} → H
(1)
∆ (R/A){i} induces a

map ∆R/A{i} → RΓ(WCart,H
(1)
∆ (R/A){i} on global sections, which we may compose with the map to the

Nygaard completion ∆̂(1)
R/A{i} to obtain a map

c0 : ∆R/A{i} → ∆̂(1)
R/A{i}.

Construction 7.3. For every filtration N⩾⋆ indexed on (N,⩾), we form a new filtration indexed on (N,⩾)
given as

N⩾p·⋆ ⊗ p⋆Zp,

the Day convolution product of the re-scaled filtration N⩾p·⋆ and the p-adic filtration on Zp. Concretely, this
filtration has the form

. . .→ N⩾2p ⊕N⩾p,p N
⩾p ⊕N⩾0,p N

⩾0 → N⩾p ⊕N⩾0,p N
⩾0 (can,p)−−−−→ N⩾0,

where the pushout maps to the left are the canonical maps and the maps to the right are the multiplication by
p maps. For example, if N⩾⋆ is the (d)-adic filtration on an oriented transversal prism, then this construction
produces the (dp, p)-adic filtration.

Remark 7.4. If N⩾⋆ is complete and N⩾0 is p-complete, then the filtration is N⩾p·⋆ ⊗ p⋆Zp complete too.

Lemma 7.5 (The map c). There exists a natural φ-semilinear, N-filtered multiplicative map

c : ∆[⋆]
R/A{⋆} → (N⩾p⋆∆̂(1)

R/A{⋆} ⊗ p⋆Zp).

Proof. By Remark 7.4, both sides are complete filtrations, and they are left Kan extended as such from finitely
presented free δ-pairs by Corollaries 3.17 and 6.10. Thus to construct the map we can assume that (A,R) is
a finitely presented free δ-pair. By relative quasisyntomic descent in R (Proposition 3.15 and Corollary 6.10)
we further reduce to the prismatic case where (A, I) is a prism and R is an animated commutative A-algebra
and assume additionally that LR/A has p-complete Tor-amplitude in [1, 1]. In this case, all objects in question

are discrete. In this case, the map c0 : ∆R/A{i} → ∆̂(1)
R/A{i} is the natural map obtained by (p, I)-completed

extension of scalars along φA by Proposition 6.12. It is enough to prove the result when i = 0 and when
A is orientable and transversal, with I = (d), in which case c : ∆R/A → ∆̂(1)

R/A is a φA-semilinear map of

commutative rings, which sends d to φA(d) = dp + pδ(d). As d ∈ N⩾1∆̂(1)
R/A, it follows that φA(d) is in weight

⩾ 1 with respect to the Day convolution filtration (N⩾p⋆∆̂(1)
R/A ⊗ p⋆Zp). By multiplicativity, φA(d

n) is in
weight ⩾ n. This shows that c0 refines to a filtered map as desired for such pairs (A,R). Descending and left
Kan extending produces the map c.

Remark 7.6. We expect that by forgetting the filtered structure on c one recovers the map c0, but we do
not explore that here.

Definition 7.7 (The divided Frobenius). We let cφ denote the resulting composition

N⩾i∆̂(1)
R/A{i} → ∆R/A{i}

c−→ ∆̂(1)
R/A{i}.

Definition 7.8 (Relative syntomic complexes). The relative p-adic syntomic complexes Zp(i)(R/A) are
defined as

Zp(i)(R/A) = fib
(
N⩾i∆̂(1)

R/A{i}
can−cφ−−−−−→ ∆̂(1)

R/A{i}
)
.
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Remark 7.9. When A = Zp, we have that Zp(i)(R/Zp) agrees with the syntomic complexes of [9, 7] by
Remark 6.8.

The following result establishes Corollary 1.3 from the introduction.

Corollary 7.10. For each i ∈ Z, the relative p-adic syntomic complexes Zp(i)(R/A) satisfy descent for maps
of pairs (A,R)→ (B,S) such that R→ S is a universal descent morphism (with no condition on A→ B).

Proof. The corollary follows immediately from Corollary 6.10.

We close this section by noting that one can compute syntomic cohomology also by a non-completed
version of Frobenius-twisted prismatic cohomology. Specifically we set ∆(1)

R/A{i} = ∆R/A{i}“⊗A,φA and denote

by c̃ the map ∆(1)
R/A{i} → ∆̂(1)

R/A{i} induced from c.

Construction 7.11. We can define the Nygaard filtration on ∆(1)
R/A{i} as the pullback

N⩾⋆∆(1)
R/A{i} //

��
⌟

N⩾⋆∆̂(1)
R/A{i}

��
∆(1)
R/A{i}

c̃ // ∆̂(1)
R/A{i}.

The completion of N⩾⋆∆(1)
R/A{i} recovers ∆̂(1)

R/A{i} by construction. Since the map c : ∆R/A{i} → ∆̂R/A{i}
factors through c̃ by definition, there are decompleted divided Frobenius maps cφ : N⩾i∆(1)

R/A{i} → ∆(1)
R/A{i}

compatible with the completed ones. We can then define the equalizer

Zp(i)(R/A)nc = fib
(
N⩾i∆(1)

R/A{i}
can−cφ−−−−−→ ∆(1)

R/A{i}
)
.

The clumsy notation is only used temporarily, since this constructions turn out to be nothing new:

Proposition 7.12. The canonical map

Zp(i)(R/A)nc → Zp(i)(R/A)

is an equivalence for any δ-pair where A is bounded and R is an animated commutative A-algebra.

Proof. We treat the second map, the first works completely analogous. We can write any abstract equalizer
fib(A

f−g−−−→ B) as a pullback of the diagram

A
(f,g)−−−→ B ×B

∆←− B.

Now consider the following commutative diagram

N⩾i∆(1)
R/A{i}

⌟

(can,cφ) //

��

∆(1)
R/A{i} × ∆(1)

R/A{i}

��

∆(1)
R/A{i}

∆oo

N⩾i∆̂(1)
R/A{i}

(can,cφ) // ∆̂(1)
R/A{i} × ∆(1)

R/A{i}

��
⌟

∆(1)
R/A{i}

∆oo

��
N⩾i∆̂(1)

R/A{i}
(can,cφ) // ∆̂(1)

R/A{i} × ∆̂(1)
R/A{i} ∆̂(1)

R/A{i}.
∆oo
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The pullback of the top and bottom horizontal row are Zp(i)(R/A)nc and Zp(i)(R/A), respectively. We claim
that in the diagram the maps between the pullback of all rows are in fact equivalences. For the map from the
pullback of the first row to the second this follows by the fact that the upper left square is a pullback and the
right upper vertical map is an equivalence. For the map from the pullback of the middle row to the pullback
of the last row this follows similarly since the left lower vertical map is an equivalence and the right lower
square a pullback.

8 The prismatic package

Recall from the introduction the definition of the ∞-category CA which is the natural home of the prismatic
package (we will review this soon). The main goal of this section is to conclude from the results of the
previous sections that our objects

∆ R/A =
Ä
∆[⋆]
R/A{⋆},N

⩾⋆∆̂(1)
R/A{⋆}, c, φ

ä
indeed form objects of this category and then use this to define and study syntomic cohomology.

First we would like to rigorously define CA. It will be the category of E∞-algebras in a symmetric monoidal
category GA so that we would like to define GA.

By a filtered, graded A-module we mean a functor

H : (Z,⩾)× Z→ D(A),

where (Z,⩾) denotes the poset of integers and Z denotes the discrete set of integers. We shall write H⩾i{j}
for the evaluation at i and j. The category of filtered, graded A-module admits a symmetric monoidal
structure given by Day convolution with respect to the sum operation on both Z’s. We note that this
tensor product does not involve any signs or so shifts (as sometimes used on graded/filtered things). Such a
filtered graded A-module is called complete of for fixed j all the filtered objects H⩾i{j} are complete, i.e.
lim←−iH

⩾i{j} = 0. The tensor product descends to a tensor product on complete things.
There are two operations that we can perform on a filtered, graded object. The first is the shearing, which

changes the filtration degree by subtracting the grading degree:

(shH)⩾i{j} = H⩾i−j{j}

This is indeed a lax symmetric monoidal endofunctor of the ∞-category of filtered, graded objects since it is
induced from a symmetric monoidal endofunctor of (Z,⩾)× Z.

The second construction sends a filtration N to a new filtration indexed on (N,⩾)× Z given as

scp(N) = (N⩾p·⋆{j} ⊗ p⋆Z)

explained in Construction 7.3 above. Again this is a lax symmetric monoidal operation since p⋆Z is an
algebra. The filtration scp(N) has the property that if we take the levelwise modulo p-reduction we get the
convolution of the scaled filtration N⩾p·⋆/p with the filtration on Fp given by . . .→ Fp

0−→ Fp
0−→ Fp. This

filtration has a multiplicative map to the filtration . . .→ 0→ 0
0−→ Fp which is the Day convolution tensor

unit over Fp. Thus we conclude that there is a canonical map of filtrations

scp(N)/p→ N⩾p·⋆/p .

Also note that if N is complete and p-complete, then so is scp(N).



8. The prismatic package 40

Definition 8.1. We define the ∞-category GA to be the ∞-category consisting of quadruples (H,N, c, φ)
where H and N are p-complete and complete filtered graded A-modules, the filtration on N is constant in
non-positive degrees (equivalently it is (N,⩾)× Z filtered), the map c : H → scp(N) is a φA-semilinear map
of (N,⩾)× Z-filtered, graded A-modules and φ is a map of graded filtered objects N → sh(H) over A.

As an ∞-operad, the category GA is given as the pullback ‘Fun((N,⩾)× Z,D(A))∆
1⨿∆1

ev

��‘Fun ((Z,⩾)× Z,D(A))×‘Fun((N,⩾)× Z,D(A)))
(π1,sh◦π2,π2,φ

∗◦scp◦π1) //‘Fun((N,⩾)× Z,D(A))4,

where each vertex is viewed as an ∞-operad using the Day convolution symmetric monoidal structures on
Fun and the pointwise monoidal strucrtures on (−)∆1⨿∆1

and (−)4, where the notion ‘Fun indicates that
we consider complete and p-complete filtrations, and where the map ev is evaluation at the four vertices of
∆1 ⨿∆1.

The ∞-category CA is defined as the category of E∞-algebras in GA.

Note that since CA is algebras in a pullback, this ∞-category is also the pullback of the respective
categories of algebras, which are given by categories of lax symmetric functors resp. arrows in lax symmetric
monoidal functors. monoidal functors.

Remark 8.2.

(i) The category GA is a variant of the category of prismatic F -gauges of Bhatt–Lurie, except that it it
not a category of quasi-coherent sheaves on a variant of WCart but rather the global sections of such
sheaves. We view this category CA simply as a tool to formalize the structure present on prismatic
cohomology and streamline some of the coming proofs.

(ii) For any δ-ring A we have an object A ∈ GZ given by setting

N = H =
(
· · · → 0→ 0→ A

id−→ A
id−→ · · ·

)
and the map c = φ and φ = id. (The reason for the surprising interchange is that we think of the N as
the Frobenius twist of H, but that identifies with A.) Then an A-module internal to GZ is the same as
an object in GA. Thus we might as well work with the absolute category.

(iii) The assignment A 7→ CA defines an fpqc stack (in stable ∞-categories) on the opposite of the category
of δ-rings and δ-ring maps. Thanks to the pullback definition of CA this boils down to checking that each
vertex in the pullback is an fpqc stack which in turn follows from the fact that A 7→‘Fun((Z,⩾),D(A))

defines an fpqc stack as‘Fun((Z,⩾),D(A)) ≃ ModD−(GrD(A)) where D− is the graded ring Z⊕Z[−1](1).
See for example [27, Thm. 3.2.14].

Proposition 8.3. The ∞-categories CA and GA have all colimits and taking the associated graded of H and
N preserves colimits.

Proof. All functors on the pullback description of GA preserve colimits. Thus colimits in GA are computed
underlying in ‘Fun ((Z,⩾)× Z,D(A))×‘Fun((N,⩾)×Z,D(A)). In the category of complete filtrations colimits
are computed by taking the colimit in filtrations and then completing. These induce colimits on associated
graded pieces and can in fact be determined there.

The case of algebras either follows the same way (it is also a pullback of the categories of algebras) or
simply using that algebras have colimits if the underlying category has operadic colimits.
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Definition 8.4. The syntomic complex Zp(i)(H,N, c, φ) for an object of our category (H,N, c, φ) is defined
as

fib
(
N⩾i{i} can−cφ−−−−−→ N⩾0{i}

)
∈ D(Z)∧p

Similarly, we define Fp(i) as the mod p reduction Zp(i)/p.

Lemma 8.5. Fix an integer i. If j satisfies (p− 1)j > pi, then for every object of CA the morphism

N⩾j{i}/p can−cφ−−−−−→ N⩾j−i{i}/p

lifts canonically and functorially as

N⩾j{i}/p ≃−→ N⩾j{i}/p can−−→ N⩾j−i{i}/p.

Proof. We use that mod p we have a morphism c : H⩾⋆/p→ N⩾p⋆/p of filtrations. Thus in particular a map

l : H⩾j−i c−→ N⩾p(j−i) can−−→ N⩾j

since p(j − i) > j by assumption. Thus the map cϕ : N⩾j → N⩾j−i in fact lifts through a map N⩾j → N⩾j

and thus the difference can−cϕ lifts through the map id− l. Now, we claim that id− l is in fact an equivalence.
This follows since l lifts one filtration bit further and both id and l are filtered maps (applying the construction
for all j). Since the filtration on N⩾j is complete we can test equivalences on graded pieces, where id is
obviously an isomorphism and l is zero, since it lifts further.

Proposition 8.6. Fix an integer i. If j satisfies (p− 1)j ⩾ i, then we have an equivalence

Fp(i)(H,N,φ, c) ≃ fib
(
N⩾i{i}/N⩾j{i}/p can−cφ−−−−−→ N⩾0{i}/N⩾j{i}/p

)
.

In other words: we may quotient out a high enough Nygaard filtered pieces to compute syntomic cohomology.

Proof. Consider the diagram
N⩾j{i}/p ≃ //

can

��

N⩾j−i{i}/p

can

��
N⩾i{i}/p

can−cφ // N⩾0{i}/p

which exist by the previous lemma. We take the vertical cofiber. Now the claim is that this doesn’t change
the horizontal fibers, which is obvious since the upper horizontal fiber is zero.

Corollary 8.7. The functors Zp(i),Fp(i) : GA → D(Z)∧p preserve all colimits and all limits.

Proof. For a fixed i, fix a j as in the statement of Proposition 8.6. Then, Fp(i) is a fiber of two functors
which evidently preserve all colimits since they only depend on finitely many graded pieces. Thus, Fp(i)
preserves all finite colimits. To check the statement for Zp(i) we can reduce mod p since we land in p-complete
complexes and thus to the statement about Fp(i). The preservation of limits is clear.

Theorem 8.8. The object
∆ R/A =

Ä
∆[⋆]
R/A{⋆},N

⩾⋆∆̂(1)
R/A{⋆}, c, φ

ä
is an object of CA. In fact it refines to a functor Pairsδ → CZ , which is a algebra over the functor (A,R) 7→ A
(see Remark 8.2). As such it is left Kan extended from free δ-pairs.
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Proof. The object ∆[⋆]
R/A{⋆} is constructed in Section 3 as a functor to complete filtered objects. It is shown

in Corollary 3.17 that it is Kan extended as such (note that this Kan extension only involves filtered colimits,
so we do not have to worry about the distinction whether we Kan extend with or without algebra structure).
The fact that it is a graded, filtered E∞-algebra follows from the combination of two facts. First the facts
that the crystal H[⋆]

∆ (R/A){⋆} is a graded filtered algebra, which follows from the fact that the filtration
is multiplicative (since it is I-adic on the crystal) and that we tensor with a tensor algebra over a line
bundle, which is also multiplicative. Secondly the functor taking global sections of prismatic crystals is a lax
symmetric monoidal functor.

The object N⩾⋆∆̂(1)
R/A{⋆} is produced in Definition 6.7 and it is multiplicative for the same reason as

∆[⋆]
R/A{⋆} above combined with the global pullback against another multiplicative filtrations. One simply

has to check that the comparison functors in the defining pullback are also multiplicative, which is clear by
construction, see Lemma 6.4. This term is Kan extended by Corollary 6.10.

The maps φ and c are produced at the beginning of Section 7 and are clearly multiplicative (the filtration
by definition). Finally we note that the description of colimits in CZ then implies the Kan extension statement
and we are done.

Now, we can prove Corollary 1.4.

Corollary 8.9. For each i ∈ Z, syntomic cohomology as a functor

Zp(i)(−/−) : Pairsδ → D(Z)∧p

is left Kan extended from finitely presented free δ-pairs.

Proof. We consider the prismatic package

∆ R/A =
Ä
∆[⋆]
R/A{⋆},N

⩾⋆∆̂(1)
R/A{⋆}, c, φ

ä
∈ CA

as an object of CZ by forgetting the A-algebra structure. As such a functor, it is left Kan extended by
Theorem 8.8, so the result follows by Corollary 8.7 and the fact that syntomic cohomology on CA factors
through the forgetful functor CA → CZ.

Corollary 8.10. For i < 0, Zp(i)(R/A) ≃ 0.

Proof. By Corollary 8.9, it is enough to prove the corollary when (A,R) is a finitely presented free δ-pair and
then we can use Corollary 7.10 to reduce to the bounded prismatic case and even to the bounded oriented
prismatic case, so assume that (A, (d)) is an oriented bounded prism. Using Proposition 6.12, we know our
construction agrees with the Nygaard filtration on relative prismatic cohomology introduced in [10]. For
i < 0, the Frobenius cφ : ∆̂(1)

R/A{i} → ∆̂(1)
R/A{i} is divisible by d−i. It follows that, for i < 0, cφ is topologically

nilpotent, so that can− cφ is an equivalence.

9 Computation using descent
Recall that ∆R/A has descent in A and R (Proposition 3.15) and is invariant under relatively perfect maps and
completion in A (Proposition 3.12 and Corollary 3.17). Knowing this, we can give a descent style description
of ∆R/A using a relative version of the quasisyntomic site, that we will describe now. In fact one could also
use this to give an independent definition of the prismatic package, specifically the Nygaard filtration. This is
not only a theoretical tool, but will be applied for practical calculations. After this discussion, we prove the
uniqueness claim from Theorem 1.2.
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Definition 9.1 (Relatively quasisyntomic rings). A bounded δ-pair (A,R) is relatively quasisyntomic if R is
derived p-complete and LR/A has p-complete Tor-amplitude in [0, 1]. If A is a bounded δ-ring, let QSynA be
the category of relatively quasisyntomic δ-pairs (A,R).15

Definition 9.2 (Relatively quasiregular semiperfectoids). Say that a bounded δ-pair (A,R) is relatively
quasiregular semiperfectoid (or relatively qrsp) if R is p-complete, there is a factorization A→ A′ → R where
A→ A′ is a p-completely relatively perfect map of δ-rings, the δ-pair (A′, R) is pre-prismatic as exhibited by
an ideal I ⊆ A′, the map A′ → R is surjective, and LR/A′ has p-complete Tor-amplitude in [1, 1]. Call such a
factorization a pre-prismatic factorization. Note that a relatively quasiregular semiperfectoid is relatively
quasisyntomic in the sense of Definition 9.1. Let RQRSPerfd ⊆ Pairsδ be the full subcategory consisting of
the relatively quasiregular semiperfectoid δ-pairs.

Note that we can replace A′ by A′[δ(I)−1]∧(p,I), so that we can assume in fact that A′ is a prism, with
∆R/A = ∆R/A′ .

Example 9.3. Let (A, I) be a bounded δ-ring with a Cartier divisor I. If r1, r2, ... forms a regular sequence
in A/I and if A→ R = A/(I, r1, r2, ...) is pre-prismatic, then it is relatively quasiregular semiperfectoid with
A′ = A.

Example 9.4. Assume that R is a semiperfectoid ring in the sense of [9, Definition 4.20]. Then we claim
that Zp → R is relatively quasiregular semiperfectoid in the sense of Definition 9.2. To see this we pick
a perfectoid ring R′ such that R = R′/I and LR/R′ has Tor amplitude in [1, 1], see [9, Lemma 4.25].
Then A′ = Ainf(R) exhibits that Zp → R is relatively qrsp. Assume conversely that Zp → R is relatively
quasiregular semiperfectoid in the sense of Definition 9.2. Then, the prism in the definition has to be perfect
so that A′/I is perfectoid and R a quotient thereof, which implies that R is qrsp in the sense of [9, Definition
4.20].

Example 9.5. Assume that (A, I) is a bounded prism. Recall from [10, Definition 15.1] that a A/I-algebra
S is called large if it is flat, the cotangent complex has Tor-Amplitude in [1, 1] and there is a surjection

A/I[X
1/p∞

i ]∧p → S

for some set i ∈ I. In this case we can consider A′ = A[X
1/p∞

i ]∧(p,I) which is relatively perfect over A.
Moreover we have an induced surjective map A′ → S, for which LS/A′ has Tor-Amplitude in [1, 1].

The significance of relatively qrsp pairs is that prismatic cohomology can be understood very explicitly.

Theorem 9.6 (Bhatt–Scholze). Let A→ R be relatively qrsp. Then the prismatic cohomologies ∆[⋆]
R/A{⋆}

and N⩾⋆∆̂(1)
R/A{⋆} including all the filtered pieces and all the graded pieces are concentrated in degree 0 and

the relative Frobenius N⩾⋆∆̂(1)
R/A{⋆} → ∆[⋆]

R/A{⋆} is injective.
If more specifically R = A′/(I, r1, r2, ...) for some prism (A′, I) and a regular sequence r1, r2, ... ∈ A′/I

then we have

∆R/A ≃ A′
{r1
I
,
r2
I
, ...
}∧

(p,I)
and ∆̂(1)

R/A ≃ A′
ß
φ(r1)

φ(I)
,
φ(r2)

φ(I)
, ...

™∧

(p,N)

15The notation QSynA diverges from that of [6], which would require also that A and R be quasisyntomic in the sense of [9].
However, QSynZp

does agree with the category by the same name in [6] and also with QSyn from [9].
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with the Hodge-Tate filtration on ∆R/A given by the I-adic filtration and the Nygaard filtration on ∆̂(1)
R/A given

by the intersection16 of the I-adic filtration with the obvious inclusion

A′
ß
φ(r1)

φ(I)
,
φ(r2)

φ(I)
, ...

™∧

(p,N)

⊆ A′
{r1
I
,
r2
I
, ...
}∧

(p,I)

The map c : ∆R/A → ∆̂(1)
R/A is given by applying φ and the relative Frobenius ∆̂(1)

R/A → ∆R/A is given by the
inclusion. The Breuil–Kisin twisted versions have the analogous form with A′ replaced by A′{i}.

Proof. Using that ∆ R/A ≃ ∆ R/A′ this reduces to the work of Bhatt–Scholze [10] where it is shown in Sections
12 and 15.

Definition 9.7 (Quasismooth maps). Say that a map of δ-rings A→ A′ is quasismooth if it is p-completely
flat and LA′/A has p-complete Tor-amplitude in [0, 0]. Such a map is a quasismooth cover if it is additionally
p-completely faithfully flat.

Remark 9.8. Note that if we have a factorization A→ A′ → R with A→ A′ quasismooth and R ∈ QSynA
then the transitivity triangle

LA′/A ⊗A′ R→ LR/A → LR/A′

implies that R ∈ QSynA′ .

Lemma 9.9. Assume that (A,R) is a relatively quasisyntomic δ-pair. Then there is a factorization A→
A′ → R with A → A′ a quasismooth cover and (A′, R) relatively qrsp. In fact we can choose A′ in such a
way that (A′, R) is pre-prismatic, exhibited by an ideal I, such that A′/I → R is a surjection whose cotangent
complex has Tor-Amplitude in [1, 1].

Proof. Choose a surjection κ : A[{zi}i∈I ]
∧
p → R extending A→ R. Now set

A′ = A[{zi}i∈I , z]
∧
p

with the δ-ring structure with δ(zi) = δ(z) = 0. Moreover A′ is a quasismooth A algebra. Now consider
the map A′ → R extending κ with z 7→ p. Then, the kernel contains I = (z − p) which exhibits the δ-pair
(A′, R) as pre-prismatic. Moreover the map A′ = A′/I → R is surjective and the transitivity triangle for
A→ A′ → R takes the form

LA′/A ⊗A′ R→ LR/A → LR/A′

The first term has Tor-Amplitude in degree 0. The second term has, by quasisyntomicity of (A,R), Tor-
Amplitude in [0, 1]. Moreover since A′ → R is surjective, the first map is surjective on π0. It follows that
LR/A′ has Tor-Amplitude in [1, 1].

We note that the converse also holds: whenever we have a bounded p-complete δ-pair (A,R) that admits
a quasismooth cover by a relatively qrsp (A′, R), the pair (A,R) is relatively quasisyntomic.

Lemma 9.10. For any factorization A → A0 → R as in the last lemma (i.e., A → A0 is a quasismooth
cover and (A0, R) is relatively qrsp), consider the Čech diagram A• for A→ A0 with An ≃ A0 ⊗A . . .⊗A A).
All the terms An → R are relatively qrsp.

16In particular, (p,N)-convergent sequences are exactly the ones that converge (p, I)-adically in the ambient space of the
inclusion ∆̂(1)

R/A
⊆ ∆R/A.
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Proof. Let us first assume that (A0, R) is already a prismatic δ-pair. Then all the terms An are also prisms
using the ideals given as base changes along any of the flat maps A0 → An. Moreover consider the transitivity
triangles

LAn/A0 ⊗An R→ LR/A0 → LR/An .

where the first term has Tor-Amplitude in [0, 0] and the second in [1, 1]. It follows that LR/A′
n

has Tor-
Amplitude in [1, 1].

In the general case, suppose that A0 → B → R is a factorization where A0 → B is p-completely relatively
perfect, B → R is a surjective pre-prismatic δ-pair, and LR/B has Tor-amplitude in [1, 1]. Then, An → R
factors as An → B⊗A0An → R, which is a factorization exhibiting R as relatively qrsp over An, as desired.

For a fixed bounded R, consider the category QSyn/R of relatively quasisyntomic bounded δ-pairs (A,R).
We have the full subcategory

RQRSPerfd/R ⊆ QSyn/R

and consider the opposite of both categories as sites with the quasismooth topologies. We leave it as an
exercise to see that these are indeed sites: the key is to verify that for a quasismooth cover A→ A′ and a
map A→ B over R the map A′ ⊗A B → R is relatively quasisyntomic. This follows using that B → A′ ⊗A B
is a quasismooth cover using Remark 9.8.

Proposition 9.11 (Unfolding in the base). For each fixed R, the inclusion induces an equivalence

ShvC(QSyn
op
/R) ≃ ShvC(RQRSPerfd

op
/R)

of ∞-categories of C-valued sheaves for any ∞-category C.

Proof. This follows from the previous lemmas by an argument similar to the proof of [9, Prop. 4.31].

Definition 9.12 (Quasisyntomic maps). Say that a map R→ R′ of commutative rings is quasisyntomic if it
is p-completely flat and LR′/R has p-complete Tor-amplitude in [0, 1]. Such a map is a quasisyntomic cover if
it is additionally p-completely faithfully flat. Note that if A is a bounded δ-ring, R ∈ QSynA, and R→ R′ is
quasisyntomic, then R′ ∈ QSynA.

Lemma 9.13. A bounded δ-pair (A,R) with R derived p-complete is relatively quasisyntomic if and only if
there is a quasisyntomic cover R→ R′ with R′ ∈ RQRSPerfdA.

Proof. Assume that there exists a quasisyntomic cover R → R′ with R′ ∈ RQRSPerfdA. Then, there is a
transitivity triangle

LR/A ⊗R R′ → LR′/A → LR′/R

which shows that LR/A ⊗R R′ has Tor-Amplitude in [−1, 1], which implies that LR/A has Tor-Amplitude in
[−1, 1] by faithful flatness. Since LR/A is connective it follows that it has Tor-Amplitude in [0, 1], i.e. (A,R)
is relatively quasisyntomic.

Assume conversely that (A,R) is relatively quasisyntomic. Choose a set of p-complete generators {ri}i∈I

of R as an A-algebra and consider the cover

R→ R[p1/p
∞
, {r1/p

∞

i }i∈I ]
∧
p = R′

This cover is quasisyntomic. We claim moreover that (A,R′) is relatively qrsp. To see this we consider

A′ = A[{z1/p
∞

i }i∈I , z
1/p∞

]∧p
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with the δ-ring structure with δ(z
1/pk

i ) = 0 and δ(z1/p
k

) = 0. The map A → A′ of δ-rings is p-completely
relatively perfect. Moreover, the map

A′ → R′

which sends z1/p
k

to p1/p
k

and z
1/pk

i to r
1/pk

i is surjective by construction and has the ideal (z − p) in its
kernel, so (A′, R) is pre-prismatic.

Similar to the unfolding in the base we would like also see that one can use descent in the ring to compute
prismatic cohomology. For a fixed δ-ring A let RQRSPerfdA be the full subcategory of QSynA consisting
of the qrsp A-algebras. We claim that for fixed A the categories QSynopA and RQRSPerfdopA form sites with
respect to the quasisyntomic topologies.To see this, it is enough to see that if S′ is the p-completed pushout
of a diagram R′ ← R→ S of maps in QSynA (resp. RQRSPerfdA) where R→ R′ is a quasisyntomic cover,
then S′ ∈ QSynA (resp. RQRSPerfdA). This is left to the reader as an exercise with the conormal sequence
for the cotangent complex.

Proposition 9.14 (Unfolding in the ring). The inclusion RQRSPerfdopA ↪→ QSynopA induces an equivalence
ShvC(QSyn

op
A ) ≃ ShvC(RQRSPerfd

op
A ) of ∞-categories of C-valued sheaves for any ∞-category C.

Proof. If R ∈ QSynA and f : R → S is a quasisyntomic map with S ∈ RQRSPerfdA, then every Sn in the
Čech complex of f is in RQRSPerfdA as well. Indeed, LS/A has p-complete Tor-amplitude in [1, 1], so LS/R

has in fact p-complete Tor-amplitude in [1, 1] as well. Thus, every LSn/Sn−1 (via any choice of maps in the
cosimplicial diagram) has p-complete Tor-amplitude in [1, 1], so LSn/A′ has p-complete Tor-amplitude in [1, 1]

for any choice of prismatic factorization of S = S0. Now, follow the proof of [9, Prop. 4.31] using the previous
lemma to show that every object is locally relatively quasiregular semiperfectoid.

Now we want to explain why and how Theorem 1.2 uniquely determines relative prismatic cohomology
and how to compute it in practice. This will also show the advantage of the relative approach since we will
use descent in A which would not be possible otherwise. We would like to argue that the assignment

(R,A) 7→ ∆ R/A ∈ CA

is uniquely determined by properties (1), (2), (4), (6) and (8) (or alternatively by (1), (2), (4), (5) and (8)).
In fact a much weaker axiom ($) replacing (1), (2) and (8) is sufficient to determine the whole theory in the
presence of (4) and (5) or (6):

($) If (A,R) is relatively qrsp, with prism (A′, I) then ∆ R/A agrees naturally with the derived prismatic
cohomology ∆ R/A′ of Bhatt and Scholze [10], which in this case is discrete and the relative Frobenius
is injective.

The advantage of this formulation is that it can be formulated without reference to Bhatt–Scholze’s theory,
as long as one constructs the prismatic cohomology ∆ R/A′ explicitly, e.g. as an initial prism. Here naturality
in (A′, I) means that we have to make the choice of (A′, I) and it depends on that, since the Bhatt–Scholze
theory a priori does. More precisely there is a category RQRSPerfd′ of relatively qrsp pairs (A,R) with a
choice of a prism (A′, I) and maps given by maps of δ-pairs that come with a compatible choice of a map
between the respective prisms. Axiom ($) asserts the existence of a commutative diagram

RQRSPerfd′ //

T

��

Pairs∆

∆ rel

��
RQRSPerfd

∆ // CZ,

(3)

where the first two functors are the forgetful functors.
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Proposition 9.15. The functor ∆ is uniquely17 characterized on Pairsδ by ($), (4) and (6) or alternatively
by ($), (4) and (5).

Proof. Using (4), the functor is uniquely determined by its restriction to quasisyntomic δ-pairs since it is
Kan extended from those. Now using (6) and Proposition 9.11 or (5) and Proposition 9.14 it is uniquely
determined by its restriction to relatively qrsp pairs. Now we want to argue that diagram (3) already uniquely
determines the right hand functor ∆ , in other words there is at most one dashed functor

RQRSPerfd′
∆ rel

//

T

��

CZ

RQRSPerfd

99

As a first step we note that the upper horizontal functor ∆ rel really takes values in the full subcategory
C′
Z ⊆ CZ given by those quadruples (H,N, c, φ) where H and N are discrete, strict filtrations (i.e. all

transition maps are injective), and φ is injective. This subcategory is actually a 1-category. Since the left
vertical functor T : RQRSPerfd′ → RQRSPerfd is by definition essentially surjective this also implies that any
lift has to take values in C′

Z and therefore we may replace CZ by C′
Z. Moreover, there is a forgetful functor

U : C′
Z → F̂il(Ab) (H,N, c, φ) 7→ H,

where F̂il(Ab) is the category of derived complete strictly filtered abelian groups, i.e. functors (Z,⩾)→ Ab
whose transition functions are injective and whose derived inverse limit vanishes. The functor U is faithful,
which follows since maps between quadruples are determined on the filtration H since φ is injective, i.e. the
map on N is determined by the map on H. Applying the next Lemma 9.16 to U and T shows that to prove
the proposition it suffices to show that there is at most one dashed lift in the diagram

RQRSPerfd′

∆rel

&&
T

��
RQRSPerfd // F̂il(Ab).

(4)

To see this we note that for a given object A→ A′ → R ∈ RQRSPerfd′ we have that (B,B) = (∆rel
R/A′ ,∆

rel

R/A′)

is a prism equipped with a natural map χ : A′ → B of prisms by [10, Lemma 7.7]. Moreover, this map induces
an equivalence

∆rel
R/A

≃−→ ∆rel
B/B

.

We declare a class of morphisms in RQRSPerfd′ by

W ′ =
{
(A→ A′ → R)

χ−→ (B
id−→ B → B) | A→ A′ → R ∈ RQRSPerfd′

}
and let W be the image of W ′ under the functor T : RQRSPerfd′ → RQRSPerfd. Now the functor ∆rel in
diagram (4) sends W ′ to equivalences. Thus any factorization RQRSPerfd → F̂il(Ab) has to send W ′ to
equivalences as well. Therefore we can invert the classes W ′ and W in Diagram (4). But then the uniqueness
of the dashed arrow follows from the assertion that the induced functor

Ψ: RQRSPerfd′[(W ′)−1]→ RQRSPerfd[W−1]

17Meaning up to a contractible space of choices.
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is an equivalence. To see this, we consider the functor

RQRSPerfd→ RQRSPerfd′ (A→ R) 7→ (∆R/A → ∆R/A → ∆R/A).

This functor depends on the choice of an extension ∆ in (4) which we fix (if there were no extension, then
there would be nothing to show). This functor sends W to equivalences since the prismatic cohomology
agrees. Thus it induces a functor

Ω: RQRSPerfd[W−1]→ RQRSPerfd′[(W ′)−1].

We have natural isomorphisms

(A→ R)
≃∈W−−−→ (∆R/A → ∆R/A) = ΨΩ(A→ R)

and
(A→ A′ → R)

χ−→ (B → B → B) = ΩΨ(A→ A′ → R),

which finishes the proof.

Lemma 9.16. Assume that we have a commutative18 square of 1-categories

R1

T

��

f // C1

U

��
R2

g //

>>

C2

where T is essentially surjective and U is faithful. Then there exists either an empty or a contractible space
of lifts R2 → C1 as indicated.

Proof. Fix two lifts F1, F2, with natural isomorphisms ηi : U ◦Fi → g and νi : Fi ◦T → f . (These are required
to be compatible in the sense that their composites g ◦T → U ◦ f have to agree with the natural isomorphism
provided as part of the commutative square.) For x ∈ R2, we have the composite

U(F1(x)) g(x) U(F2(x)).
η1,x η−1

2,x

By faithfulness of U , there exists at most one lift of this composite along U . If there exists one for each x,
together the resulting maps εx : F1(x)→ F2(x) form a natural transformation, and any natural transformation
compatible with the diagram needs to be of this form. For existence, we pick x̃ with T (x̃) ∼= x, and compose
the resulting isomorphism

U(Fi(x)) ∼= U(Fi(T (x̃))) ∼= U(f(x̃))

for i = 1 with the inverse of the corresponding isomorphism for i = 2.

10 Filtered prismatic cohomology
As a consequence of the base change property, prismatic cohomology of δ-pairs inherits gradings and filtrations,
generalizing the observation from [?, Remark 3.8]. Indeed, recall that graded objects can be encoded as
quasicoherent sheaves on BGm, i.e., as objects with an OGm

= Z[x±1]-coaction. Since Z[x±1] carries a
18This means up to a chosen natural isomorphism, as usual in the higher categorical context.
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canonical δ-ring structure with δ(x) = 0, if (A,R) is a δ-pair, we may consider (A⊗ OGm
, R ⊗ OGm

) as a
δ-pair as well. Then, we may define graded δ-pairs as δ-pairs with an OGm

-coaction. By base change, the
map

∆R/A → ∆R⊗OGm/A⊗OGm
≃ ∆R/A“⊗OGm

then induces a OGm -coaction on ∆R/A (as a complete filtered object), so ∆R/A inherits a grading for a graded
δ-pair (A,R). Analogous statements hold for filtered δ-pairs. We now want to develop this theory in more
detail.

Convention 10.1 (Nonnegative decreasing filtrations). Throughout this section, all filtered commutative
rings F⋆R and filtered δ-rings F⋆A (to be defined below) will be decreasingly filtered commutative rings with
F0R→ F−mR is an equivalence for m ⩾ 0; we set R = F0R.

Definition 10.2. A filtered abelian group F⋆M is strict if FmM →M is a monomorphism for each m ∈ Z.

Definition 10.3 (Filtered δ-rings). A filtered δ-ring is a pair (F⋆A, δ) consisting of a strict filtered commutative
ring F⋆A and a δ-ring structure on A = F0A with the property that δ(FmA) ⊆ FpmA for all m ⩾ 0.

Remark 10.4. Given a filtered δ-ring F⋆A, the Frobenius φ on A also has the property that φ(FmA) ⊆ FpmA.
Conversely, given a filtered commutative ring F⋆A such that A and each graded piece grmA is p-torsion free,
then any lift of Frobenius φ satisfying φ(FmA) ⊆ FpmA arises from a unique filtered δ-ring structure in this
way. This follows since pδ(x) ∈ Fpm implies δ(x) ∈ Fpm by the assumption on the graded pieces.

Remark 10.5. If F⋆A is a filtered δ-ring, then there is an induced δ-ring structure on gr0A. Note that this
implies that no power of p can be in positive filtration weight in A.

Definition 10.6 (Filtered prisms). A filtered prism consists of a filtered δ-ring F⋆A together with a prism
structure (A, I) on A = F0A such that each griA is I⊗A gr0A-torsion free and I⊗A gr0A-complete. Note that
the assumption means that (gr0A, I ⊗A gr0A) is a prism as is the (p, I ⊗A gr0A)-completion of

⊕
m⩾0 gr

mA.
A filtered prism is called complete if the filtered commutative ring F⋆A is derived complete with respect to
the filtration.

Example 10.7 (Filtered Breuil–Kisin prisms). Consider the ring A = W (k)JzK equipped with the z-
adic filtration and a prism structure given by (E(z)), where E(z) is an Eisenstein polynomial. Then
(E(z))⊗A gr0A = (p) ⊆W (k). As each graded piece gruA ∼= W (k) is p-torsion free, this defines a (complete)
filtered prism, which we call a filtered Breuil–Kisin prism.

Definition 10.8 (Flat filtrations). Given a filtered ring F⋆A and an A = F0A-module M , the flat filtration
on M is defined to be F⋆M = M ⊗A F⋆A.

Remark 10.9. If F⋆A is a filtered δ-ring and (A, I) is a prism structure, not assumed yet to make A into a
filtered prism, then

0→ F⋆I → F⋆A→ F⋆A→ 0

is an exact sequence of filtered abelian groups, which follows because A is I-torsion free and hence so is each
FiA by the strictness assumption in the definition of a filtered δ-ring. The filtration F⋆I is automatically
strict in this situation. The pair (F⋆A, I) is a filtered prism if and only if the associated graded pieces of the
flat filtration on A are discrete or equivalently that the flat filtration on A is strict.

Definition 10.10. A filtered δ-pair consists of filtered δ-ring F⋆A and a map of filtered commutative rings
F⋆A→ F⋆R. A δ-pair is strict if the filtration on R is strict (recalling that the filtration on the filtered δ-ring
is strict by definition). We say that a filtered δ-pair is prismatic if the kernel of F⋆A → F⋆R contains a
Cartier divisor I ⊆ A making (F⋆A, I) into a filtered prism.
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We introduce the filtered prismatic site and filtered prismatic cohomology. This is not the main focus
of our study, so we include it only for the sake of the curious reader. Below, we will give a more detailed
study of filtered prismatic cohomology using prismatization and we compare the two theories in the case of a
regular filtered quotient of a filtered prism (see Proposition 10.41).

Definition 10.11 (Filtered prismatic site). Fix a strict filtered δ-pair F⋆A→ F⋆R. The filtered prismatic
site (F⋆R/F⋆A)∆ of F⋆R relative to the filtered δ-ring F⋆A is the opposite of the category of commutative
squares

F⋆A //

��

F⋆B

��
F⋆R // F⋆B,

(5)

of filtered commutative ring maps where (F⋆B, I) is a bounded filtered prism and F⋆A→ F⋆B is a filtered
δ-ring map. The topology is the filtered p-adically faithfully flat topology, meaning that F⋆B → F⋆C is a
cover if B → C is (p, I)-adically faithfully flat and gr⋆B → gr⋆C is a (p, gr0I)-adically faithfully flat map of
graded commutative rings.

Definition 10.12 (Filtered structure sheaves). The presheaf F⋆O∆ which to any square (5) associates F⋆B
is a sheaf of strictly filtered commutative rings by arguing as in [10, Cor. 3.12]; see also Lemma 2.8. Similarly,
the presheaf O∆, which sends (5) to F⋆B is a sheaf of strictly filtered commutative rings.

Definition 10.13 (Filtered Breuil–Kisin twists). The filtered Breuil–Kisin twists F⋆O∆{i} assign to each
filtered prism B the flat filtration B{i} ⊗B F⋆B on B{i}.

Definition 10.14 (Filtered prismatic cohomology). We let F⋆∆site
F⋆R/F⋆A, or more briefly F⋆∆site

R/A, denote

RΓ((F⋆R/F⋆R)∆,F
⋆O∆) and similarly for filtered Hodge–Tate cohomology F⋆∆

site

R/A and the Breuil–Kisin
twists F⋆∆

s

R/A{i}, etc.

Example 10.15 (Filtered absolute prismatic cohomology). The case where F⋆A = Zp with the trivial
filtration (so FiZp = 0 for i > 0) gives F⋆∆site

R/Zp
, a filtered version of absolute prismatic cohomology for any

filtered commutative ring F⋆R.19

Example 10.16. Suppose that the filtrations on F⋆A and F⋆R are trivial, meaning that FiA ≃ 0 and
FiR ≃ 0 for i > 0. Then, any square (5) can be factored as

A //

��

B //

��

F⋆B

��
R // B // F⋆B.

Conversely, any object in the unfiltered site (R/A)∆ can be equipped with the trivial filtration. It follows in
this case that F⋆∆site

R/A is naturally equivalent to ∆site
R/A with the trivial filtration.

The goal of the remainder of this section is to outline the general theory of filtered prismatic cohomology
from the stacky perspective of [8].

19Note again that p⋆Zp does not define a filtered δ-ring.
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Construction 10.17 (Graded and filtered Spec). Given a filtered commutative ring F⋆R we can associate
to it the graded Rees algebra

Rees(F⋆R) =
⊕
m∈Z

FmR · tm,

where t has weight 1, whose spectrum SpecRees(F⋆R) is a Gm-equivariant affine scheme over A1 (on the
coordinate t). Let FSpecR = FSpecF⋆R denote the quotient

(SpecRees(F⋆R)) /Gm,

viewed as a stack over A1/Gm. We have a commutative diagram in which we can identify the fibers of
FSpecF⋆R over 0, 1 ∈ A1/Gm:

Spec
⊕

m∈Z grmR //

��

GrSpec gr⋆R //

��

FSpecF⋆R

��

SpecR

��

oo

SpecZ // BGm
0 // A1/Gm SpecZ,

1oo

where GrSpec gr⋆R denotes the quotient stack
(
Spec

⊕
m∈Z grmR

)
/Gm. Note that these constructions are

examples of relative Spec for F⋆R and gr⋆R viewed as commutative algebra objects in D(A1/Gm) and
D(BGm), respectively.

As we are interested in functors on p-nilpotent commutative rings, we will in fact use the following p-adic
formal version of the construction above. See Appendix A for more details on p-adic formal stacks, especially
Warning A.3 which clarifies that “A1 = Spf Z[t] ≃ colimSpf Z[t]/pn, not colimSpf Zp[t]/t

n.

Construction 10.18 (Graded and filtered Spf). For a filtered commutative ring F⋆R, we can restrict the
functors above to p-nilpotent commutative rings to obtain a commutative diagram of pullback squares

Spf
⊕

m∈Z grmR //

��

GrSpf gr⋆R //

��

FSpf F⋆R

��

Spf R

��

oo

Spf Zp
// B“Gm

0 // “A1/“Gm Spf Zp
1oo

of formal stacks.

Remark 10.19 (Functor of points for graded and filtered Spf). Given a filtered commutative ring F⋆R,
the filtered formal spectrum FSpf R has the following universal property as a stack over “A1/“Gm. Given a
point Spf S → “A1/“Gm, described by the choice of a rank 1 projective module L over Spf R and a section
s : L→ R, the pullback

P //

��

FSpf R

��
Spf S

(L,s)// “A1/“Gm.

giving the fiber over (L, s) is the space of maps of graded commutative rings Rees(F⋆R)→ S[L±1] taking
t−1 ∈ F−1R to the element s−1 of L⊗−1 corresponding to the dual of s, where S[L±1] =

⊕
m∈Z L⊗m is the

graded commutative ring with the natural multiplication of sections.
Similarly, if R⋆ is a graded commutative ring, then GrSpf R is described as a stack over B“Gm by saying

that the fiber of GrSpf R over a point Spf S → B“Gm corresponding to a rank 1 projective module P is the
space of maps R⋆ → S[L±1] of graded commutative rings.
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Now, we describe the Cartier–Witt stack controlling filtered prismatic cohomology.

Lemma 10.20. Let F⋆A be a filtered δ-ring. Let FSpf F⋆A, or FSpf A for short, denote the formal stack
defined above. Then, FSpf A is naturally a δ-stack and the canonical map FSpf A → “A1/“Gm is a map of
δ-stacks.

Proof. By definition, FSpf A = (Spf
⊕

FmA · tm)/“Gm, so it can be computed as the colimit of of the
simplicial object (Spf

⊕
FmA · tm)×“G×•

m corresponding to the one-sided bar construction. The filtered δ-ring
structure on A gives Spf

⊕
FmA · tm the structure of a formal δ-scheme. Specifically, the δ-operation on⊕

FmA · tm sends x · tm ∈ FmA · tm to δ(x) · tpm ∈ FpmA · tpm. As φ(x) = xp + pδ(x) is a lift of Frobenius
on A, it follows that the formula φ(x · tm) = (xp + pδ(x)) · tpm defines a lift of Frobenius on the direct sum.
Now, by [10, Lems. 2.17 and 2.18], there is an induced δ-ring structure on the p-completion. Finally, the
comultiplication ∇ : ⊕ FmA · tm → ⊕FmA · tm ⊗Z Z[t±1] encoding the “Gm-action is defined for x ∈ FmA by
∇(x · tm) = (x · tm)⊗ tm. The comultiplication is thus a map of δ-rings as

δ(∇(x·tm)) = δ((x·tm)⊗tm) = δ(x·tm)⊗tpm+(xp·tpm)⊗δ(tm)+pδ(x·tm)⊗δ(tm) = δ(x·tm)⊗tpm = ∇(δ(x·tm))

and remains such upon p-completion. It follows that the simplicial object from the start of the proof is a
simplicial object in formal affine δ-schemes.

Construction 10.21 (Filtered prismatization). Let F⋆A→ F⋆R be a filtered δ-pair. The filtered prismati-
zation FWCartF⋆R/F⋆A, or FWCartR/A for short when the filtrations are clear from context, is the formal
stack defined as the pullback

FWCartF⋆R/F⋆A
//

��

WCartFSpf R

��
FSpf A×WCart //WCartFSpf A,

where the bottom map is defined thanks to the naturality of [8, Const. 3.11]; see also Construction 4.8.

Construction 10.22 (Graded prismatization). Given a graded δ-ring A⋆ and a graded A⋆-algebra R⋆, define
GrWCartR⋆/A⋆ as the analogous pullback where GrSpf A replaces the filtered formal spectrum.

Remark 10.23 (Functor of points of filtered and graded prizmatizations). Using Remark 10.19, we can
describe FWCartR/A as a stack over “A1/“Gm along the compositions FWCartR/A → FSpf A ×WCart →
FSpf A→ “A1/“Gm. If p is nilpotent in S, an S-point of FSpf A×WCart corresponds to a collection

(L, s, f : Rees(F⋆A)→ S[L±1], α : I →W (S)),

where α is a Cartier–Witt divisor and (L, s, f) describes an S point of FSpf A. On the other hand, an S-point
of WCartFSpf A corresponds to a Cartier–Witt divisor (α : I → W (S)) together with a W (S)/I-point of
FSpf A, and similarly for WCartFSpf R. The bottom natural transformation FSpf A×WCart→WCartFSpf A
sends the collection (L, s, f, α) to the Cartier–Witt divisor α : I →W (S) together with the Teichmüller lift
[L] of L and [s] of s and the composition

Rees(F⋆A)→W (S)[[L]±1]→W (S)/I[[L]±1]

obtained from adjunction using the δ-stack structure of FSpf A. Thus, an S-point of FWCartR/A consists of
(L, s, f, α) as above together with a Cartier–Witt divisor β : J →W (S), a rank 1 projective module M over
W (S)/I, a section u : M → W (S)/I, and a map Rees(F⋆R)→ W (S)/I[M±1] sending t−1 to u−1 together
with a fixed equivalence between α with β, a fixed equivalence between [L] and M over W (S)/I compatible
with the equivalence between α and β, and a fixed equivalence between Rees(F⋆A)→ W (S)/I[[L]±1] and
Rees(F⋆A)→ Rees(F⋆R)→W (S)/J [M±1] compatible with the other identifications.



53 10. Filtered prismatic cohomology

Lemma 10.24. There are natural equivalences

D(“A1/“Gm ×WCart) ≃ FD(WCart) and D(B“Gm ×WCart) ≃ GrD(WCart).

Proof. See Appendix A.1.

Construction 10.25 (Filtered and graded prismatic crystals). Define the filtered prismatic crystal F⋆H∆(R/A)
to be the (derived) pushforward of the structure sheaf of FWCartR/A along the maps FWCartR/A →
FSpf A ×WCart → “A1/“Gm ×WCart. Define the graded prismatic crystal gr⋆H∆(R/A) in the analogous
way as a sheaf on B“Gm ×WCart.

Warning 10.26. As in Proposition 5.1, we view this definition of the filtered prismatic crystals as correct
only under filtered quasisyntomicity conditions.

Definition 10.27 (Filtered and graded prismatic cohomology). If F⋆A → F⋆R is a filtered δ-pair, let
F⋆∆R/A = RΓ(FWCartR/A,OFWCartR/A

), the filtered prismatic cohomology of F⋆R relative to F⋆A. Similarly,
if A⋆ → R⋆ is a graded δ-pair, let gr⋆∆R/A = RΓ(GrWCartR⋆/A⋆ ,OGrWCartR⋆/A⋆ ).

Remark 10.28. By Lemma 10.24, we can view F⋆H∆(R/A) as a filtered object in prismatic crystals, and
similarly for the graded prismatic crystal. By pushing forward along “A1/“Gm ×WCart→ “A1/“Gm, we can
view F⋆∆R/A as being a filtered object of D(Z)∧p .

Proposition 10.29. The commutative diagram

WCartŸ�⊕
grmR/Ÿ�⊕

grmA

(A)

//

��

GrWCartR/A

grq

��

// FWCartR/A

Fq

��

WCartRees(R)/Rees(A)
oo

��

WCartR/A

��

oo

WCart // B“Gm ×WCart
0 // “A1/“Gm ×WCart “A1 ×WCartoo WCart

1oo

consists of pullback squares which satisfy base change for bounded above quasi-cohomology, where ÿ�⊕
grmR

and ÿ�⊕
grmA denote the p-completed direct sums.

Proof. For simplicity, we will prove the result for square (A); the rest of the proof uses the same ideas. Square
(A) fits into a commutative diagram

GrWCartR/A
//

��

FWCartR/A
//

��

WCartFSpf R

��
GrSpf A×WCart //

��

FSpf A×WCart //

��

WCartFSpf A

��
B“Gm ×WCart // “A1/“Gm ×WCart //WCart“A1/Ĝm

.

(6)

The top outer square fits into another commutative diagram

GrWCartR/A
//

��

WCartGrSpf R
//

��

WCartFSpf R

��
GrSpf A×WCart //WCartGrSpf A

//WCartFSpf A.
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In this diagram, the left square is a pullback by definition and the right square is a pullback as WCart(−)

commutes with limits. It follows that the outer square is a pullback which proves that the top outer square
of (6) is a pullback. As the top right square of (6) is a pullback by definition, it follows that the top left
square of (6) is a pullback, as desired (see for example [21, Lem. 4.4.2.1]). But, the bottom left square of (6)
is a pullback square as it is the pullback of a pullback square to WCart. It follows that square (A) is a
pullback square as it is the outer left square in (6).

To prove base change for bounded above quasi-coherent cohomology for square (A) in the proposition, it is
enough to prove it for the top-left and bottom-left squares of (6). The bottom-left square is left to the reader:
it is geometric and standard arguments work. For the top-left square, we can pull back everything along the
Čech complex of “A1 ×WCart→ “A1/“Gm ×WCart. This results in a cosimplicial commutative diagram

WCartgrR•/grA• //

��

WCartR•/A•

��
Spf(

⊕
griA)× “G•

m ×WCart //

��

Spf(Rees(A))× “G•
m ×WCart

��“G•
m ×WCart // “A1 × “G•

m ×WCart,

of pullback squares, where A• and R• are the global sections of Spf(Rees(A)) ×G•
m and Spf(Rees(R)) ×

G•
m, respectively, while grA• and grR• are shorthands for the global sections of Spf(

⊕
griA) ×G•

m and
Spf(

⊕
griR)×G•

m, respectively. Again, the bottom square satisfies base change for quasi-coherent cohomology,
which uses that the closed inclusions “G•

m ↪→ “A1×“G•
m have finite flat dimension. The top square satisfies base

change for bounded above quasi-coherent cohomology by Corollary A.42 in each cosimplicial degree. Arguing
as in the proof of that corollary, one deduces base change for bounded above quasi-coherent cohomology for
the colimit diagram.

Definition 10.30. Say that a strict filtered δ-pair F⋆A → F⋆R is filtered relatively quasisyntomic if
Rees(F⋆A)∧p → Rees(F⋆R)∧p is relatively quasisyntomic.

Remark 10.31. A strict δ-pair F⋆A→ F⋆R is filtered relatively quasisyntomic if and only if A→ R and(⊕
griA

)∧
p
→
(⊕

griR
)∧
p

are relatively quasisyntomic.

Corollary 10.32. For a relatively quasisyntomic filtered δ-pair F⋆A→ F⋆R,

(i) RΓ(WCart,
⊕

m∈Z grm∆gr⋆R/gr⋆A) ≃ ∆ ¤�⊕
m∈Z grmR/ ¤�⊕

m∈Z grmA
,

(ii) gr⋆∆F⋆R/F⋆A ≃ gr⋆∆gr⋆R/gr⋆A, and
(iii) Rees(F⋆∆F⋆R/F⋆A)

∧
HT ≃ ∆Rees(F⋆R)/Rees(F⋆A), and

(iv) F−∞∆F⋆R/F⋆A ≃ ∆R/A,

where the direct sum in (i) is taken in D(WCart) and hence implicitly completed along p and the Hodge–Tate
locus and the Rees algebra in (iii) is completed at the Hodge–Tate tower. In particular, the associated graded
pieces of the filtration F⋆∆R/A depend only on the graded δ-pair gr⋆A→ gr⋆R.

Proof. This follows from Prop 10.29 and Proposition 5.1.

Warning 10.33. The filtration F⋆∆R/A is not typically complete, even when F⋆A → F⋆R is a complete
prismatic δ-pair.
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Remark 10.34. The right square in

WCart
1 //

��

“A1 ×WCart //

��

“A1/“Gm ×WCart

��
Spf Zp

1 // “A1 // “A1/“Gm

does not satisfy base change for quasi-coherent cohomology. The issue is that pullback along the bottom
horizontal arrow is the p-completed Rees constsruction, which need not be complete with respect to the
filtration induced by the Hodge–Tate locus. However, the outer square does satisfy base change for quasi-
coherent cohomology on those filtered crystals F⋆H which eventually stabilize at equivalences · · · → FmH ≃
Fm−1H ≃ Fm−2H ≃ · · · . This explains the Hodge–Tate completion necessary in (iii) of Corollary 10.32 while
there is no completion necessary in (iv).

Proposition 10.35 (Filtered and graded Hodge–Tate comparison). Suppose that F⋆A → F⋆R is a pris-
matic filtered δ-pair, which is additionally formally smooth. Then, FWCartHT

R/A → FSpf R is naturally a
TF⋆R/F⋆A{1}#-gerbe. Similarly in the graded case.

Proof. This follows immediately from [8, Prop. 5.12] by pulling back over the Čech complex Spf ReesA× “G•
m

of Spf ReesA→ FSpf A. The graded case is similar.

In order to gain understanding of filtered prismatic cohomology, especially in the case of prismatic filtered
δ-pairs, we need to verify that a specific filtered prismatic envelope construction does produce a filtered prism.

Construction 10.36 (Filtered Koszul complexes). Recall that if J = (x1, . . . , xc) is an ideal in A, then we
will say that the sequence (x1, . . . , xc) is Koszul-regular if the Koszul complex Kos(x1, . . . , xc) is a resolution
of A/J (so has no higher homology). If F⋆A is a strictly filtered commutative ring and each xj has weight
w(j), meaning that xj ∈ Fw(j)A but xj /∈ Fw(j)+1, then one can make the Koszul complex Kos(x1, . . . , xc)
into a complex of filtered F⋆A-modules, which we will call the filtered Koszul complex F⋆Kos(x1, . . . , xc).
For example, if J = (x1, x2), then the filtered Koszul complex of the sequence (x1, x2) will be

· · · → 0→ F⋆−w(1)−w(2)A

Ñ
x2

−x1

é
−−−−−−→ F⋆−w(1)A⊕ F⋆−w(2)A

(
x1 x2

)
−−−−−−−→ F⋆A→ 0→ · · · .

We say that (x1, . . . , xc) is a filtered Koszul-regular sequence if the filtered Koszul complex F⋆Kos(x1, . . . , xc)
has vanishing positive homology and if H0(F

⋆Kos(x1, . . . , xc)) is a strict filtration, necessarily on A/J . This
implies that (x1, . . . , xc) is a regular sequence and much more. Equivalently, F⋆Kos(x1, . . . , xc) has vanishing
positive homology (in the abelian category of (non-strict) filtered complexes) and the associated graded
complex gr⋆Kos(x1, . . . , xc) also has vanishing positive homology. We let F⋆A/J = H0(F

⋆Kos(x1, . . . , xc))
and F⋆J = ker(F⋆A → F⋆A/J) when (x1, . . . , xc) is a filtered Koszul-regular sequence generating J . In
this case, F⋆A/F⋆J ∼= F⋆A/J ; moreover the filtration on A/J is the image filtration obtained by letting
FnA/J = im(FnA→ A/J).

Remark 10.37. There is a natural extension of the definition above to infinite sequences of elements; we
will use this extension below.

We will be applying this to the case where F⋆A is a filtered prism and J = (d, x1, . . . , xc). In this case,
note that d has weight 0.
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Example 10.38 (Breuil–Kisin quotients). For example if k is a perfect field of characteristic p and E(z0) ∈
As = W (k)Jz0, . . . , zsK is an Eisenstein polynomial corresponding to a uniformizer ϖ ∈ OK = W (k)Jz0K/E(z0),
then we can view As has having the adic filtration with respect to the ideal (z0, . . . , zs). The ideal J =
(E(z0), z

n
0 , z1 − z0, . . . , zs − z0) is filtered Koszul. To see this, use the decomposition

F⋆Kos(E(z0), z
n
0 , z1−z0, . . . , zs−z0) ≃ F⋆Kos(E(z0))⊗F⋆AF

⋆Kos(zn0 )⊗F⋆AF
⋆Kos(z1−z0)⊗F⋆A· · ·⊗F⋆AF

⋆Kos(zs−z0)

to realize the filtered Koszul complex as quasi-isomorphic to ϖ⋆OK/ϖn, which is a strict filtration on the
quotient.

Example 10.39 (The stack of a filtered prism). Let (F⋆A, I) be a filtered prism. We compute the
stack FWCartA/A. Recall that the unfiltered stack WCartA/A is equivalent to Spf A. We show that the

filtered stack is equivalent to FSpf A = Spf(Rees(A)∧(p,I))/
“Gm. For this, we can form the Čech complex

of Spf(Rees(A)) ×WCart → FSpf A ×WCart and pull back FWCartA/A → FSpf A ×WCart to the Čech
complex. This results in a commutative diagram

WCartRees(A)•/Rees(A)•

��

// FWCartA/A

��
Spf(Rees(A))× “G•

m ×WCart // FSpf A×WCart

where the geometric realization of the left vertical arrow is the right vertical arrow and where Rees(A)• and
Rees(A)• are the global sections of Spf(Rees(A))× “G•

m and Spf(Rees(A))× “G•
m, respectively. Now, the fiber

of Rees(A)→ Rees(A) is Rees(I) by the filtered prism condition. Zariski locally on Spf(Rees(A)), Rees(I) is
generated by a distinguished element d and hence Rees(I) ≃ Rees(A), i.e., the δ-pair Rees(A) → Rees(A)
determines a prism after Rees(I)-adic completion (which is the same as I-adic completion using that Rees(A)
is an A-algebra). The same is true of Rees(A)• in each cosimplicial degree. Thus, there is an identification of
simplicial objects

WCartRees(A)•/Rees(A)• ≃ Spf(Rees(A)•,∧(p,I))

by Lemma 4.11; by definition, the right-hand side has geometric realization FSpf A, as desired.

Construction 10.40 (Filtered prismatic envelopes). Let (F⋆A, (d)) be a filtered prism and let J =
(d, x1, . . . , xc) be a filtered Koszul-regular ideal, so that the image sequence x1, . . . , xc defines a filtered
Koszul-regular ideal in F⋆A. Let F⋆A{x1

d , . . . , xc

d }
∧
(p,d) denote the (p, d)-completed filtered (derived) tensor

product (
F⋆A{a1, . . . , ac}δ ⊗F⋆A{r1,...,rc}δ

F⋆A
)∧
(p,d)

.

Here F⋆A{r1, . . . , rc}δ is the free filtered δ-ring over F⋆A on weight wu generators ru and similarly for
F⋆A{a1, . . . , ac}. The left map is the filtered δ-ring map sending ru to dau − xu; the right map sends ru to
zero. Let F⋆R = F⋆A/(x1, . . . , xc). We will show in the next proposition that the filtered prismatic envelope
computes the filtered prismatic cohomology of R relative to A.

Proposition 10.41. If (F⋆A, (d)) is an oriented filtered prism and J = (d, x1, . . . , xc) ⊆ A is an ideal
generated by a filtered Koszul-regular sequence (d, x1, . . . , xc), then

(a) F⋆A{x1

d , . . . , xc

d }
∧
(p,d) is a filtered prism,

(b) F⋆A{x1

d , . . . , xc

d }
∧
(p,d) defines a final object of the filtered relative prismatic site (F⋆R/F⋆A)∆, and

(c) the natural maps FSpf A{x1

d , . . . , xc

d }
∧
(p,d) → FWCartR/A and F⋆∆R/A → F⋆∆site

R/A ≃ F⋆A{x1

d , . . . , xc

d }
∧
(p,d)

are equivalences.
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Proof. We give the case when c = 1 and write x for x1 and w for w(1). The general case is obtained by
taking suitable (p, d)-completed tensor products. The Rees algebra Rees(F⋆A{xd}

∧
(p,d)) has (p, d)-completion

the prismatic envelope (Rees(F⋆A)){xd}
∧
(p,d) by symmetric monoidality of the Rees construction. By our

assumption on x, (Rees(F⋆A)){xd}
∧
(p,d) is discrete. Thus, the Rees algebra Rees(F⋆A{xd}

∧
(p,d)) is a connective

A-module whose (p, d)-completion is discrete. Moreover, it is a countable coproduct of (p, d)-complete
A-modules. This implies that Rees(F⋆A{xd}

∧
(p,d)) is already discrete, which shows that the filtration on the

filtered prismatic envelope is filtered discrete. Moreover, the (p, d)-completion of Rees(F⋆A{xd}
∧
(p,d))/t

−1

is equivalent to Rees(F⋆A{xd}
∧
(p,d))

∧
(p,d)/t

−1. The latter is seen to be equivalent to the prismatic envelope
(
⊕

m∈Z grmA){xd}
∧
(p,d) by symmetric monoidality of taking the cofiber of t−1 (the associated graded). This is

again discrete by the result for prismatic envelopes in Bhatt–Scholze. So, the same decompletion argument
shows that Rees(F⋆A{xd}

∧
(p,d))/t

−1, which is again a direct sum of connective (p, d)-complete A-module
spectra, is discrete. This implies that the filtration on the filtered prismatic envelope F⋆A{xd}

∧
(p,d) is strict.

Hence, the filtered prismatic envelope is a filtered δ-ring. To show it is a filtered prism, we have to show
strictness of the induced filtration on the Hodge–Tate locus, which is to say that we want to show that
Rees(F⋆A{xd}

∧
p
) and Rees(F⋆A{xd}

∧
p
)/t−1 are discrete. After p-completing Rees(F⋆A{xd}

∧
p
), we obtain an

object equivalent to Rees(F⋆A){xd}
∧
p /d, which is discrete by the d-torsion freeness of the prismatic envelope

of [10]. Similarly, p-completed and mod t we obtain an object equivalent to (
⊕

m∈Z grmA){xd}
∧
p /d (using the

graded regularity of the element x), which is discrete again. Thus, arguing as above and decompleting, we
obtain discreteness, as desired. This proves (a).

By part (a), the filtered prismatic envelope defines an object of the filtered prismatic site. Given an object
F⋆B of the filtered prismatic site, there is a unique induced map A{xd}

∧
(p,d) → B of δ-rings. For this to be a

map of filtered prisms is a property since the filtrations on filtered δ-rings is assumed to be strict. To see
that this induced map is indeed filtered it is enough to note that the induced map A{a}δ → B respects the
filtrations by construction and hence the factorization through the (p, d)-completed quotient A{xd}

∧
(p,d) is

filtered. This proves part (b).
For part (c), we claim that F⋆∆R/A is a filtered prism, which follows from the filtered Hodge–Tate

comparison theorem. Thus, it defines an object of the filtered prismatic site and hence there is a map
F⋆A{xd}

∧
(p,d) → F⋆∆R/A. The composite F⋆∆R/A

f−→ A{xd}
∧
(p,d)

g−→ F⋆∆R/A is an idempotent map of filtered
δ-rings. By [7, Lem. 4.3.10], f and g are isomorphisms on F0 and hence the composite g ◦ f is the identity
on F0. The only way to make the identity map filtered is by letting it act as the identity on each filtered
piece, so g ◦ f is the identity on each Fm∆R/A. It follows from strictness of the filtrations that f and g are
isomorphisms on each Fm, proving the second statement of part (c). The first statement is proved by a
Rees-algebra argument.

Construction 10.42 (Filtered syntomic cohomology). Given a bounded δ-pair (A,R), the prismatic package
∆ R/A includes, for each integer i, the following information:

(a) the Nygaard-filtered, Nygaard-complete, Frobenius-twisted, Breuil–Kisin cohomology N⩾⋆∆̂(1)
R/A{i},

which is a complete filtered A-module;
(b) an A-linear map can: N⩾i∆̂(1)

R/A{i} → ∆̂(1)
R/A{i};

(c) a φA-semilinear map cφ : N⩾i∆̂(1)
R/A{i} → ∆̂(1)

R/A,

from which one builds

(d) relative syntomic cohomology complexes

Zp(i)(R/A) = fib
(
N⩾i∆̂(1)

R/A{i}
can−cφ−−−−−→ ∆̂(1)

R/A{i}
)
.
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This data is functorial in maps of bounded δ-pairs.
Now, suppose that (F⋆A,F⋆R) is a filtered δ-pair. We can use descent along the formally smooth

morphism Spf Rees(F⋆A)→ FSpf A and the naturality of the constructions above to construct an∞-category
CFSpf A by right Kan extension (thanks to Remark 8.2(iii)) and a filtered prismatic package ∆ F⋆R/F⋆A ∈
CFSpf A = (∆[⋆]

F⋆R/F⋆A{⋆},N
⩾⋆∆̂(1)

F⋆R/F⋆A{⋆}, c, φ) using Theorem 1.2(6, 7). To see that the underlying prismatic

part ∆[⋆]
F⋆R/F⋆A{⋆} agrees with F⋆∆[⋆]

R/A{⋆} of Definition 10.27, one uses that Spf Rees(F⋆A) ×WCart →
FSpf A×WCart is a formally smooth cover together with base change (after Hodge–Tate completion) for
relative prismatic cohomology (Theorem 1.2(7)). The filtered prismatic package includes, for each integer i,

(a) F⩾⋆N⩾⋆∆̂(1)
R/A{i} = N⩾⋆∆̂(1)

F⋆R/F⋆A{i}, which is a filtered F⋆A-module equipped with a second filtration
(the Nygaard filtration) for which it is complete.;

(b) a filtered F⩾⋆A-linear map can: F⩾⋆N⩾i∆̂(1)
R/A{i} → F⩾⋆∆̂(1)

R/A{i};
(c) a p-filtered20 φF⋆A-semilinear map cφ : F⩾⋆N⩾i∆̂(1)

R/A{i} → F⩾⋆∆̂(1)
R/A.

From this, we can define, for i ⩾ 0,

(d) filtered relative syntomic cohomology complexes

F⩾⋆Zp(i)(F
⋆R/F⋆A) = fib

(
F⩾⋆N⩾i∆̂(1)

R/A{i}
can−cφ−−−−−→ F⩾⋆∆̂(1)

R/A{i}
)

for i ∈ Z.21

As above, we often write F⋆Zp(i)(R/A) for F⋆Zp(i)(F
⋆R/F⋆A) when it seems no confusion can arise.

Variant 10.43. If (A⋆, R⋆) is a graded δ-pair, then there is a graded version of the construction above,
producing a prismatic package ∆ R⋆/A⋆ ∈ CGrSpf A⋆ . However, because the Frobenius map cφ is p-graded in
the sense that it takes weight i into weight pi, the induced syntomic cohomology

Zp(i)(R
⋆/A⋆) = fib

(⊕
⋆∈Z

gr⋆N⩾i∆̂(1)
R/A{i}

can−cφ−−−−−→
⊕
⋆∈Z

gr⋆∆̂(1)
R/A{i}

)
is filtered, not graded. The filtration is given by

FmZp(i)(R
⋆/A⋆) = fib

Ñ⊕
⋆⩾m

gr⋆N⩾i∆̂(1)
R/A{i}

can−cφ−−−−−→
⊕
⋆⩾m

gr⋆∆̂(1)
R/A{i}

é
.

Proposition 10.44. Let (F⋆A,F⋆R) be a relatively quasisyntomic filtered δ-pair. The pullback maps
1∗ : CFSpf A → CSpf A and 0∗ : CFSpf A → CGrSpf gr⋆A induce natural equivalences

(a) 1∗ ∆ F⋆R/F⋆A ≃ ∆ R/A and
(b) 0∗ ∆ F⋆R/F⋆A ≃ ∆ gr⋆R/gr⋆A.

Proof. This follows from base change for the prismatic package, Theorem 1.2(7).

Corollary 10.45. For each i ∈ Z and all relatively quasisyntomic filtered δ-pairs A→ R, there are natural
equivalences

(i) gr⋆Zp(i)(F
⋆R/F⋆A) ≃ gr⋆Zp(i)(gr

⋆R/gr⋆A) and
(ii) F0Zp(i)(F

⋆R/F⋆A) ≃ Zp(i)(F
0R/F0A).

20A map of filtered objects F⋆M → F⋆N is p-filtered if it arises from a map F ∗F⋆M → F⋆N where F is the Frobenius on
A1/Gm.

21Here we use that a p-filtered map of decreasing N-indexed filtration forgets to a filtered map since FpiM maps canonically
to FiM for i ⩾ 0.
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A Some formal stack theory

We give some background on quasi-coherent sheaf theory on p-adic formal stacks in A.1 culminating in the
establishment of some results on base change for quasi-coherent cohomology in Section A.2. We claim no
originality for this material, but do not know of a suitable reference.

A.1 Quasi-coherent sheaves on formal stacks

Our goal in this section is to compare several possible definitions of a quasi-coherent sheaf on Spf R. While
in the body of this paper, all constructions are by default derived unless specified otherwise, given an abelian
group M , we will need to work both with the derived reduction modulo p of M , which we will write as M�p,
and the non-derived version M/p = H0(M�p).

As in the rest of this paper, we work with formal prestacks, i.e., presheaves of spaces (aka anima) on the
category of spectra of p-nilpotent rings. Formal stacks are sheaves of anima or spectra with respect to the
faithfully flat topology on spectra of p-nilpotent rings.

Remark A.1. Our formal stacks are formal analogues of higher stacks as opposed to derived stacks (see [29]
for an overview of the distinction and further references). Quasi-lci conditions guarantee that the Cartier–Witt
theory developed here using formal higher stacks agrees with the derived analogue, as in [8].

Example A.2 (Formal spectra). Given a commutative ring R, Spf R denotes the formal stack given by the
restriction of SpecR to a functor on spectra of p-nilpotent commutative rings. If R has bounded p-power
torsion, then the natural map Spf R∧

p → Spf R is an equivalence of formal stacks.

Warning A.3. We will write “A1 for Spf Z[t] and “Gm for Spf Z[t±1]. Note that this diverges from common
notation in the literature, where for example “A1 denotes the prestack on all affine schemes, which to any
SpecR assigns the non-unital ring of nilpotent elements in R. By contrast, for us, formal will always mean
formal with respect to the p-adic topology.

Definition A.4 (Quasicoherent sheaves on formal stacks). Given any formal (pre)stack X, one defines
D(X) = limSpf R→X D(R) where the limit ranges over all p-nilpotent commutative rings R and all Spf R points
of X. In all cases studied in this paper, the limit above is computed as the limit over a small category and so
we will not get into size considerations here.

For an object F ∈ D(X) we will refer to the ‘value’ on x : Spf R → X as the pullback and write it as
x∗F ∈ D(R).

Example A.5. If p is nilpotent in R, then D(Spf R) ≃ D(R).

Definition A.6. Let X be a formal prestack and let F ∈ D(X) be a quasi-coherent sheaf.

(i) We say F is perfect if for every p-nilpotent commutative ring R and every point x : Spf R → X the
pullback x∗F ∈ D(R) is perfect. Write Perf(X) ⊆ D(X) for the full subcategory of perfect objects.

(ii) We say F has p-complete Tor-amplitude in [a, b] for a, b ∈ Z ⊔ {±∞} if for every x : Spf R → F the
pullback x∗F belongs to D(R)[a,b], i.e., Hi(x

∗F) = 0 for i /∈ [a, b].

Now, we study p-complete Z-linear stable presentable ∞-categories.

Definition A.7 (p-completion). Given a D(Z)-module C in PrL, the p-completion of C is C∧
p = C⊗D(Z)D(Z)∧p .
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Remark A.8. The object D(Z)∧p is idempotent in the ∞-category of D(Z)-modules in PrL. Indeed, consider
the localization sequence

D(Z[1/p])→ D(Z)→ D(Z)∧p

of D(Z)-modules. Tensoring with D(Z)∧p results in another localization sequence, for example by [1, Cor. 3.5].
However, D(Z)∧p is compactly generated by Fp so that D(Z)∧p ≃ D(EndZ(Fp)) and hence D(Z[1/p])⊗D(Z)

D(Z)∧p ≃ D(Z[1/p]⊗Z EndZ(Fp)) ≃ 0. Thus, D(Z)∧p → D(Z)∧p ⊗D(Z) D(Z)∧p is an equivalence. It follows that
ModD(Z)∧p

(PrL) is a full subcategory of ModD(Z)(Pr
L), that the inclusion has a left adjoint, and that it is

given by p-completion in the sense above.
Note also that we could have worked over the sphere spectrum as opposed to Z here, but we will not need

this generality.

Definition A.9 (p-completeness). A D(Z)-module C in PrL is p-complete if the natural map C→ C∧
p is an

equivalence. By the remark above, this property is equivalent to saying that C admits the structure of a
D(Z)∧p -module in PrL. Moreover, by idempotentness of D(Z)∧p , the p-completion of any C in ModD(Z)(Pr

L)
is p-complete.

Our philosophy is that formal geometry is algebraic geometry done in D(Z)∧p -modules in PrL. Recall
from [23, Sec. 23.1.2] that a compactly assembled presentable ∞-category C is one which is a retract, in
PrL, of a compactly generated ∞-category. This is equivalent to the dualizability of C in PrLst. If C is a
D(Z)-module in PrLst, then it is dualizable as a D(Z)-module if and only if it is dualizable in PrLst by [23,
Thm. D.7.0.7]. Moreover, a D(Z)-linear version of [23, Prop. D.7.3.1] implies that dualizability relative as
a D(Z)-module in PrLst is equivalent to being a retract, in D(Z)-modules in PrLst, of a compactly generated
D(Z)-linear presentable ∞-category.

Lemma A.10. For any compactly assembled D(Z)-module C in PrL, the natural map C ⊗D(Z) D(Z)∧p →
limn C⊗D(Z) D(Z/pn) is an equivalence.

Proof. The case of D(Z)∧p ≃ limn D(Z/pn) follows from Proposition A.11 below. Now being dualizable relative
to D(Z) implies that the functor C⊗D(Z) − has a left adjoint given by tensoring with the dual C∨. Thus it
preserves limits.

Proposition A.11. For a commutative ring R with bounded p-power torsion, there are natural equivalences

D(Spf R) ≃ lim
n

D(R�pn) ≃ D(R)R�p-cpl ≃ D(R)∧p ≃ ModR(D(Z)∧p ),

where D(R)R�p-cpl is the ∞-category of R�p-local objects in D(R).

Proof. The fourth equivalence holds more generally: if C is any presentable D(Z)-linear stable ∞-category,
then D(R) ⊗D(Z) C ≃ ModR(C). This follows from the definition of the tensor product on PrL; see [22,
Prop. 4.8.1.17]. The third equivalence follows from the equivalence between complete and torsion objects:
D(R)R�p-cpl ≃ D(R)p-tors, where the torsion category is the full subcategory of R-module spectra M where
each x ∈ π∗M is annihilated by some power of p (depending on x); see [25, Thm. 3.9] or [15, Thm. 3.3.5]. On
the other hand, D(R)p-tors is compactly generated by R�p, for example by [25, Prop. 3.7]. It follows that

D(R)R�p-cpl ≃ D(R)p-tors ≃ D(R⊗Z EndZ(Fp)) ≃ D(R)⊗D(Z) D(EndZ(Fp)) ≃ D(R)⊗D(Z) D(Z)∧p ,

functorially in R.
Now, we prove the second and first equivalences. If R is an animated commutative ring, then D(R)R�p-cpl ≃

limD(R�pn). This is closely related to [25, Prop. 2.21], which implies that if S0 = R�p and if S• is the
descent complex associated to R → S0, then D(R)R�p-cpl ≃ limTot(D(S•)). One can rewrite the limit



61 A.1 Quasi-coherent sheaves on formal stacks

as limn Tot
n(D(S•)), the limit of the finite totalizations. As each Totn is a finite limit, the natural map

D(Totn(S•))→ Totn(D(S•)) is fully faithful and the map D(R)→ Totn(D(S•)) canonically factors through
the subcategory D(Totn(S•)) generated by the unit. One has Totn(S•) ≃ S�pn+1 for all n ⩾ 0 by [25,
Prop. 2.14] and hence there are functors

D(R)R�p-cpl → lim
n

D(R�pn+1)→ lim
n

Totn(D(S•)),

where the composition is an equivalence and the right-hand map is fully faithful. It follows that the left-hand
map is fully faithful and essentially surjective, i.e., an equivalence.

Note that D(Spf R) ≃ limn D(R/pn) as every R→ S where p is nilpotent in S factors through some R/pn.
To complete the proof of the lemma, we now show that if R is a commutative ring with bounded p-torsion,
then natural map limn D(R�pn)→ limn D(R/pn) is an equivalence. As R�p is a compact generator of D(R)∧p
and hence gives a generator of limn D(R�pn) by the equivalence above, it suffices to check that it determines a
compact generator of limn D(R/pn) and that the induced map on endomorphism ring spectra is an equivalence.
First, we check that it is a compact generator. Suppose that {Mn} is a tower of {R/pn}-modules defining an
object of the limit. We claim first that M1 is non-zero. To see this, it is enough to assume inductively that
M2 is non-zero. Then, M1 ≃M2 ⊗R/p2 R/p. But, R/p2 → R/p is descendable by [24, Prop. 3.35] and hence

D(R/p2)→ D(R/p) is conservative by [24, Prop. 3.22]. As limD(R/pn)
{Mn}7→M1−−−−−−−→ D(R/p) commutes with

all colimits, it follows that this functor reflects colimits. Now, given a tower {Mn} as above,

Maplimn D(R/pn)({R/pn ⊗R R�p}, {Mn}) ≃ lim
n

MapR/pn(R/pn ⊗R R�p,Mn)

≃ lim
n
(Mn ⊗R R�p)[−1]

≃ lim
n
(Mn ⊗R/pn R/pn ⊗R R�p)[−1].

Each R/pn ⊗R R�p fits into a canonical fiber sequence

R/pn[p][1]→ R/pn ⊗R R�p→ R/p

where the outer terms are canonically R/p-modules. We see that each Mn ⊗R/pn R/pn ⊗R R�p fits into a
fiber sequence

M1 ⊗R/p R/pn[p][1]→Mn ⊗R/pn R/pn ⊗R R�p→M1.

As R has bounded p-power torsion, the limit of the left-hand terms vanishes because it is pro-zero. The limit
of the right-hand terms is M1. Thus, the mapping spectrum above is naturally equivalent to M1[−1]. By what
we have already said, the functor {Mn} 7→M1 is conservative and reflects filtered colimits, which completes
the proof that R�p maps to a compact generator in limn D(R/pn). The proof that the endomorphism ring
spectra agree is an exercise in the Mittag–Leffler condition using boundedness of p-power torsion; it is left to
the reader.

Remark A.12. This is one point where the derived approach is more natural. If one works with formal
spectra of p-nilpotent animated commutative rings in the context of derived formal stacks, then for any
animated commutative ring R there is an equivalence D(Spf R) ≃ D(R)∧p .

Corollary A.13. Let X be a (non-formal) higher stack. If D(X) is compactly generated and D(X)ω

has bounded p-power torsion, then then the natural map D(X) → D(X̂) is equivalent to the morphism
D(X) → D(X)∧p ≃ limn D(X) ⊗D(Z) D(Z/pn). Here X̂ is the restriction of X to a functor on p-nilpotent
commutative rings.
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Proof. Our assumption on D(X) implies that D(X)∧p ≃ limn D(X) ⊗D(Z) D(Z/pn) by Lemma A.10. On
the other hand, colimX ×Z Spf Z/pn ≃ X̂, so D(X̂) ≃ limn D(X ×Z Spf Z/pn). The limits agree under our
assumption on bounded p-power torsion.

Example A.14. Recall that D(BGm) ≃ GrD(Z), the stable ∞-category of graded Z-module spectra. We
have GrD(Z) ≃

∏
i∈Z D(Z), so

D(B“Gm) ≃ GrD(Z)⊗D(Z) D(Z)∧p

≃

(∏
i∈Z

D(Z)

)
⊗D(Z) D(Z)∧p

≃
∏
i∈Z

D(Z)∧p

≃ Gr(D(Z)∧p ),

the ∞-category of graded objects in p-complete Z-module spectra. Here, one commutes the product with the
tensor product either from geometric considerations or from the fact that infinite coproducts and products
agree in PrL as can be proved using [21, Thm. 5.5.3.18].

Example A.15. Similarly, D(A1/Gm) ≃ FD(Z) ≃ Fun(Zop,D(Z)), the stable ∞-category of filtrations in
Z-module spectra. The p-completion is equivalent to D(“A1/“Gm) ≃ Fun(Zop,D(Z)∧p ), the ∞-category of
filtrations in p-complete Z-module spectra.

Remark A.16. Spectral sequences can behave in strange ways in the p-complete world. For example,
consider the filtration p⋆Qp on Qp where pnQp ⊆ Qp consists of the elements of p-adic valuation at least n.
As a filtration in D(Zp), this is complete and exhaustive, i.e., colimn→∞ p−nQp = Qp. However, as a filtration
in D(Zp)

∧
p , valid because each pnQp

∼= Zp, this filtration is complete but has colimit 0, the p-completion
of Qp. Thus, this is a complete exhaustive filtration on 0 where the associated graded pieces gri are all
equivalent to Fp. The associated spectral sequence degenerates at the E1-page, but the E∞ = E1-page is
very far from the associated graded of the induced filtration on the homotopy groups of the abutment.

Example A.17. Let B ← A → C be a p-completely Tor-independent diagram of bounded commutative
rings with pushout B ⊗A C. Then D(B ⊗A C) ≃ D(B)⊗D(A) D(C). It follows that

D(Spf(B ⊗A C)) ≃ lim
n

D(B/pn ⊗A/pn C/pn) ≃ lim
n

D(B/pn)⊗D(A/pn) D(C/pn) ≃ D(B)∧p ⊗D(A)∧p
D(C)∧p .

Moreover, this is equivalent to D(B ⊗A C)⊗D(Z) D(Z)∧p .

Now, we briefly discuss the standard t-structure on quasi-coherent sheaves on formal stacks.

Definition A.18. Let X be a formal stack. An object F ∈ D(X) is connective if x∗F ∈ D(R)⩾0 for all
p-nilpotent rings R and all R-points x : Spf R → X. The full subcategory D(X)⩾0 ⊆ D(X) defines the
connective part of a t-structure on D(X).

Example A.19. Suppose that R is a bounded p-complete commutative ring and consider D(Spf R)⩾0 ⊆
D(R)∧p . Recall that D(Spf R) ≃ ModR(D(Spf Zp)). We claim that F ∈ D(Spf R) is connective if and only if
the underlying object of D(Spf Zp) is connective, which happens if and only if Hi(F) = 0 for i < 0. In other
words, pushforward along Spf R→ Spf Zp is t-exact. If Hi(F) = 0 for i < 0, then for every R→ S where p is
nilpotent in S, one has that F ⊗R S is connective as connective objects are closed under tensor products.
On the other hand, F ≃ limn(F ⊗R R�pn) and each term of F ⊗R R�pn is connective as it fits into an exact
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sequence F ⊗R R/pn ⊗R/pn R[pn][1] → F ⊗R R�pn → F ⊗R R/pn and the outer terms are connective by
hypothesis. Moreover, the fiber of F ⊗R R�pn → F ⊗R R�pn−1 is naturally equivalent to F ⊗R R�p and is
in particular connective. It follows that in the tower {F ⊗R R�pn}n the induced maps on H0 are surjective
and so the Mittag–Leffler condition applies and the limit is connective. Thus, the t-structure on D(Spf R) is
the standard t-structure; the coconnnective objects are precisely those derived p-complete R-module spectra
which are coconnective. The heart of D(Spf R) is the abelian category of derived p-complete R-modules.

Warning A.20. The coconnective objects in D(Spf R) do not necessarily have the property that their base
change to Spf S is coconnective for S an R-algebra in which p is nilpotent.

A.2 Base change for prismatic crystals

Now, we give a discussion of base change and the projection formula for prismatic cohomology of general
prismatic crystals.

Definition A.21 (Base change for quasi-coherent cohomology). Suppose that

X′ g′
//

f ′

��

X

f

��
Y′ g // Y

(7)

is a commutative square of formal stacks. We say this square satisfies base change for quasi-coherent
cohomology if the commutative diagram

D(Y)
f∗
//

g∗

��

D(X)

g′∗

��
D(Y′)

f ′∗
// D(X′)

of left adjoint functors is right adjointable in the sense of [22, Def. 4.7.4.13]. Using the equivalence α : f ′∗◦g∗ ≃
g′∗ ◦ f∗ witnessing the commutativity of these squares, this means that the natural transformation of functors
g∗ ◦ f∗ → f ′

∗ ◦ f ′∗ ◦ g∗ ◦ f∗ ≃ f ′
∗ ◦ g′∗ ◦ f∗ ◦ f∗ → f ′

∗ ◦ g′∗ : D(X)→ D(Y′) is an equivalence.

Warning A.22. Right adjointability is not a symmetric notion, and hence neither is the notion of a square
satisfying base change for quasi-coherent cohomology. In other words, if it holds for a square as above, it
might or might not hold for the transposed square.

Variant A.23. (i) We say that (7) satisfies base change for bounded above quasi-coherent cohomology if
g∗ and g′∗ preserve bounded above objects and if the natural transformation g∗ ◦ f∗ → f ′

∗ ◦ g′∗ is an
equivalence when evaluated on any bounded above object of D(X).

(ii) We say that (7) satisfies base change for O-cohomology if the natural transformation g∗ ◦ f∗ → f ′
∗ ◦ g′∗

is an equivalence when evaluated on OX.

There is also the projection formula. See [28, Tag 08EU] for the classical case of schemes.

Definition A.24 (Projection formula). A morphism f : X → Y of formal stacks satisfies the projection
formula (for quasi-coherent cohomology) if the induced symmetric monoidal functor f∗ : D(Y)→ D(X) does,
i.e., if for every F ∈ D(X) and G ∈ D(Y), the natural map f∗(F)⊗ G→ f∗(F ⊗ f∗(G)) is an equivalence.
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Variant A.25. We say that f satisfies the projection formula for bounded above quasi-coherent cohomology
with respect to a class of objects A ⊆ D(Y) if f∗(F) ⊗ G → f∗(F ⊗ f∗(G)) is an equivalence for F ∈ D(X)
bounded above and G ∈ A. When G = OY, the projection formula morphism is always an equivalence. Thus, f
satisfies the projection formula for quasi-coherent cohomology with respect to objects in the thick subcategory
generated by the unit OY in D(Y).

Example A.26. For us, we will be primarily interested in the class A of objects in D(Y) which can be
written as filtered colimits of uniformly bounded above perfect objects, i.e., the full subcategory of those G

such that G ≃ colimI Gi where I is filtered and each Gi is locally of Tor-amplitude in (−∞, N ] for some N
independent of i. Call this class Ind+(Perf(X)) ⊆ D(X).

Lemma A.27 (Colimits and the projection formula). Suppose that f : X→ Y is a colimit in formal stacks of
morphisms fi : Xi → Yi. If each fi satisfies the projection formula and if each of the induced squares

Xi
ai //

fi

��

X

f

��
Yi

bi // Y

satisfies base change for quasi-coherent cohomology, then f satisfies the projection formula.

Proof. Fix F ∈ D(X) and G ∈ D(Y). As D(Y) ≃ limi D(Yi), to prove that f∗(F) ⊗ G → f∗(F ⊗ f∗(G)) is
an equivalence, it is enough to prove that for each i the natural map b∗i (f∗(F) ⊗ G) → b∗i f∗(F ⊗ f∗(G)) is
an equivalence. Using symmetric monoidality of the pullback functors as well as base change for quasi-
coherent cohomology, this map can be rewritten as the natural map fi∗(a

∗
i (F))⊗ b∗i (G)→ fi∗a

∗
i (F⊗ f∗(G)) ≃

fi∗(a
∗
i (F) ⊗ f∗

i (b
∗
i (G))), which is an equivalence by the projection formula for fi applied to a∗i (F) ∈ D(Xi)

and b∗i (G) ∈ D(Yi).

Variant A.28 (Colimits and bounded above projection formula). If in the situation of Lemma A.27 each
fi satisfies the projection formula for bounded above quasi-coherent cohomology with respect to classes
A ∈ D(Yi), if A ⊆ D(Y) is a class of objects which is sent under b∗i into Ai, and if a∗i preserves bounded above
objects, then f satisfies base change for bounded above quasi-coherent cohomology with respect to A.

Lemma A.29 (Colimits and base change). Suppose that a square □ as in (7) is realized as a colimit in
formal stacks of commutative squares

□i =

X′
i

g′
i //

f ′
i

��

Xi

fi

��
Y′
i

gi // Yi

over some indexing simplicial set I. For each edge j → i in I, let

□i,j =

Xj
//

fj

��

Xi

fi

��
Yj

// Yi

and □′
i,j =

X′
j

//

f ′
j

��

X′
i

f ′
i

��
Y′
j

// Y′
i.

If □i, □i,j , and □′
i,j satisfy base change for cohomology for each edge j → i in I, then so does colimi∈I □i ≃ □.
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Proof. The lemma follows from [22, Cor. 4.7.4.18(2)], to which we refer for more details. At the level of
quasi-coherent sheaves, applying D(−) turns these colimit diagrams into limit diagrams in PrL, i.e., D(□) ≃
limD(□i). As i varies, the pullback functors D(Yi)→ D(Xi) give a functor D(f∗) : Iop → Fun(∆1,PrL). By
hypothesis, this functor factors to give a functor D(f∗) : Iop → FunRAd(∆1,PrL), where FunRAd(∆1,PrL) is
the (non-full) subcategory of Fun(∆1,PrL) on all left adjoint functors C→ D is PrL and where the morphisms
are natural transformations (C → D) → (E → F) in PrL corresponding to right adjointable commutative
squares

C //

��

D

��
E // F.

The same result for the maps induced by X′
i → Y′

i gives another functor D(f ′∗) : Iop → FunRAd(∆1,PrL).
Moreover, the condition on the squares □i implies that pulling back along the maps fi and f ′

i gives a
natural transformation D(f∗)→ D(f ′∗) of functors Iop → FunRAd(∆1,PrL). Taking limits and applying [22,
Cor. 4.7.4.18(2)], the result follows.

Remark A.30. The proof of Lemma A.29 also shows that the commutative squares

Xi
//

��

X

��
Yi

// Y

and

X′
i

//

��

X′

��
Y′
i

// Y′

satisfy base change for quasi-coherent cohomology for all i ∈ I as well.

Remark A.31 (Colimits are universal). Recall the fact that colimits are universal in an ∞-topos, meaning
that they are stable under pullback. In particular, if colimi∈I Yi ≃ Y as formal stacks and if X→ Y is a map
of formal stacks, then colimi∈I Yi ×Y X→ X is an equivalence. See [21, Sec. 6.1].

Variant A.32. Suppose that {Xi → Y}i∈I is an I-indexed diagram of morphisms of formal stacks. If each
square

□i,j =

Xj

a′
ij //

fj

��

Xi

fi

��
Yj

aij // Yi

satisfies base change for quasi-coherent cohomology, then so does each square

□i =

Xi

g′
i //

fi

��

X

f

��
Yi

gi // Y

where (X → Y) ≃ colimI(Xi → Yi). The proof is similar to that of Lemma A.29. However, we will need a
version which holds under weakened hypotheses in the bounded above case. Specifically, assume that each a∗ij
and a′∗ij preserve bounded above objects and that each square □ij satisfies base change for bounded above
quasi-coherent cohomology. Then, so does each square □i. To prove this, consider an object F ∈ D(X)+ and
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note that F ≃ lim g′i∗g
′∗
i F. Let Fi = g′∗i F. So, we can view F as the compatible family of objects Fi ∈ D(Xi),

meaning that there are compatible equivalences Fj ≃ a′∗ijFi for all arrows j → i in I. Applying f∗ one finds
that f∗F ≃ limI f∗g

′
i∗Fi ≃ limI gi∗fi∗Fi. We want to know that g∗i f∗F ≃ fi∗g

′∗
i F ≃ fi∗Fi. However, there are

equivalences a∗ijfi∗Fi ≃ fj∗a
′∗
ijFi ≃ fj∗Fj , compatible in I, by our assumption on base change for bounded

above cohomology and the preservation of bounded above objects by a∗ij and a′∗ij . Thus, the objects fi∗Fi

(together with the given equivalences) determine an object of limD(Yi) ≃ D(Y) (or a cartesian section of an
appropriate fibration corresponding to i 7→ D(Yi)). This object is f∗F and the proof is complete.

Remark A.33. Let D(X⋆)→ Iop be the cartesian fibration corresponding to i 7→ D(Xi) together with the
pullback maps. The limit D(X) is the∞-category of cartesian sections of the fibration. There is by hypothesis
a natural transformation D(Y⋆)→ D(X⋆) of cartesian fibrations over Iop and the pullback functor f∗ takes
cartesian sections to cartesian sections. The functor D(X⋆)→ D(Y∗), corresponding to the right adjoints f∗,
need not take cartesian fibrations to cartesian fibrations. However, this is exactly what is guaranteed by our
assumption on the squares □i,j .

Lemma A.34. Let B ← A→ C be a diagram of bounded p-complete commutative rings. If the diagram is
p-completely Tor-independent (for example if B or C is p-completely flat over A), then

Spf(B“⊗AC) //

��

Spf C

��
Spf B // Spf A

satisfies base change for quasi-coherent cohomology. In addition, Spf C → Spf A satisfies the projection
formula.

Proof. The assumptions imply that this square is the colimit of the squares

Spf(B/pn ⊗A/pn C/pn) //

��

Spf(C/pn)

��
Spf(B/pn) // Spf(A/pn)

and each of these squares satisfies the projection formula and base change for quasi-coherent cohomology by
a standard argument; see for example [28, Tags 08EU, 08IB]. The statement now follows from Lemmas A.27
and A.29.

Remark A.35. This simple case of base change can be proved directly. Consider the commutative square

D(A)∧p //

��

D(C)∧p

��
D(B)∧p // D(B“⊗AC)∧p .

For a derived p-complete C-module spectrum M , the base change transformation is a morphism B“⊗AM →
(B“⊗AC)“⊗CM , which is an equivalence. However, the lemma gives an illustration of how we will use colimits
to produce new cases of base change.
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Lemma A.36. Let B ← A → C be a diagram of bounded prisms. If the diagram is (p, I)-completely
Tor-independent (for example if B or C is (p, I)-completely flat over A), then the pullback square

Spf(B“⊗AC) //

��

Spf C

��
Spf B // Spf A

satisfies base change for quasi-coherent cohomology. In addition, Spf C → Spf A satisfies the projection
formula.

Proof. Follow the proof of Lemma A.34 but with Spf(−/In).

In order to prove more general cases of base change for prismatic crystals, we need a base case provided
by the next proposition.

Proposition A.37. Suppose that A is a bounded prism and that X is a quasicompact separated formal
scheme over Spf A. If X is bounded and LX/A has p-complete Tor-amplitude in [0, 1], then for every map of
prisms A→ B of bounded (p, I)-complete Tor-amplitude, the pullback square

WCartXB/B
//

��

WCartX/A

��
Spf B // Spf A

satisfies base change for bounded above quasi-coherent cohomology. Moreover, WCartX/A → Spf A satisfies
the projection formula for F ∈ D(WCartX/A) and G ∈ Ind+(Perf(Spf A)).

Proof. We have the following lemma, which is not a special case of Lemma A.29.

Lemma A.38. Suppose that

X′
i

g′
i //

f ′
i

��

Xi

fi

��
Y′ g // Y

is a finite diagram of commutative squares each satisfying base change for (bounded above) quasi-coherent
cohomology. Then, the colimit diagram

X′ g′
//

f ′

��

X

f

��
Y′ g // Y

satisfies base change for (bounded above) quasi-coherent cohomology. Moreover, if each fi satisfies the
projection formula, then so does f .
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Proof. Write hi : Xi → X. Fix F ∈ D(X) which by definition is equivalent to limhi∗h
∗
iF. Let Fi = h∗

iF. Thus,

g∗f∗(F) ≃ g∗f∗ limhi∗Fi

≃ g∗ lim f∗hi∗Fi

≃ lim g∗f∗hi∗Fi

≃ lim g∗fi∗Fi

≃ lim f ′
i∗g

′∗
i Fi

≃ lim f ′
i∗h

∗
i g

′∗F

≃ f ′
∗g

′∗F,

where the third equivalence is because g∗ commutes with finite limits and the fifth is by the assumption of
base change. The proof of the claim about the projection formula is similar using that left adjoint functors
between stable ∞-categories commute with finite limits.

Now, one reduces the proof of the proposition using Lemma A.38 to the case where X = Spf R by induction
on the number of affines needed to cover X. Indeed, assume the proposition is true for formal schemes which
can be covered by at most n affines, and assume that X can be covered by n+ 1 affines {Spf Ri}n+1

i=1 . Then,
let Y = ∪ni=1 Spf Ri and Z = Spf Rn+1. The intersection W = Y ∩ Z satisfies the hypotheses of the lemma,
and is covered by n affines. Moreover,

WCartW/A
//

��

WCartZ/A

��
WCartY/A

//WCartX/A

is a pushout in formal stacks and similarly for the base change to B. Now, apply the lemma.
Now, assume that X = Spf R and let R→ R0 be a quasisyntomic cover where R0 is relatively quasiregular

semiperfectoid over A. Let R• be the resulting Čech complex. By [8, Thm. 7.17], there are natural equivalences

WCartR“⊗AB/B ≃ Spf ∆R“⊗AB/B and WCartR/A ≃ Spf ∆R/A,

where Spf ∆R/A is the functor MapDAlgA
(∆R/A,−) restricted to (p, I)-nilpotent A-algebras and similarly for

Spf ∆R“⊗AB/B . Throughout, we use that ∆R/A ≃ Tot∆R•/A and that |Spf ∆R•/A| ≃ |Spf ∆R/A| and similarly
for the base change to B. The first equivalence is by descent for prismatic cohomology; the second is because
WCartR0/A →WCartR/A is a surjection of flat sheaves (by [8, Lem. 6.3]) and by compatibility of WCart−/A

with pullbacks (which follows from [8, Rem. 3.5]).

Warning A.39. Note that despite the apparent affine behavior of WCartR/A, it is not typically the case
that the global sections functor D(Spf ∆R/A)→ D(∆R/A)

∧
p,I is an equivalence. This complicates the proof of

base change. However, when ∆R/A is discrete, taking global sections is an equivalence.

Thus, the pullback square of the statement of the proposition is equivalent in the affine case to a pullback
square

Spf ∆R“⊗AB/B

g′
//

f ′

��

Spf ∆R/A

f

��
Spf B

g // Spf A.

We prove a lemma giving some properties of this square.
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Lemma A.40. (a) The map g′ satisfies the projection formula.
(b) The map f satisfies the projection formula for bounded above objects with respect to Ind+(Perf(Spf A)).
(c) The natural map f∗g∗B → g′∗f

′∗B is an equivalence.22

Proof. For parts (a) and (c) we use the commutative diagram

Spf ∆R•“⊗AB/B
//

g′
•

��

Spf ∆R“⊗AB/B

g′

��

// Spf B

g

��
Spf ∆R•/A

// SpfR/A
// Spf A.

The left vertical arrow represents a simplicial diagram in morphisms of stacks satisfying the projection formula.
The induced pullback functors on quasi-coherent sheaves gives a cosimplicial diagram in FunRAd(∆1,PrL)
with limit the pullback map on quasi-coherent sheaves associated to the middle vertical arrow. It follows
from Variant A.32 that the left-hand square satisfies base change for quasi-coherent sheaves in each simplicial
degree. Thus, by Lemma A.27, the map g′ satisfies the projection formula. As the exterior square satisfies base
change for quasi-coherent cohomology, so does the right-hand square by taking a limit in FunRAd(∆1,PrL).

For part (b), suppose that F ∈ D(Spf ∆R/A) and G ∈ Spf A are bounded above and assume that G can be
written as a filtered colimit of uniformly bounded above (p, I)-completely perfect complexes of A-module
spectra. The natural map

f∗(F)“⊗AG→ f∗(F ⊗OSpf ∆R/A
f∗(G))

can be written as
Tot(F•)“⊗AG→ Tot(F•“⊗AG),

where F• denotes the pullback of F to Spf ∆R•/A. The map is an equivalence for any (p, I)-completely perfect
A-module spectrum. As totalizations commute with filtered colimits of uniformly bounded above objects, the
map is an equivalence for G as well.

Returning to the proof of the proposition in the case when X = Spf R is affine, consider the natural
map g∗f∗F → f ′

∗g
′∗F for F ∈ D(Spf ∆R/A) bounded above. As g∗ is conservative, to test if this map is an

equivalence, we can apply g∗ to obtain g∗g
∗f∗F → g∗f

′
∗g

′∗F, which can be rewritten as a map

f∗F“⊗AB → f∗g
′
∗g

′∗F ≃ f∗(g
′
∗OSpf ∆

R⊗̂
A

B/B
⊗OSpf ∆R/A

F) ≃ f∗(f
∗g∗B ⊗OSpf ∆R/A

F) ≃ g∗B“⊗Af∗F,

where the first equivalence is by part (a) of Lemma A.40, the second by part (c), and third by part (b), which
uses that B has bounded (p, I)-complete Tor-amplitude as an A-module and hence can be written as a finite
iterated extension of shifts of (p, I)-completely flat A-modules, which are filtered colimits of finitely presented
projective A-modules by a (p, I)-complete version of Lazard’s theorem. One checks that the map is indeed
the natural equivalence between the left and right-hand sides, which completes the proof. Finally, the claim
about the projection formula is Lemma A.40(b).

Corollary A.41. Suppose that A is a δ-ring and X is a quasisyntomic p-adic formal scheme over Spf A. If
X is quasicompact and separated and LX/A has p-complete Tor-amplitude in [0, 1], then for every transversal
prism B0 the pullback square

WCartX
B0/A“⊗B0

//

��

WCartX/A

��
Spf B0 //WCart

22That is, the transposed square satisfies base change for O-cohomology.
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satisfies base change for bounded above quasi-coherent cohomology. Moreover, WCartX/A →WCart satisfies
the bounded above projection formula with respect to Ind+(Perf(WCart)).

Proof. Let Spf B• →WCart be the Čech complex of Spf B0 →WCart. Pulling back WCartX/A →WCart
along Spf B• →WCart, we obtain a commutative diagram

WCartX
B•/A“⊗B•

//

��

WCartX/A

��
Spf B• //WCart

where the vertical arrow on the left defines a simplicial object in morphisms of formal stacks. For each
[m]→ [n] in ∆op the pullback square

WCartXBm/A“⊗Bm
//

��

WCartXBn/A“⊗Bn

��
Spf Bm // Spf Bn

satisfies base change for bounded above quasi-coherent sheaves by Proposition A.37 and the right-hand
morphism satisfies the projection formula for bounded above objects. The desired base change and projection
formula result by Variant A.32.

Corollary A.42. Let A→ R be a relatively quasisyntomic δ-pair and let A→ B be a map of δ-rings which
has p-complete bounded Tor-amplitude. The pullback square

WCartR“⊗AB/B

g′
//

f ′

��

WCartR/A

f

��
Spf B ×WCart

g // Spf A×WCart

satisfies base change for quasi-coherent cohomology and f satisfies the projection formula for bounded above
quasi-coherent cohomology with respect to Ind+(Perf(Spf A×WCart)).

Proof. Fix a transversal prism C0 and consider the Čech complex Spf C• →WCart of ρC0 : Spf C0 →WCart.
Pulling back along Spf A× Spf C• → Spf A×WCart for a transversal prism point ρC : Spf C →WCart, the
resulting cosimplicial pullback square is equivalent to

WCartR“⊗AB“⊗C•/B“⊗C•
g′•

//

f ′•

��

WCartR“⊗C•/A“⊗C•

f•

��
Spf(B“⊗C•)

g•
// Spf(A“⊗C•).

Each of these squares satisfies the hypothesis of Proposition A.37 by our assumption of the p-complete bounded
Tor-amplitude of B as an A-module and hence it satisfies base change for bounded above quasi-coherent
cohomology. We would like to now apply Lemma A.29, but we need a variant which applies in the bounded
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above setting, along the lines of Variant A.32. Fix

a• : WCartR“⊗C
•
/A“⊗C →WCartR/A,

b• : Spf(A“⊗C•)→ Spf A×WCart,

a′• : WCartR“⊗AB“⊗C
•
/B“⊗C →WCartR“⊗AB/B ,

b′• : Spf(B“⊗C•)→ Spf B ×WCart,

Consider F ∈ D(WCartR/A), which is equivalent to lim[i]∈∆ ai∗a
i∗F. Let Fi = ai∗F. By Variant A.32, bi∗f∗F ≃

fi∗Fi for all i, naturally in i. Thus, the pullback g∗f∗F is determined by the compatible family g•∗f•∗F• (as an
appropriate cartesian section corresponding to an object of D(Spf B×WCart) ≃ limSpf(B“⊗C). However, by
base change for bounded above quasi-coherent cohomology in each (co)simplicial degree, g•∗f•∗F• ≃ f ′

•∗g
′•∗F•,

which is checked in the same way to yield f ′
∗g

′∗F upon passage to limits using Variant A.32 again.
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