On the algebraic K-theory of $\mathrm{K}\left(\mathbf{Z} / p^{n}\right)$

Quillen introduced algebraic K-theory in [?] and computed the K-groups $\mathrm{K}_{*}\left(\mathbf{F}_{q}\right)$ in [4]. Except in low degrees, the computation of the K-groups of closely related rings, for example $\mathbf{Z} / 4$, has remained out of reach. In this paper, we announce new methods for computations of such rings and outline new results.

We are particularly interested in rings of the form $\mathcal{O}_{K} / \varpi^{k}$ where K is a finite extension of $\mathbf{Q}_{p}, \mathcal{O}_{K}$ is its ring of integers, and ϖ^{k} is a uniformizer. In particular, $p \in\left(\varpi^{e}\right)$ where e is the degree of ramification of K over \mathbf{Q}_{p}. When relevant, we normalize the p-adic valuation on \mathcal{O}_{K} so that $v_{p}(p)=1$ and hence $v_{p}(\varpi)=$ $\frac{1}{e}$. The residue field of \mathcal{O}_{K} is the case $k=1$ and is a finite field $\mathbf{F}_{q}=\mathcal{O}_{K} / \varpi$, where $q=p^{f}$ for some f, called the residual degree of the extension.

1 History

For any field $k, \mathrm{~K}_{0}(k) \cong \mathbf{Z}$ and $\mathrm{K}_{1}(k) \cong k^{\times}$. Quillen showed that if \mathbf{F}_{q} is the finite field with $q=p^{f}$ elements, then for $n \geqslant 1$,

$$
\mathrm{K}_{n}\left(\mathbf{F}_{q}\right) \cong \begin{cases}0 & \text { if } n \text { is even and } \\ \mathbf{Z} /\left(q^{i}-1\right) & \text { if } n=2 i-1 .\end{cases}
$$

Note in particular that there is no p-torsion in the K-groups of \mathbf{F}_{q}.

For ℓ a prime, Suslin's rigidity theorem implies that if R is a commutative ring which is henselian with respect to an ideal I and if ℓ is invertible in R, then

$$
\mathrm{K}\left(R ; \mathbf{Z}_{\ell}\right) \simeq \mathrm{K}\left(R / I ; \mathbf{Z}_{\ell}\right) .
$$

Examples of such henselian pairs are the rings of integers \mathcal{O} with the ideal (ϖ) or the quotients \mathcal{O} / ϖ^{k}, again with the ideal (ϖ). It follows that

$$
\mathrm{K}\left(\mathcal{O} ; \mathbf{Z}_{\ell}\right) \simeq \mathrm{K}\left(\mathcal{O} / \varpi^{k} ; \mathbf{Z}_{\ell}\right) \simeq \mathrm{K}\left(\mathbf{F}_{q} ; \mathbf{Z}_{\ell}\right) .
$$

These are thus the same as the groups computed by Quillen, at least when $\ell \neq p$.

In the case of the p-adic K-theory of \mathcal{O}_{K} or $\mathcal{O}_{K} / \varpi^{k}$, the situation is very different. In the the case of \mathcal{O}_{K} a result of Clausen-Mathew-Morrow implies that $\mathrm{K}\left(\mathcal{O}_{K} ; \mathbf{Z}_{p}\right) \simeq \operatorname{TC}\left(\mathcal{O}_{K} ; \mathbf{Z}_{p}\right)$, where $\operatorname{TC}\left(\mathcal{O}_{K} ; \mathbf{Z}_{p}\right)$ is the p-adic topological cyclic homology of \mathcal{O}_{K}. Similarly, a result [?] of Dundass-Goodwillie-McCarthy implies that $\mathrm{K}\left(\mathcal{O} / \varpi^{k} ; \mathbf{Z}_{p}\right) \simeq \mathrm{TC}\left(\mathcal{O} / \varpi^{k} ; \mathbf{Z}_{p}\right) ;$ this is also a consequence of the theorem of [?]. This makes these groups amenable to calculation using trace methods.
Hesselholt and Madsen carry out this approach in [?] and thereby verify the Quillen-Lichtenbaum conjecture for \mathcal{O}_{K}; this conjecture now follows in general from the proof of the Bloch-Kato conjecture due to Rost and Voevodsky.

The Hesselholt-Madsen computations use logarithmic de Rham-Witt forms and TR, i.e., the classical approach to trace method computations. These have recently been revisited by Liu-Wang who compute $\mathrm{K}_{*}\left(\mathcal{O} ; \mathbf{F}_{p}\right)$, the K-groups with $\bmod p$ coefficients.
Much less is known about the intermediate rings $\mathcal{O}_{K} / \varpi^{k}$. As for fields, $\mathrm{K}_{0}\left(\mathcal{O}_{K} / \varpi^{k}\right) \cong \mathbf{Z}$ and $\mathrm{K}_{1}\left(\mathcal{O}_{K} / \varpi^{k}\right)$ is isomorphic to the group of units in $\mathcal{O}_{K} / \varpi^{k}$.
In [?], Dennis and Stein computed $\mathrm{K}_{2}\left(\mathcal{O}_{K} / \varpi^{k}\right)$. No other work we are aware of has addressed the K-groups of general rings of the form $\mathcal{O}_{K} / \varpi^{k}$.
In special situations, more is known. First, every ring of the form $\mathbf{F}_{q}[z] /\left(z^{e}\right)$ is of the form $\mathcal{O}_{K} / \varpi^{e}$. The algebraic K-groups of these truncated polynomial rings has been studied by many people, first by Hesselholt-Madsen in [?] using classical trace method techniques, then by Speirs in [?] using the new approach to TC due to Nikolaus-Scholze [3], then by Sulyma in [?] using the approach to TC via syntomic cohomology due to Bhatt-Morrow-Scholze [2] and as outlined in [?].
Second, for unramified extension there are some results in low degrees. In the unramified case, where $e=1, \mathcal{O}_{K}$ is the ring $W\left(\mathbf{F}_{q}\right)$ of p-typical Witt vectors of the residue field. Brun [?] computed the K-groups
of \mathbf{Z} / p^{k} (i.e., when $e=1$ and $f=1$) up to degree $p-3$ and Angeltveit [?] computed the K-groups of $W_{k}\left(\mathbf{F}_{q}\right)=W\left(\mathbf{F}_{q}\right) / \varpi^{k}=W\left(\mathbf{F}_{q}\right) / p^{k}$ up to degree $2 p-2$.

Angeltveit also proved an important quantitative result:

$$
\frac{\# \mathrm{~K}_{2 i-1}\left(W_{k}\left(\mathbf{F}_{q}\right)\right)}{\# \mathrm{~K}_{2 i-2}\left(W_{k}\left(\mathbf{F}_{q}\right)\right)}=q^{i(k-1)}
$$

Both Brun and Angeltveit use classical trace methods and the p-adic filtration on the truncated Witt vectors to translate part of the problem to the cases of truncated polynomial rings where a complete answer is known.

2 New results

As $\mathrm{K}\left(\mathcal{O} / \varpi^{k} ; \mathbf{Z}_{p}\right) \simeq \operatorname{TC}\left(\mathcal{O} / \varpi^{k} ; \mathbf{Z}_{p}\right)$ by [?], it is enough to compute TC of these rings. To do so, we use the filtration on TC constructed by Bhatt-MorrowScholze in [2]. If R is a quasisyntomic ring, there is a decreasing filtration $\mathrm{F}_{\text {syn }}^{\star} \mathrm{TC}\left(R ; \mathbf{Z}_{p}\right)$ with associated graded

$$
\operatorname{gr}_{\mathrm{syn}}^{i} \mathrm{TC}\left(R ; \mathbf{Z}_{p}\right) \simeq \mathbf{Z}_{p}(i)(R)[2 i]
$$

where $\mathbf{Z}_{p}(i)(R)$ is the weight i syntomic cohomology of R.

In general, as shown in [1], the weight i syntomic cohomology $\mathbf{Z}_{p}(i)(R)$ is concentrated in $[0, i+1]$, independent of R; this means that $\mathrm{H}^{n}\left(\mathbf{Z}_{p}(i)(R)\right)=0$ for $n \notin[0, i+1]$. In the special case of \mathcal{O}_{K} or $\mathcal{O}_{K} / \varpi^{k}$, a soft argument using the ϖ-adic associated graded implies that in fact the weight i syntomic cohomology is in $[0,2]$; moreover, for $i \geqslant 1, \mathrm{H}^{0}\left(\mathbf{Z}_{p}(i)\left(\mathcal{O}_{K} / \varpi^{k}\right)\right)=0$ so the compex has cohomology concentrated in degrees 1 and 2.

This implies that the spectral sequence associated to the syntomic filtration on TC vanishes for \mathcal{O} / ϖ^{k}. Hence,

$$
\mathrm{TC}_{2 i-1}\left(\mathcal{O}_{K} / \varpi^{k} ; \mathbf{Z}_{p}\right) \cong \mathrm{H}^{1}\left(\mathbf{Z}_{p}(i)\left(\mathcal{O}_{K} / \varpi^{k}\right)\right)
$$

and

$$
\mathrm{TC}_{2 i-2}\left(\mathcal{O}_{K} / \varpi^{k} ; \mathbf{Z}_{p}\right) \cong \mathrm{H}^{2}\left(\mathbf{Z}_{p}(i)\left(\mathcal{O}_{K} / \varpi^{k}\right)\right)
$$

Theorem 2.1. For $i \geqslant 1$, there is a complex

$$
\begin{gathered}
\mathbf{Z}_{p}(i)^{\bullet}\left(\mathcal{O}_{K} / \varpi^{k}\right): \\
\left(\mathbf{Z}_{p}^{d(i k-1)} \stackrel{\operatorname{syn}_{0}}{\longrightarrow} \mathbf{Z}_{p}^{2 d(i k-1)} \xrightarrow{\text { syn1 }} \mathbf{Z}_{p}^{d(i k-1)}\right)
\end{gathered}
$$

which computes $\mathbf{Z}_{p}(i)\left(\mathcal{O}_{K} / \varpi^{k}\right)$. The terms are free \mathbf{Z}_{p}-modules of ranks $d(i k-1), 2 d(i k-1)$, and $d(i k-1)$, respectively, in cohomological degrees 0 , 1 , and 2.

The proof of the existence of this explicit cochain complex model of the syntomic complex will be discussed in Section 4.

The groups $\mathrm{K}_{*}\left(\mathcal{O}_{K} / \varpi_{k}\right)$ are torsion for $*>0$. In particular, the complex above is exact rationally. Thus, to compute the cohomology of $\mathbf{Z}_{p}(i)\left(\mathcal{O}_{K} / \varpi^{k}\right)$, and hence the K-groups of $\mathcal{O}_{K} / \varpi^{k}$, it is enough to compute the matrices syn_{0} and syn_{1} and their elementary divisors.

Theorem 2.2. The matrices syn_{0} and syn_{1} are effectively computatble. Specifically, they can be computed with enough p-adic precision to guarantee computability of the effective divisors.

We have implemented our algorithm in SAGE in the case where $f=1$, i.e., when the residue field is \mathbf{F}_{p}. This is the totally ramified case and is both the most interesting in our opinion and the most computationally accessible.

Corollary 2.3. There is an algorithm to compute $\mathrm{K}_{n}\left(\mathcal{O}_{K} / \varpi^{k} ; \mathbf{Z}_{p}\right)$ for any K, k, and n.

Along the way, we extend the result of Angeltveit on the quotients of the orders from the unramified case to any $\mathcal{O}_{K} / \varpi^{k}$.
Corollary 2.4. For any $\mathcal{O}_{K} / \varpi^{k}$,

$$
\frac{\# \mathrm{~K}_{2 i-1}\left(\mathcal{O}_{K} / \varpi^{k}\right)}{\# \mathrm{~K}_{2 i-2}\left(\mathcal{O}_{K} / \varpi^{k}\right)}=q^{i(k-1)}
$$

where $q=p^{f}$ is the order of the residue field of \mathcal{O}_{K}.
In the next section, we outline the results of some of our computations.

3 Computations

Conjecture 3.1 (Even vanishing conjecture). For any $k, \mathrm{H}^{2}\left(\mathbf{Z}_{p}(i)\left(\mathcal{O}_{K} / \varpi^{k}\right)\right)=0$ for $i \gg 0$. In particular, $\mathrm{K}_{2 i-2}\left(\mathcal{O}_{K} / \varpi^{k}\right)=0$ for $i \gg 0$.

The conjecture has the following consequence, by Corollary 2.4.

Corollary 3.2. For $i \gg 0, \# \mathrm{~K}_{2 i-1}\left(\mathcal{O}_{K} / \varpi^{k}\right)=$ $q^{i(k-1)}$.

$4 \quad \delta$-ring cohomology

5 The syntomic matrices

References

[1] Benjamin Antieau, Akhil Mathew, Mathew Morrow, and Thomas Nikolaus, On the Beilinson fiber square, forthcoming (2020). 2
[2] Bhargav Bhatt, Matthew Morrow, and Peter Scholze, Topological Hochschild homology and integral p-adic Hodge theory, Publ. Math. Inst. Hautes Études Sci. 129 (2019), 199-310. MR 3949030 1, 2
[3] Thomas Nikolaus and Peter Scholze, On topological cyclic homology, ArXiv e-prints (2017). 1
[4] Daniel Quillen, On the cohomology and K-theory of the general linear groups over a finite field, Ann. of Math. (2) 96 (1972), 552-586. MR 0315016 (document)

