
On the algebraic K-theory of K(Z/pn)

Quillen introduced algebraic K-theory in [?] and
computed the K-groups K∗(Fq) in [4]. Except in low
degrees, the computation of the K-groups of closely
related rings, for example Z/4, has remained out of
reach. In this paper, we announce new methods for
computations of such rings and outline new results.
We are particularly interested in rings of the form

OK/$k where K is a finite extension of Qp, OK is its
ring of integers, and $k is a uniformizer. In particular,
p ∈ ($e) where e is the degree of ramification of K
over Qp. When relevant, we normalize the p-adic
valuation on OK so that vp(p) = 1 and hence vp($) =
1
e . The residue field of OK is the case k = 1 and is
a finite field Fq = OK/$, where q = pf for some f ,
called the residual degree of the extension.
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For any field k, K0(k) ∼= Z and K1(k) ∼= k×. Quillen
showed that if Fq is the finite field with q = pf ele-
ments, then for n > 1,

Kn(Fq) ∼=

{
0 if n is even and
Z/(qi − 1) if n = 2i− 1.

Note in particular that there is no p-torsion in the
K-groups of Fq.

For ` a prime, Suslin’s rigidity theorem implies that
if R is a commutative ring which is henselian with
respect to an ideal I and if ` is invertible in R, then

K(R;Z`) ' K(R/I;Z`).

Examples of such henselian pairs are the rings of
integers O with the ideal ($) or the quotients O/$k,
again with the ideal ($). It follows that

K(O;Z`) ' K(O/$k;Z`) ' K(Fq;Z`).

These are thus the same as the groups computed by
Quillen, at least when ` 6= p.

In the case of the p-adic K-theory of OK or OK/$k,
the situation is very different. In the the case of
OK a result of Clausen–Mathew–Morrow implies that
K(OK ;Zp) ' TC(OK ;Zp), where TC(OK ;Zp) is the
p-adic topological cyclic homology of OK . Similarly,
a result [?] of Dundass–Goodwillie–McCarthy implies
that K(O/$k;Zp) ' TC(O/$k;Zp); this is also a
consequence of the theorem of [?]. This makes these
groups amenable to calculation using trace methods.
Hesselholt and Madsen carry out this approach

in [?] and thereby verify the Quillen–Lichtenbaum
conjecture for OK ; this conjecture now follows in gen-
eral from the proof of the Bloch–Kato conjecture due
to Rost and Voevodsky.

The Hesselholt–Madsen computations use logarith-
mic de Rham–Witt forms and TR, i.e., the classical
approach to trace method computations. These have
recently been revisited by Liu–Wang who compute
K∗(O;Fp), the K-groups with mod p coefficients.
Much less is known about the intermediate rings

OK/$k. As for fields, K0(OK/$k) ∼= Z and
K1(OK/$k) is isomorphic to the group of units in
OK/$k.

In [?], Dennis and Stein computed K2(OK/$k). No
other work we are aware of has addressed the K-groups
of general rings of the form OK/$k.
In special situations, more is known. First, every

ring of the form Fq[z]/(z
e) is of the form OK/$e.

The algebraic K-groups of these truncated polyno-
mial rings has been studied by many people, first by
Hesselholt–Madsen in [?] using classical trace method
techniques, then by Speirs in [?] using the new ap-
proach to TC due to Nikolaus–Scholze [3], then by
Sulyma in [?] using the approach to TC via syntomic
cohomology due to Bhatt–Morrow–Scholze [2] and as
outlined in [?].
Second, for unramified extension there are some

results in low degrees. In the unramified case, where
e = 1, OK is the ring W (Fq) of p-typical Witt vectors
of the residue field. Brun [?] computed the K-groups
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of Z/pk (i.e., when e = 1 and f = 1) up to degree
p − 3 and Angeltveit [?] computed the K-groups of
Wk(Fq) = W (Fq)/$

k = W (Fq)/p
k up to degree

2p− 2.
Angeltveit also proved an important quantitative

result:
#K2i−1(Wk(Fq))

#K2i−2(Wk(Fq))
= qi(k−1).

Both Brun and Angeltveit use classical trace methods
and the p-adic filtration on the truncated Witt vec-
tors to translate part of the problem to the cases of
truncated polynomial rings where a complete answer
is known.

2 New results
As K(O/$k;Zp) ' TC(O/$k;Zp) by [?], it is enough
to compute TC of these rings. To do so, we use
the filtration on TC constructed by Bhatt–Morrow–
Scholze in [2]. If R is a quasisyntomic ring, there is
a decreasing filtration F?

synTC(R;Zp) with associated
graded

grisynTC(R;Zp) ' Zp(i)(R)[2i],

where Zp(i)(R) is the weight i syntomic cohomology
of R.
In general, as shown in [1], the weight i syntomic

cohomology Zp(i)(R) is concentrated in [0, i+ 1], in-
dependent of R; this means that Hn(Zp(i)(R)) = 0 for
n /∈ [0, i+ 1]. In the special case of OK or OK/$k, a
soft argument using the $-adic associated graded im-
plies that in fact the weight i syntomic cohomology is
in [0, 2]; moreover, for i > 1, H0(Zp(i)(OK/$k)) = 0
so the compex has cohomology concentrated in degrees
1 and 2.

This implies that the spectral sequence associated
to the syntomic filtration on TC vanishes for O/$k.
Hence,

TC2i−1(OK/$k;Zp) ∼= H1(Zp(i)(OK/$k))

and

TC2i−2(OK/$k;Zp) ∼= H2(Zp(i)(OK/$k)).

Theorem 2.1. For i > 1, there is a complex

Zp(i)
•(OK/$k) :(

Zd(ik−1)
p

syn0−−−→ Z2d(ik−1)
p

syn1−−−→ Zd(ik−1)
p

)

which computes Zp(i)(OK/$k). The terms are free
Zp-modules of ranks d(ik−1), 2d(ik−1), and d(ik−1),
respectively, in cohomological degrees 0, 1, and 2.

The proof of the existence of this explicit cochain
complex model of the syntomic complex will be dis-
cussed in Section 4.
The groups K∗(OK/$k) are torsion for ∗ > 0.

In particular, the complex above is exact rationally.
Thus, to compute the cohomology of Zp(i)(OK/$k),
and hence the K-groups of OK/$k, it is enough to
compute the matrices syn0 and syn1 and their elemen-
tary divisors.

Theorem 2.2. The matrices syn0 and syn1 are effec-
tively computatble. Specifically, they can be computed
with enough p-adic precision to guarantee computabil-
ity of the effective divisors.

We have implemented our algorithm in SAGE in
the case where f = 1, i.e., when the residue field
is Fp. This is the totally ramified case and is both
the most interesting in our opinion and the most
computationally accessible.

Corollary 2.3. There is an algorithm to compute
Kn(OK/$k;Zp) for any K, k, and n.

Along the way, we extend the result of Angeltveit
on the quotients of the orders from the unramified
case to any OK/$k.

Corollary 2.4. For any OK/$k,

#K2i−1(OK/$k)

#K2i−2(OK/$k)
= qi(k−1),

where q = pf is the order of the residue field of OK .

In the next section, we outline the results of some
of our computations.

3 Computations
Conjecture 3.1 (Even vanishing conjecture). For
any k, H2(Zp(i)(OK/$k)) = 0 for i� 0. In particu-
lar, K2i−2(OK/$k) = 0 for i� 0.

The conjecture has the following consequence, by
Corollary 2.4.

Corollary 3.2. For i � 0, #K2i−1(OK/$k) =
qi(k−1).
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