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Abstract

We give a new construction of p-typical Witt vectors with coefficients in terms of ghost maps
and show that this construction is isomorphic to the one defined in terms of formal power series
from the authors’ previous paper. We show that our construction recovers Kaledin’s polynomial
Witt vectors in the case of vector spaces over a perfect field of characteristic p. We then identify
the components of the p-typical TR with coefficients, originally defined by Lindenstrauss and
McCarthy and later reworked by the second and third authors in joint work with McCandless,
with the p-typical Witt vectors with coefficients. This extends a celebrated result of Hesselholt
and Hesselholt-Madsen relating the components of TR with the Witt vectors. As an application,
we given an algebraic description of the components of the Hill-Hopkins-Ravenel norm for cyclic
p-groups in terms of p-typical Witt vectors with coefficients.
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Introduction
In the paper [DKNP22] we define the Witt vectors W (R;M) of a ring R with coefficients in an
R-bimodule M . This construction extends the usual big Witt vectors of a commutative ring,
recovering it in the case where M = R. Our approach is analogous to the construction of Witt
vectors of a commutative ring in terms of power series (see e.g. [Car67]), by replacing it with
the completed tensor algebra. In the present paper we give an alternative description of the p-
typical Witt vectors with coefficients which aligns with the original construction of Witt [Wit37]
based on Witt polynomials. In particular we show that for M = R our construction recovers
Hesselholt’s definition of p-typical Witt vectors for non-commutative rings of [Hes97]. We also
compare our construction to Kaledin’s definition of polynomial Witt vectors from [Kal18a], as
well as describing the components of topological restriction homology TR with coefficients as
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defined in [LM12] and [KMN22], and in particular of the Hill-Hopkins-Ravenel norm for cyclic
p-groups, in terms of p-typical Witt vectors.

Let us fix a prime p. TheWitt polynomials are the n-variable polynomials wj ∈ Z[a0, . . . , an−1],
defined for 0 ≤ j < n as

wj = ap
j

0 + pap
j−1

1 + p2ap
j−2

1 + ⋅ ⋅ ⋅ + pj−1apj−1 + p
jaj .

The ring of n-truncated p-typical Witt vectors Wn(A) of a commutative ring A can be charac-
terised as the unique ring structure on the set A×n which is functorial in A and with the property
that the “ghost maps” wj ∶A×n → A defined by the Witt polynomials are ring homomorphisms
for every 0 ≤ j < n. Given any ring R and R-bimodule M , let us define a variant of these
ghost maps, by formally replacing the p-th powers in the ghost map with tensor powers of M .
For a bimodule M over a ring R, we define an R-bimodule M⊗

R
pi and an abelian group M⊚

R
pj

respectively by

M⊗
R
pi =M ⊗RM ⊗R ⋅ ⋅ ⋅ ⊗RM

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
pi

and M⊚
R
pj =M⊗

R
pj /[R,M⊗

R
pj ]

where [R,M⊗
R
pj ] is the abelian subgroup generated by the elements rm −mr for r ∈ R and

m ∈ M⊗
R
pj . We think of M⊚

R
pj as pj copies of M tensored together around a circle, and these

define an abelian group with a natural action of the cyclic group Cpj . We then define an analogue
of the j-th ghost map

wj ∶
n−1

∏
i=0

M⊗
R
pi Ð→ (M⊚

R
pj)Cpj ,

by sending a sequence a0, a1, . . . , an−1 to the invariant represented by

wj(a0, a1, . . . , an−1) ∶= a⊗p
j

0 + ∑
σ∈Cpj /Cpj−1

σ(a⊗p
j−1

1 ) + ∑
σ∈Cpj /Cpj−2

σ(a⊗p
j−2

2 ) + ⋅ ⋅ ⋅ + ∑
σ∈Cpj

σ(aj)

where σ∶M⊚
R
pj → M⊚

R
pj is the automorphism given by the cyclic action. We then define an

equivalence relation on ∏n−1
i=0 M

⊗
R
pi by forcing the ghost map to be injective on free bimodules

(see Definition 1.3), and define the p-typical Witt vectors, as a set, as the quotient

Wn,p(R;M) ∶= (
n−1

∏
i=0

M⊗
R
pj) / ∼

by this relation. This situation is analogous to the Witt vectors for non-commutative rings
Wn(R) of [Hes97], which as a set is a certain quotient of the product ∏n−1

i=0 R. The following is
the main result of §1.1.

Theorem A. Let p be a prime, n ≥ 1 an integer, R a ring and M an R-bimodule. There is a
unique abelian group structure and lax symmetric monoidal structure on Wn,p(R;M) such that
wj is additive and monoidal for all 0 ≤ j < n, and a natural monoidal isomorphism of abelian
groups

Wn,p(R;M) ≅W⟨pn−1⟩(R;M),

where W⟨pn−1⟩(R;M) is the group of p-typical (n − 1)-truncated Witt vectors of [DKNP22].

When M = R with the canonical R-bimodule structure, there is a natural isomorphism of
abelian groups betweenWn,p(R;R) and Hesselholt’s group of p-typical n-truncated Witt vectors
of non-commutative rings of [Hes97] (see Corollary 1.7). This follows from the fact that

(R⊚
R
pj)Cpj ≅ R/[R,R]
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and under this isomorphism the ghost maps are given by the usual Witt polynomials. As an
immediate consequence of the symmetric monoidal structure Wn,p extends to a functor from
the category of algebras over commutative rings to rings, which sends commutative algebras
to commutative rings. In particular when R is commutative the isomorphism above identifies
Wn,p(R;R) with the usual ring of Witt vectors.

The groups Wn,p(R;M) also extend Kaledin’s construction of polynomial Witt vectors from
[Kal18a] and [Kal18b], as follows. We let Qn(R;M) be the abelian group defined as the cofiber
of the transfer map

Qn(R;M) ∶= coker ( tr
Cpn
e = ∑

σ∈Cpn

σ∶ (M⊚
R
pn)Cpn Ð→ (M⊚

R
pn)Cpn ).

Kaledin defines in [Kal18a] and [Kal18b] a functor W̃n of “polynomial Witt vectors” on the
category of vector spaces over a perfect field k of characteristic p, in terms of the functor Qn.
The following theorem, proved in §1.3, provides a similar description for Wn,p, showing that
Wn,p restricts to Kaledin’s construction on the subcategory of k-vectors spaces.

Theorem B. For every prime p and integer n ≥ 1, there is a surjective lax symmetric monoidal
natural transformation

wn∶Wn,p(R/p;M/p)Ð→ Qn(R;M).

It is an isomorphism when R is a commutative ring with no p-power torsion, R/p is perfect, and
M is a free R-module. It follows that Wn,p(k;V ) is isomorphic to the polynomial Witt vectors
W̃n(V ) of [Kal18a] for every k-vector space V and perfect field k of characteristic p.

When M = R the isomorphism of the theorem recovers the fact that if R has no p-power
torsion and is commutative, with perfect R/p, then Wn(R/p) ≅ R/pn.

In homotopy theory, the ring of Witt vectors arises when one considers the cyclotomic struc-
ture on topological Hochschild homology. Hesselholt and Madsen show in [HM97] and [Hes97]
that the p-typical Witt vectors of a ring R are isomorphic to π0 of the p-typical topological
restriction homology spectrum TR(R). In [LM12] Lindenstrauss and McCarthy define a version
of TR with coefficients in an R-bimodule, as the derived cyclic invariants

TR⟨pn⟩(R;M) = (M7
R
pn)Cpn

of a genuine Cpn-spectrum M7
R
pn , which is the derived analogue of the algebraic cyclic tensor

product used in the definition of the Witt vectors. The foundations of this theory have been
reworked in [KMN22] by McCandless and the second and third authors, in a way analogous
to the approach to topological cyclic homology of [NS18]. In particular for every prime p and
integer n ≥ 0, the authors give a description of TR as an equaliser

TR⟨pn⟩(R;M) = eq ( ∏ni=0 THH(R;M∧Rp
i

)hCpi //
// ∏n−1

i=0 (THH(R;M∧Rp
i+1

)tCp)hCpi )

where THH(R;M) is the usual topological Hochschild homology spectrum with coefficients, and
THH(R;M∧Rp

i

) carries a certain action of the cyclic group Cpi . The maps of the equaliser are
defined from the canonical map from homotopy fixed-points to the Tate construction, and from
certain Frobenius maps THH(R;M)→ THH(R;M∧Rp)tCp (see §2). From this equaliser formula
one can easily deduce, for every spectrum A, an equivalence

TR⟨pn⟩(S;A) = (NCpn
e A)Cpn

with the genuine fixed-points of the norm construction of cyclic p-groups of Stolz [Sto11] and
Hill-Hopkins-Ravenel [HHR16]. The components of this norm have been computed by Mazur
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when A = H Fp (see [BGHL19, Proposition 5.23]), and for p = 2 and n = 1 in [DMPR21,
Proposition 5.5]. In Theorem 2.5 we extend this calculation to all connective bimodules, showing
the following:

Theorem C. Let R be a connective ring spectrum and M a connective R-bimodule. There is a
canonical isomorphism

W⟨pn⟩(π0R;π0M) ≅ π0 TR⟨pn⟩(R;M),

which is moreover natural in (R;M) and monoidal. In particular for every connective spectrum
A, this gives an isomorphism W⟨pn⟩(Z;π0A) ≅ π0(N

Cpn
e A)Cpn with the components of the Hill-

Hopkins-Ravenel norm construction, which is a ring isomorphism when A is a ring spectrum.

The proof of this theorem is somewhat similar to Hesselholt and Madsen’s proof of the
isomorphism between the usual p-typical Witt vectors Wn+1(A) and the components of the
Cpn -fixed points of THH(A), for a commutative ring A. The argument is by induction, by
comparing certain fibre sequences for TR established in [KMN22] with the exact sequences for
the Witt vectors from [DKNP22, §1.5]. A similar description of the components of the norm for
any finite group G has been obtained by Read in [Rea23], with a variation of our Witt vectors
construction.

By a result of [KMN22], the spectrum TR⟨pk⟩(R;M∧Rp
n−k

) is the Cpk -fixed-points of a gen-
uine Cpn-spectrum TR⟨pn⟩(R;M), for every 0 ≤ k ≤ n. For example, when R is the sphere
spectrum this is the cyclic norm construction

TR⟨pn⟩(S;A) = NCpn
e A

for every spectrum A. In Proposition 2.13 we identify the Mackey structure on π0TR⟨pn⟩(R;M)
in terms of the Witt vectors operators introduced in [DKNP22] and in §1.2. The characterisation
of this Mackey structure suggests a relationship between the Witt vectors with coefficients and
the free Tambara functor on a commutative ring. In [Bru05, Theorem B] Brun describes the
free Cpn -Tambara functor on a commutative ring with trivial Cpn -action in terms of the usual
ring of Witt vectors Wn+1(A). In §2.3 we show that the Witt vectors with coefficients in fact
compute the free Cpn -Tambara functor on every commutative ring.

Corollary D. Let A be a commutative ring, p a prime and n ≥ 0 an integer. The association
Cpi ↦ Wi+1(Z;A⊗pn−i) equipped with the operators F , V and N of §1.2 form a Cpn-Tambara
functor, which is the free Cpn-Tambara functor on the commutative ring A.
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1 The p-typical Witt vectors with coefficients
In [DKNP22] we defined the Witt vectors with coefficients in a way analogous to the definition
of the (big) Witt vectors of a commutative ring in terms of power series [Car67]. In this section
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we give an alternative description of the p-typical Witt vectors with coefficients, more in line
with the usual construction of p-typical Witt vectors for commutative rings of [Wit37].

We start by recalling the definition of Witt vectors with coefficients of [DKNP22]. Let R be
a ring and M an R-bimodule. We let T̂ (R;M) =∏n≥0M

⊗Rn be the completed tensor algebra,
and Ŝ(R;M) = 1 ×∏n≥1M

⊗Rn ⊂ T̂ (R;M) the multiplicative subgroup of special units. We
denote the elements of this group by power series

1 +m1t +m2t
2 + . . .

with mi ∈M⊗Ri, and we let τ ∶M → Ŝ(R;M) be the map that sends m to the power series 1−mt.
The (big) Witt vectors of R with coefficients in M are defined in [DKNP22] as the group

W (R;M) = Ŝ(R;M)ab

τ(rm) ∼ τ(mr)

where the relation runs over all m ∈M and r ∈ R, and the abelianisation and the quotient are
taken in Hausdorff topological groups, that is we quotient by the closure of the normal subgroup
generated by the relations.

Given a truncation set S ⊂ N, one can define the S-truncated Witt-vectors as a quotient of
W (R;M). In the present papers we will be interested in the truncation sets consisting of the
powers of a prime, and in this case the truncated Witt vectors are defined as follows.

Definition 1.1 ([DKNP22]). Let p be a prime and n ≥ 0 an integer. The p-typical (n + 1)-
truncated Witt vectors of R with coefficients in M is the abelian group W⟨pn⟩(R;M) defined as
the quotient of W (R;M) by the closed subgroup generated by the elements of the form

1 −m1 ⊗ ⋅ ⋅ ⋅ ⊗mkt
k,

where k ∉ {1, p, p2, . . . , pn} and m1, . . . ,mk ∈M .

The truncated Witt vectors have operators analogous to those of the usual Witt vectors,
which will play a crucial role in the rest of the paper. The functor W⟨pn⟩ from the category
biMod of pairs (R;M) has a lax symmetric monoidal structure [DKNP22, Proposition 1.27].
The operators are defined in [DKNP22, §1.3,1.5], and in the truncated case above they take the
form of natural transformations

F = Fp∶W⟨pn⟩(R;M)Ð→W⟨pn−1⟩(R;M⊗
R
p) V = Vp∶W⟨pn−1⟩(R;M⊗

R
p)Ð→W⟨pn⟩(R;M)

R∶W⟨pn⟩(R;M)Ð→W⟨pn−1⟩(R;M) τ = τ1∶M Ð→W⟨pn⟩(R;M)

σ∶W⟨pn⟩(R;M⊗Rk)Ð→W⟨pn⟩(R;M⊗Rk)

The maps F and R are respectively called the Frobenius and restriction map, and they are
monoidal. The map V is called the Verschiebung, and it is additive, whereas τ is called the
Teichmüller map and it is monoidal (with respect to the tensor product over Z on the source).
The map σ is an automorphism of order k, which we call the Weyl action of Ck. These maps
satisfy certain relations which are detailed in [DKNP22, Proposition 1.31].

1.1 The p-typical Witt vectors with coefficients in Witt coordinates
In this section we will give a description forW⟨pn⟩(R;M) in terms of sequences of p-powers ofM ,
which is more in line with the classical definition of the p-typical Witt vectors (see e.g. [Wit37]),
as well as Hesselholt’s construction of p-typical Witt vectors for non-commutative rings. Let us
define a map

γ∶
n

∏
i=0

M⊗
R
pi Ð→W⟨pn⟩(R;M)
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by sending a sequence (m0,m1, . . . ,mn) to the equivalence class of ∏ni=0(1 −mit
pi), where the

product is taken in the completed tensor algebra (see e.g. [Hes15, Prop 1.14] for the case M = R
commutative but notice the different sign convention).

In order to analyse this map we make use of a version with coefficients of the ghost map.
The cyclic tensor power of M is defined for every j ≥ 0 as the abelian group

M⊚
R
pj =M⊗

R
pj /[R,M⊗

R
pj ],

where [R,M⊗
R
pj ] is the abelian subgroup generated by the elements rm −mr for r ∈ R and

m ∈M⊗
R
pj . The cyclic group Cpj of order pj acts on this abelian group by cyclically permuting

the tensor factors, and for all l ≤ j we write (M⊚
R
pj)Cpl for the subgroup of invariants of a cyclic

subgroup Cpl ≤ Cpj . The transfer maps for this cyclic action are denoted by

tr
Cpj

C
pl
∶ (M⊚

R
pj)Cpl Ð→ (M⊚

R
pj)Cpj .

We also let (●)⊗p
k

be the composite

(●)⊗p
k

∶M⊗
R
pi Ð→ ((M⊗

R
pi)⊗Rp

k

)Cpk ≅ (M⊗
R
pi+k)Cpk Ð→ (M⊚

R
pi+k)Cpk

where the first map sends x to x⊗p
k

, the isomorphism is the canonical associativity isomorphism
of the monoidal structure on R-bimodules, and the last map is the canonical projection onto
the quotient.

Definition 1.2. The j-th p-typical ghost map is the map wj ∶∏ni=0M
⊗
R
pi → (M⊚

R
pj)Cpj defined

by

wj(m0, . . . ,mn) ∶=
j

∑
i=0

tr
Cpj

Cpj−i
(m⊗pj−i

i ),

for every 0 ≤ j < n + 1. The product of these maps w∶∏ni=0M
⊗
R
pi →∏nj=0(M⊚

R
pj)Cpj is called the

p-typical ghost map.

We observe that for M = R there are canonical isomorphisms of abelian groups R⊗
R
pj ≅ R

and (R⊚
R
pj)Cpj ≅ R/[R;R], and wj corresponds to the usual Witt polynomial

wj(r0, . . . , rn) =
j

∑
i=0

pirp
j−i
i .

We recall that Hesselholt’s definition of the p-typical Witt vectors of a non-commutative
ring R of [Hes97] is a complicated quotient of the product of copies of R. Thus if we want
our construction to specialise to his when M = R, we need to define an equivalence relation
on ∏ni=0M

⊗
R
pi . Informally, we define the smallest equivalence relation which makes the ghost

map injective when (R;M) is free, and such that the resulting functor commutes with reflexive
coequalisers of bimodules.

We let biMod be the category of bimodules, whose objects are pairs (R;M) of a ring R and
an R-bimodule M , and a morphism (R;M)→ (R′;M ′) is a pair (α; f) of a ring homomorphism
α∶R → R′ and a map of R-bimodules f ∶M → α∗M ′. Clearly the tensor power and cyclic tensor
powers introduced above are functors on the category biMod by applying the map f factorwise
on elementary tensors, and we will often drop α from the notation and denote a morphism only
by f ∶M → M ′. We say that a bimodule (R;M) is free if R is a free ring and M is a free
R-bimodule. A free resolution of (R;M) is a reflexive coequaliser diagram

(S;Q)
f
//

g
// (S;Q)oo ε // // (R;M)
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in the category biMod, where (S;Q) and (S;Q) are free. For more details on free resolutions
in biMod we refer to [DKNP22, §1.1], and we recall in particular that reflexive coequalisers in
biMod are computed on the underlying pairs of sets.

Definition 1.3. Let M be an R-bimodule and (S;Q)
f
//

g
// (S;Q)oo ε // // (R;M) a free resolution.

We let R be the equivalence relation on ∏n−1
i=0 M

⊗
R
pi generated by

a ∼ b⇔

⎧⎪⎪⎪⎪⎨⎪⎪⎪⎪⎩

there exist q and u in ∏n−1
i=0 Q

⊗
S
pi and z in ∏n−1

i=0 Q
⊗
S

pi such that:
ε∗q = a and ε∗u = b in ∏n−1

i=0 M
⊗
R
pi ,

w(q) = w(f∗(z)) and w(u) = w(g∗(z)) in ∏n−1
j=0 (Q⊚

S
pj)Cpj .

We denote the orbits of this relation by Wn,p(R;M) ∶= (∏n−1
i=0 M

⊗
R
pi)/R.

Proposition 1.4. The equivalence relation R is independent of the choice of free resolution.
Every bimodule homomorphism f ∶M →M ′ induces a map

f∗∶Wn,p(R;M)Ð→Wn,p(R′;M ′)

defined as the quotient of the product map ∏n−1
i=0 f

⊗Rp
i

, makingWn,p∶biMod→ Set into a functor.
This functor commutes with reflexive coequalisers, and in particular a free resolution of (R;M)
induces a reflexive coequaliser of sets

Wn,p(S;Q) //
// Wn,p(S;Q)oo // // Wn,p(R;M) .

The ghost map w descends to a natural transformation w∶Wn,p(R;M)→∏n−1
j=0 (M⊚

R
pj)Cpj , which

is injective when (R;M) is free.

Proof. Let (S;Q) //
// (S;Q)oo // // (R;M) and (S′;Q′) //

// (S′;Q′)oo // // (R;M) be two free resolu-
tions of (R;M). We claim that there are vertical arrows

(S′;Q′)

k

��

f ′
//

g′
// (S′;Q′)

h

��

ε′ // // (R;M)

(S;Q)
f
//

g
// (S;Q) ε

// // (R;M)

such that hf ′ = fk, hg′ = gk and εh = ε′. By applying the functor ∏n−1
i=0 (−)⊗(−)p

i

to this diagram
this immediately implies that the equivalence relation induced by the first resolution is coarser
than the second. By reversing the roles of the resolutions the two relations are equal. Let us
write (S′;Q′) = F (X,Y ) as the free bimodule generated by a pair of sets (X,Y ). That is,
S′ = Z{X} is the free ring on X and Q′ = (Z{X}⊗ Z{X}op)(Y ) is the free S′-bimodule on Y .
We define h as the adjoint of the map of pairs of sets

h∶ (X,Y ) ε′Ð→ (UR,UM) tÐ→ (US,UQ)

where t is a section for the map Uε in the category Set × Set. In order to define k, let us write
(S′;Q′) = F (Z,W ) for some sets (Z,W ), and define the adjoint map k∶ (Z,W ) → U(S;Q) on
a pair of elements (z,w) as follows. Since f, g and their common section are additive (both on
bimodules and underlying rings), the relation on Q

q ∼ q′ if there is q ∈ Q such that f(q) = q and g(q) = q′

7



whose quotient is M is already an equivalence relation, and similarly for the ring components.
Since εhf ′(z,w) = εhg′(z,w) and (R;M) is the coequaliser of the second resolution, there is
an element (s, q) ∈ (S;Q) such that f(s, q) = hf ′(z,w) and g(s, q) = hg′(z,w), and we set
k(z,w) ∶= (s, q). By construction the diagram above commutes, and this concludes the proof of
the independence on the free resolution.

Every bimodule (R;M) has a canonical free resolution provided by the free-forgetful adjunc-
tion to Set×Set, given by

FUFU(R;M) //
// FU(R;M)oo // // (R;M)

(see [DKNP22, §1.1]), which is functorial in (R;M). Using this resolution to compute the
quotient it is immediate to verify that the tensor power of a morphism is well-defined on the
quotient, and therefore thatWn,p is a functor. If (R;M) is free, by computing the quotient using
the constant resolution we see that Wn,p(R;M) is exactly the quotient of the product which
makes the ghost map injective. It follows that the wj are well-defined maps out of Wn,p(R;M)
for free (R;M), and that they define a natural transformations on free modules.

Let us show that Wn,p of a free resolution is a reflexive coequaliser. This will in particular
imply that wj descends to a well-defined natural transformation on Wn,p(R;M) for all (R;M).
Given a general free resolution as above, we choose a common section s∶S → S, and we regard
Q as an S-bimodule via this map. Since reflexive coequalisers commute with tensor powers and
with products of S-bimodules, we obtain a reflexive coequaliser of abelian groups

∏n−1
i=0 Q

⊗
S
pi //

// ∏n−1
i=0 Q

⊗
S
pioo // // ∏n−1

i=0 M
⊗
S
pi =∏n−1

i=0 M
⊗
R
pi ,

whereM is regarded as an S-bimodule via the surjection S → R. Since Q⊗
S
pi → Q⊗

S

pi is surjective
the diagram

∏n−1
i=0 Q

⊗
S

pi //
// ∏n−1

i=0 Q
⊗
S
pioo // // ∏n−1

i=0 M
⊗
R
pi

is also a coequaliser of abelian groups, and therefore of sets. By modding out the relation which
makes the ghost map injective from the first two sets, we obtain a commutative diagram

∏n−1
i=0 Q

⊗
S

pi //
//

����

∏n−1
i=0 Q

⊗
S
pioo // //

����

∏n−1
i=0 M

⊗
R
pi

����

Wn,p(S;Q) //
// Wn,p(S;Q)oo // // C

where C is the coequaliser of the bottom row. By definition, Wn,p(R;M) is the quotient of
∏n−1
i=0 M

⊗
R
pi by the equivalence relation which makes the right vertical map injective, and thus

bijective.
Now let (T ;P ) //

// (S;N)oo // // (R;M) be a reflexive coequaliser. By applying the functorial
free resolution given by the free forgetful adjunction we obtain a commutative diagram

FUFU(T ;P ) //
//

����

FUFU(S;N)

����

oo // // FUFU(R;M)

����

FU(T ;P ) //
//

����

FU(S;N)oo // //

����

FU(R;M)

����

(T ;P ) //
// (S;N)oo // // (R;M)

Since reflexive coequalisers of bimodules are computed on underlying sets, FU commutes with
reflexive coequalisers, hence the rows of this diagrams are reflexive coequalisers. By applying

8



Wn,p we obtain a diagram where all the columns and the upper two rows are coequalisers, by
the previous argument. Since colimits commute with each other the bottom row must also be a
coequaliser, concluding the proof.

Example 1.5.

1. If (R;M) is free, Wn,p(R;M) is the quotient of ∏n−1
i=0 M

⊗
R
pi by the smallest equivalence

relation that makes w into an injective map.

2. If R is a commutative ring and M = R, we have that as sets Wn,p(R;R) = R×n. If R has
no p-torsion, this is because the ghost map

w∶R×n ≅
n−1

∏
i=0

R⊗
R
pi Ð→

n−1

∏
i=0

(R⊚
R
pj)Cpj ≅ R×n,

which is given by the usual Witt polynomials, is already injective. In general, one can
resolve (R;R) by the bimodules (Z[R];Z[R]) and (Z[Z[R]];Z[Z[R]]) given by the free
commutative rings. Thus the isomorphism with the product in the free case induces an
isomorphism on the coequaliser Wn,p(R;R) = R×n.

3. The 0-th ghost map induces a natural bijection W1,p(R;M) ≅ M/[R,M]. This is clear
when (R;M) is free, and in general it is the case since both W1,p(R;M) and M/[R,M]
commute with reflexive coequalisers.

4. When R is a commutative ring andM is an R-module, we will see in Proposition 1.9 below
that there is a natural bijection

W2,p(R;M) ≅M × (M⊗
R
p)Cp .

5. If R is commutative and torsion-free, and M is a free R-module, there is a canonical
bijection

Wn,p(R;M) ≅
n−1

∏
i=0

(M⊗
R
pi)Cpi ,

but in general the higher truncations Wn,p(R;M) are difficult to describe as sets (cf.
Proposition 1.16).

Before stating the main Theorem of this section, we recall that the category biMod has a
symmetric monoidal structure, defined by the componentwise tensor product over Z. We endow
the functors M⊚

R
pj from biMod to Cpj -equivariant abelian groups with the canonical monoidal

structure
M⊚

R
pj ⊗N⊚

S
pj ≅ (M ⊗N) ⊚

R⊗S
pj

defined from the shuffle permutations, and their fixed-points with the canonical induced lax-
monoidal structure.

Theorem 1.6. The map γ that sends (m0,m1, . . . ,mn) to the equivalence class of ∏ni=0(1 −
mit

pi) descends to a bijection γ∶Wn+1,p(R;M) ≅Ð→W⟨pn⟩(R;M) for every integer n ≥ 0 and any
prime p. The diagram

Wn+1,p(R;M)
≅

γ
//

w
((

W⟨pn⟩(R;M)

tlog⟨pn⟩vv

∏nj=0(M⊚
R
pj)Cpj

9



commutes, where tlog⟨pn⟩ is the logarithmic derivative of [DKNP22, Propositions 1.18 and 1.41].
The abelian group structure and the lax symmetric monoidal structure on Wn+1,p which corre-
spond to those of W⟨pn⟩ are the unique ones such that the ghost maps wj ∶Wn+1,p(R;M) →
(M⊚

R
pj)Cpj are additive symmetric monoidal transformations for all 0 ≤ j < n + 1.

Proof. First, we show that γ∶∏ni=0M
⊗
R
pi → W⟨pn⟩(R;M) is surjective. Any power series 1 +

∑k≥1 akt
k representing an element of W (R;M) can be written uniquely as

1 +∑
k≥1

akt
k =

∞

∏
i=1

(1 − biti)

in the completed tensor algebra, with bi ∈M⊗Ri. Thus any element x of the quotientW⟨pn⟩(R;M)
can be represented by an element of the form∏ni=0(1−citp

i

) with ci ∈M⊗Rp
i

, that is γ(c0, . . . , cn) =
x, which proves that γ is surjective.

Now let us show that γ descends to a well-defined isomorphism. Let us first assume that
(R;M) is free. In this case Wn+1,p(R;M) is the quotient of ∏ni=0M

⊗
R
pi by the relation that

makes the ghost map injective. The ghost map factors as

w∶
n

∏
i=0

M⊗
R
pi γÐ→W⟨pn⟩(R;M)

tlog⟨pn⟩ÐÐÐÐ→
n

∏
j=0

(M⊚
R
pj)Cpj ,

since tlog⟨pn⟩(1 − mit
pi) = tr

Cpi
e mit

pi + tr
Cpi+1
Cp

mp
i t
pi+1 + . . ., so that the coefficient of tp

j

in
tlog⟨pn⟩ γ(m0, . . . ,mn) is given by wj(m0, . . . ,mn). Thus γ descends to a well-defined injection
Wn+1,p(R;M)→W⟨pn⟩(R;M). It is therefore an isomorphism, and the diagram of 1.6 commutes.

In general, we choose a free resolution of (R;M). Since γ is an isomorphism for the free
resolution, it induces an isomorphism on the coequalisers γ∶Wn+1,p(R;M)→W⟨pn⟩(R;M).

The ghost maps wj are additive and symmetric monoidal because tlog⟨pn⟩ is, by [DKNP22].
To see that the additive structure and the symmetric monoidal structure are unique with this
property, it is sufficient to see this on the subcategory of free bimodules since Wn+1,p commutes
with reflexive coequalisers. In this case the uniqueness follows by the injectivity of the ghost
map.

Corollary 1.7. For every ring R, the abelian group W⟨pn⟩(R;R) is isomorphic to the p-typical
(n+ 1)-truncated Witt vectors Wn+1(R) of [Hes97], naturally in R. If R is moreover commuta-
tive, W⟨pn⟩(R;R) is isomorphic to the usual p-typical (n + 1)-truncated Witt vectors of R as a
commutative ring.

Proof. The claim for commutative rings follows from the characterisation of the ring structure
in ghost components of 1.6 and the fact that in this case, as a set, Wn+1,p(R;R) is R×n+1 by
1.5. In the non-commutative case we need to make sure that the quotient of ∏ni=0R

⊗Rp
i

= R×n+1

defining Wn+1,p(R;R) agrees with the quotient defining Wn+1(R) from [Hes05]. When R is free
the projection R×n+1 →Wn+1(R) descends to an injection

Wn+1,p(R;R)Ð→Wn+1(R)

since the ghost map of Wn+1(R) is injective [Hes05, 1.3.7]. This is therefore an isomorphism
for free rings, and it descends to an isomorphism in general since both sides commutes with
reflexive coequalisers (Wn+1(R) does as a consequence of the identification with TRn+1

0 (R) of
[Hes05]).

Remark 1.8. In [Rea23] Read provides a more general construction of G-typical Witt vectors
with coefficients for any profinite group G. For G = Cpn Read’s construction specialises to the
(n + 1)-truncated p-typical Witt vectors with coefficients defined above.

10



Proposition 1.9. Let R be a commutative ring and M an R-module. Then the canonical
projection M ×M⊗

R
p →W2,p(R;M) descends to a bijection

W2,p(R;M) ≅M × (M⊗
R
p)Cp .

Proof. Suppose first that R is torsion-free and that M is a free R-module. Let us first prove
that the transfer map

trCpe ∶ (M⊗
R
p)Cp Ð→ (M⊗

R
p)Cp

is injective. The composition of the transfer with the projection (M⊗
R
p)Cp → (M⊗

R
p)Cp is mul-

tiplication by p. By writing M as the free R-module R(X) on a set X, we see that the orbits

R(X×p)Cp ≅ R(X×p/Cp)

also form a free R-module, and since R has no torsion multiplication by p is injective. By
[DKNP22, Proposition 1.41] tlog⟨p⟩ is injective, and by 1.6 so is the ghost map of W2,p(R;M).
Now consider the commutative square of sets

M ×M⊗
R
p //

��

M × (M⊗
R
p)Cp

w

��

W2,p(R;M)

77

w
// M × (M⊗

R
p)Cp

where the unlabelled maps are the projections, the lower map w is injective by the argument
above, and the vertical w is injective since the transfer is. The dashed arrow exists by the
injectivity of the right vertical map and surjectivity of the left vertical map. It is surjective by
the surjectivity of the top horizontal map, and injective by the injectivity of the lower horizontal
map.

Without freeness assumptions on R and M , the dashed map induces a bijection since both
W2,p(R;M) and M × (M⊗

R
p)Cp commute with reflexive coequalisers.

Remark 1.10. In general there is no product decomposition analogous to Proposition 1.9 for
Wn,p(R;M) for n ≥ 3, since in this case the right vertical map w of the diagram of the proof is
generally not injective (see however Proposition 1.16 for the free case).

In the rest of the section we try to get a feeling of this construction by describing explicitly the
lower components of the addition and the symmetric monoidal structure of Wn+1,p of Theorem
1.6. As for the classical Witt vectors, there is no closed formulas for the components of the sum of
two sequences a = (a0, a1, . . . , an) and b = (b0, b1, . . . , bn). The characterisation in terms of ghost
components of Theorem 1.6 gives however an inductive procedure for calculating them. The
examples below in particular identifyW2,2(Z;A) of a commutative ring A with the “2-truncated
non-commutative ring of Witt vectors” W⊗

2 (A) of [DMPR21].

Example 1.11. Suppose that R is commutative and M is an R-module. Under the canonical
bijection W2,p(R;M) ≅M × (M⊗

R
p)Cp of Proposition 1.9, we find that

a + b = (a0 + b0, a1 + b1 − ∑
{∅≠U⊊p}/Cp

tU1 (a0, b0)⊗ ⋅ ⋅ ⋅ ⊗ tUp (a0, b0))

where the sum runs through the orbits of the standard Cp-action on the set of proper non-empty
subsets of the p-elements set, and tUi (a0, b0) = a0 if i ∈ U , and tUi (a0, b0) = b0 otherwise. For
example for the primes p = 2,3 these are respectively

a + b = (a0 + b0, a1 + b1 − a0 ⊗ b0)
a + b = (a0 + b0, a1 + b1 − a0 ⊗ b0 ⊗ b0 − b0 ⊗ a0 ⊗ a0).

11



This expression is not well-defined inM ×M⊗
R
p , as it requires a choice of orbit representatives of

(M⊗
R
p)Cp . We observe the resemblance with the universal polynomials for the sum of the usual

Witt vectors. In fact these are the usual universal polynomials when M = R.
Example 1.12. Let R be a commutative ring and M an R-algebra. The first two components
of the product of a = (a0, a1) and b = (b0, b1) in W2,p(R;M) ≅M × (M⊗

R
p)Cp are

a ⋅ b = (a0 ⋅ b0, a⊗p0 ⋅ b1 + a1 ⋅ b⊗p0 + ∑
σ∈Cp

a1 ⋅ σ(b1)).

The term a⊗p0 ⋅ b1 ∈ (M⊗Rp)Cp is clearly independent on the choice of orbit representative for b1,
and similarly for a1 ⋅b⊗p0 . The sum over Cp is clearly independent on the choice of representative
for b1, and if we choose a different representative τ(a1) for some τ ∈ Cp we have

∑
σ∈Cp

τ(a1) ⋅ σ(b1) = τ( ∑
σ∈Cp

a1 ⋅ τ−1σ(b1)) = τ( ∑
σ∈Cp

a1 ⋅ σ(b1)) = ∑
σ∈Cp

a1 ⋅ σ(b1)

in the set of coinvariants (M⊗Rp)Cp . Thus this expression is well-defined in the coinvariants. It
is moreover not difficult to see that the last sum is symmetric in a and b. In particular we see
directly that W2,p(R;M) is a commutative ring when M is commutative.

1.2 p-typical operators
In this section we describe the operators on the truncated Witt vectors under the isomorphism
of Theorem 1.6, and investigate some of their properties. Under the isomorphism of Theorem
1.6 the Witt vectors operators of [DKNP22, §1.5] take the form

F = Fp∶Wn+1,p(R;M)Ð→Wn,p(R;M⊗
R
p) V = Vp∶Wn,p(R;M⊗

R
p)Ð→Wn+1,p(R;M)

R∶Wn+1,p(R;M)Ð→Wn,p(R;M) τ ∶M Ð→Wn,p(R;M)

σ∶Wn,p(R;M⊗Rk)Ð→Wn,p(R;M⊗Rk)

It is not difficult to see that the maps V,R and τ can be described on representatives by

V (x0, . . . , xn−1) = (0, x0, . . . , xn−1)
R(m0, . . . ,mn) = (m0, . . . ,mn−1)

τ(m) = (m,0, . . . ,0).

The Frobenius and the cyclic action do not however admit closed formulas on representatives.
Their lowest components are computed in the following examples over a commutative base ring.

Example 1.13. Suppose that R is commutative and that M is an R-module. Under the
bijection W2,p(R;M) ≅M × (M⊗

R
p)Cp , F and σ are described as follows:

1. Let (a0, a1, a2) represent an element a ∈ W3,p(R;M). The element F (a) ∈ M⊗Rp ×
(M⊗Rp

2

)Cp is represented by a pair of the form (w1(a0, a1), x1). For p = 2 the element
x1 ∈M⊗R4 is given by

x1 = a2 + σ2a2 − a1 ⊗ (σ1a1) − a⊗2
0 ⊗ (trC2

e a1) − z(a1),

where σi generates C2i , and z(a1) is a certain element of M⊗R4 such that

(σ1a1)⊗2 − σ2(a⊗2
1 ) = trC2

e (z(a1)).

When M is free this difference can be uniquely expressed as a transfer, and z(a1) is well-
defined modulo C2-coinvariants. In general, one needs to calculate z(q1) where q1 is a lift
of a1 to a free resolution ε∶Q↠M , and z(a1) = εz(q1).

12



2. For every x0 ∈ M⊗Rk the difference (σkx0)⊗p − σkp(x⊗p0 ) is in the image of the transfer
tr
Cp
e ∶M⊗Rkp → (M⊗Rkp)Cp , where σn generates M⊗Rn. This difference is zero on elemen-

tary tensors, and on their sums it is a transfer by the binomial formula. When M is free
this transferred term is unique, and

σ(x0, x1) ∶= (σkx0, σkpx1 − (trCpe )−1((σkx0)⊗p − σkp(x⊗p0 ))).

When M is not free, one chooses a preimage of the transferred term in a free resolution of
M , and then uses its image in M in the same formula.

The Verschiebung and Frobenius maps are equivariant with respect to the cyclic action of
Cp, and in fact their iterations are invariant by the action of the higher order cyclic groups. In
particular they define maps

V k ∶Wn,p(R;M⊗
R
pk)C

pk
→Wn+k,p(R;M) , F k ∶Wn+k,p(R;M)→Wn,p(R;M⊗

R
pk)Cpk .

The cokernel of the Verschiebung is in fact an iteration of R, since by [DKNP22, Proposition
1.43] there are exact sequences

Wn,p(R;M⊗
R
pk)C

pk

V kÐ→Wn+k,p(R;M) RnÐ→Wk,p(R;M)→ 0

for every n, k ≥ 1. Moreover V k is injective when (M⊚
R
pl)C

pl
has no p-torsion for all k ≤ l ≤ k+n−1,

by [DKNP22, Proposition 1.44] (for example if (R;M) is free), but not in general (see [Hes05] for
a counterexample where M = R with R non-commutative). We now explore some consequences
of the existence of these exact sequences.

Let us denote by
τk ∶M⊗Rp

k

Ð→Wn,p(R;M⊗Rp
k

)

the Teichmüller map for the R-bimoduleM⊗Rp
k

. When R = Z andM = Z(X) is the free abelian
group on a set X, the ghost map of the Witt vectors W⟨pn⟩(Z;Z(X)) is injective with target a
free abelian group, and thus W⟨pn⟩(Z;Z(X)) is also free abelian. In the following we describe a
basis, analogous to the basis for the usual Witt vectors of Z from [Hes15, Proposition 1.6].

Proposition 1.14. Let Z(X) be the free abelian group on a set X. Then there is an isomor-
phism of abelian groups

W⟨pn⟩(Z;Z(X)) ≅
n

⊕
i=0

⊕
x∈X×pi /Cpi

Z ⋅V iτn−i(x1 ⊗ ⋅ ⋅ ⋅ ⊗ xpi).

Under this isomorphism, the monoidal structure map ⋆∶W⟨pn⟩(Z;Z(X)) ⊗W⟨pn⟩(Z;Z(Y )) →
W⟨pn⟩(Z;Z(X)⊗Z(Y )) multiplies two generators by the formula

V iτn−i(x1 ⊗ ⋅ ⋅ ⋅ ⊗ xpi) ⋆ V jτn−j(y1 ⊗ ⋅ ⋅ ⋅ ⊗ ypj) = ∑
σ∈Cpi

V j(τn−j((σ(⊗p
i

l=1xl))
⊗pj−i ⊗ (⊗p

j

h=1yh)))

if i ≤ j, and

V iτn−i(x1 ⊗ ⋅ ⋅ ⋅ ⊗ xpi) ⋆ V jτn−j(y1 ⊗ ⋅ ⋅ ⋅ ⊗ ypj) = ∑
σ∈Cpj

V i(τn−i((⊗p
i

l=1xl)⊗ (σ(⊗p
j

h=1yh))
⊗pi−j)))

if j ≤ i.
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Proof. There is a clear map from the free abelian group on the right to the Witt-vectors which
takes the sum. For n = 0, the map is an isomorphism since it is the canonical isomorphism
W⟨1⟩(Z;Z(X)) ≅ Z(X). Suppose by induction that the map is an isomorphism for n − 1, and
consider the map of exact sequences

0 // Z(X×pn/Cpn) //

≅

��

n

⊕
i=0

⊕
x∈X×pi /Cpi

Z ⋅V iτn−i(⊗p
i

l=1xl) //

��

n−1

⊕
i=0

⊕
x∈X×pi /Cpi

Z ⋅V iτn−1−i(⊗p
i

l=1xl) //

≅

��

0

0 // (Z(X)⊗p
n

)Cpn
V n // W⟨pn⟩(Z;Z(X)) R // W⟨pn−1⟩(Z;Z(X)) // 0

where the bottom row is exact since (Z;Z(X)) is free. The maps of the top row are respectively
the projection and the inclusion of the summand i = n, and the left square commutes by definition
since the left vertical map sends the orbit of (x1, . . . , xpn) to x1 ⊗ ⋅ ⋅ ⋅ ⊗ xpn . The right square
commutes since R is additive, Rτk = τk−1 (with the convention τ0 = id), RV i = V iR for i > 0,
and RV = 0. Thus the middle map is also an isomorphism.

Let us now determine the multiplication of the generators. We show that case i ≤ j, the
other is similar. We have that

V iτn−i(⊗p
i

l=1xl) ⋆ V
jτn−j(⊗p

j

h=1yh) = V
j((F jV iτn−i(⊗p

i

l=1xl)) ⋆ (τn−j(⊗p
j

h=1yh)))

= V j((F j−i ∑
σ∈Cpn /Cpn−i

στn−i(⊗p
i

l=1xl)) ⋆ (τn−j(⊗p
j

h=1yh)))

= ∑
σ∈Cpi

V j((F j−iτn−i(σ(⊗p
i

l=1xl))) ⋆ (τn−j(⊗p
j

h=1yh)))

= ∑
σ∈Cpi

V j((τn−j((σ(⊗p
i

l=1xl))
⊗pj−i)) ⋆ (τn−j(⊗p

j

h=1yh)))

= ∑
σ∈Cpi

V j(τn−j((σ(⊗p
i

l=1xl))
⊗pj−i ⊗ (⊗p

j

h=1yh)))

where the first equality holds by Frobenius reciprocity and the last by the monoidality of τ , from
[DKNP22, Proposition 1.27]. The second equality is the double-coset formula from [DKNP22,
Proposition 1.32, 5)], and the third follows from the equivariance of τ of [DKNP22, Proposition
1.25]. Finally, the fourth equality is the fact that for every k ≤ l, bimodule (R;M), and m ∈M

F kτ l(m) = τ l−k(m⊗pk)

in W⟨pl−k⟩(R;M⊗Rp
k

), which by the standard resolution argument can be verified in ghost com-
ponents, where

wjF
kτ l(m) = wj+k(m,0, . . . ,0) =m⊗pj+k = (m⊗pk)⊗p

j

= wj(τ l−k(m⊗pk)).

Proposition 1.15. A single Verschiebung V ∶Wn,p(R;M⊗
R
p)Cp → Wn+1,p(R;M) is injective

when R is a commutative ring and M is an R-module (considered as a bimodule with the same
left and right action).

Proof. By resolving in the subcategory of pairs of commutative rings and modules, we can
construct a reflexive coequaliser (S;Q) //

// (S;Q)oo // // (R;M) were S and S are free commutative
rings, Q is a free S-module and Q is a free S-module. Since Wn,p commutes with reflexive
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coequalisers we obtain a commutative diagram

Wn,p(S;Q⊗
S

p)Cp
f∗ //

��

V

��

g∗
// Wn,p(S;Q⊗

S
p)Cp

��

V

��

oo // // Wn,p(R;M⊗
R
p)Cp

V

��

Wn+1,p(S;Q)
f∗ //

g∗
// Wn+1,p(S;Q)oo // // Wn+1,p(R;M)

where the rows are reflexive coequalisers. The middle vertical map is injective by [DKNP22,
Proposition 1.44], since for Q = S(X) = ⊕XS the free module on a set X we have that

((S(X))⊚Sp
i

)Cpi ≅ (⊕X×piS)Cpi = S(X
×pi/Cpi)

is a free S-module, which is torsion-free since S is torsion-free. The same argument applies
to the left vertical map. Let x = (x0, . . . , xn−1) represent an element of Wn,p(S;Q⊗

S
p)Cp such

that V (x) is zero in the coequaliser Wn+1,p(R;M). Then there is an element q = (q0, . . . , qn) in
∏ni=0Q

⊗
S

pi such that wf∗q = wV (x) and wg∗q = 0 in ∏nj=0(Q⊗
S
pj)Cpj . In particular since Q is an

S-module
g(q0) = w0g∗q = 0 = w0f∗q = f(q0)

as elements of Q/[S,Q] = Q, and therefore g(q0)⊗p
i

= f(q0)⊗p
i

= 0 for all i ≥ 0. It follows that

wf∗(0, q1, . . . , qn) = wV (x) and wg∗(0, q1, . . . , qn) = 0,

or in other words that

wV f∗(q1, . . . , qn) = wV (x) and wV g∗(q1, . . . , qn) = 0.

Since V and w on the Witt vectors of Q are injective we have that f∗(q1, . . . , qn) = x and
g∗(q1, . . . , qn) = 0 in Wn,p(S;Q⊗

S
p)Cp , that is that x and zero define the same class in the

coequaliser Wn,p(R;M⊗
R
p)Cp .

Proposition 1.16. A choice of sections of the quotients M⊗
R
pi → (M⊚

R
pi)Cpi /kerV i determines

a bijection

Wn+1,p(R;M) ≅
n

∏
i=0

(((M⊚
R
pi)Cpi )/kerV i),

where V i is the iterated Verschiebung V i∶ (M⊚
R
pi)Cpi →Wi+1,p(R;M). In particular when M =

R, a choice of section for R → R/[R,R] determines a bijection Wn+1,p(R) ≅∏ni=0R/[R,R] when
R/[R,R] has no p-power torsion, as in [Hes05]. If R is commutative with no p-power torsion,
and M is a free R-module, there is a canonical bijection

Wn+1,p(R;M) ≅
n

∏
i=0

(M⊗
R
pi)Cpi .

Proof. A choice of section of M → M⊚
R
p0 = W1,p(R;M), followed by the map τ , determines a

splitting (as a map of sets) of the right-hang map of the exact sequence

Wn,p(R;M⊗
R
p)Cp

VÐ→Wn+1,p(R;M) RnÐ→M⊚
R
p0 → 0

from [DKNP22, Proposition 1.43], and thus a bijection

Wn+1,p(R;M) ≅M⊚
R
p0 × (Wn,p(R;M⊗

R
p)Cp)/kerV.
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A straightforward diagram chase on the diagram with exact rows

Wn−i,p(R;M⊗
R
pi+1)Cpi+1

V // Wn+1−i,p(R;M⊗
R
pi)Cpi

Rn−i //

V i

��

(M⊚
R
pi)Cpi

V i

��

// 0

Wn−i,p(R;M⊗
R
pi+1)Cpi+1

V i+1 // Wn+1,p(R;M) Rn−i // Wi+1,p(R;M) // 0

shows that the top sequence stays exact after quotienting by the kernel of V i, for every i =
0, . . . , n. A section of M⊗

R
pi → (M⊚

R
pi)Cpi /kerV i, followed by the map τ , determines a splitting

(as a map of sets) of the right-hang map of the top sequence quotiented by the kernel of V i.
Moreover the kernel of

V ∶Wn−i,p(R;M⊗
R
pi+1)Cpi+1 Ð→Wn+1−i,p(R;M⊗

R
pi)Cpi /kerV i

is equal to the kernel of V i+1. Thus by downward induction on i, we obtain a sequence of
bijections

Wn+1,p(R;M) ≅M⊚
R
p0 × (Wn,p(R;M⊗

R
p
Cp

)/kerV )

≅M⊚
R
p0 × ((M⊚

R
p)Cp/kerV ) × (Wn−1,p(R;M⊗

R
p2)Cp2 /kerV 2)

≅ . . .

≅M⊚
R
p0 × ((M⊚

R
p)Cp/kerV ) × ((M⊚

R
p2)Cp2 /kerV 2) × ⋅ ⋅ ⋅ × ((M⊚

R
pn)Cpn /kerV n).

If R is commutative without p-power torsion andM = R(X) is a free R-module, V is injective
by [DKNP22, Proposition 1.44] and the projection maps

M⊗
R
pk ≅ R(X×pk)→ R((X×pk)C

pk
) ≅ (M⊚

R
pk)C

pk

have canonical sections, induced by the maps (X×pk)C
pk

≅ hom(pk/Cpk ,X) → hom(pk,X) =
X×pk which precompose with the quotient map pk → pk/Cpk (here we denoted pk the set with
pk-elements).

Using the maps R we can also define

W∞,p(R;M) ∶= lim(W1,p(R;M) R←ÐW2,p(R;M) R←Ð . . . ).

It follows from Theorem 1.6 and [DKNP22, Lemma 1.37] that W∞,p(R;M) ≅ W⟨p∞⟩(R;M),
where ⟨p∞⟩ is the truncation set of all powers of p.

Proposition 1.17. Let R be a commutative Fp-algebra and M an R-algebra. Then V n(1) = pn
in Wn+m+1,p(R;M) for all n,m ≥ 0, and

W∞,p(R;−) = lim(W1,p(R;−) R←ÐW2,p(R;−) R←Ð . . . )

takes commutative R-algebras to commutative rings of characteristic zero.

Proof. Since R is an Fp-algebra there is a map of bimodules ι∶ (Fp;Fp)→ (R;M). By naturality
of V we have that

V n(1) = V n(ι(1)) = ιV n(1)

where the last Verschiebung V n is for the ring Fp, and it sends 1 to pn.
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The ring homomorphism η∶R → M defines a map of bimodules (R;M) → (M ;M), and
the induced map sends pn in W∞,p(R;M) to pn in W∞,p(M). When M is commutative the
Verschiebung of W∞,p(M) is injective and therefore V n(1) = pn ≠ 0 ∈W∞,p(M). Thus it must
be non-zero already in W∞,p(R;M).

Remark 1.18. Classically W∞,p(A) is p-complete when A is a commutative semi-perfect Fp-
algebra. With coefficients, we do always have a natural isomorphism

W∞,p(R;M) = lim
n≥1

Wn,p(R;M) ≅ lim
n≥1

W∞,p(R;M)/V n.

In other words the Z-module W∞,p(R;M) is complete with respect to the sequence of submod-
ules

ImV ⊃ Im(V 2) ⊃ ⋅ ⋅ ⋅ ⊃ Im(V n) ⊃ . . . .

When A is a semi-perfect commutative Fp-algebra the image of V n on the classical Witt
vectors is pnW∞,p(A), and the V -completeness statement above shows that W∞,p(A) is p-
complete. This characterisation of V follows from Frobenius reciprocity, the identity V (1) = p,
and the fact that F is surjective since for Fp-algebras it is of the form

F (a0, a1, . . . ) = (ap0, a
p
1, . . . ).

In pursuing a similar argument for the Frobenius ofW∞,p(Z;A) for a ring A, one would need the
p-th power map (−)⊗p∶A→ A⊗p to be additive. This is the case modulo the image of the transfer
map tr

Cp
e ∶A⊗p → A⊗p, and therefore one would require that tr

Cp
e = 0. This is however the case

only when A = Fp and this just recovers the standard completeness of W (Fp). Indeed since
µp tr

Cp
e 1 = p ∈ A the condition that tr

Cp
e = 0 forces A to be an Fp-algebra. By choosing a basis

of A as an Fp-vector space, we further see that A is of rank 1. Thus W∞,p(Z;A) =W∞,p(Fp;A)
does not seem to be p-complete for any ring except for A = Fp.

When M is a commutative R-algebra, we show below that the Teichmüller map τ ∶M →
Wn+1,p(R;M) factors through multiplicative norm maps

N ∶Wn,p(R;M⊗
R
p)Ð→Wn+1,p(R;M).

This map extends the norm map of the Witt vectors introduced by Angeltveit in [Ang15]
in the case where R = M . Let us consider the multiplicative map Nw ∶∏n−1

j=0 (M⊗
R
pj+1)Cpj →

∏nj=0(M⊗
R
pj)Cpj defined by

Nw(y0, y1, . . . , yn−1) ∶= (µpy0, ∏
σ∈Cp

σy0, ∏
σ∈Cp2 /Cp

σy1, . . . , ∏
σ∈Cpn /Cpn−1

σyn−1)

where µp∶M⊗
R
p →M is the multiplication map. Here we are using that, since R is commutative

and M is an R-module, M⊗
R
pj = M⊚

R
pj so that the product of cyclic tensors is well-defined, as

well as the commutativity of M so that this product is independent of the cyclic ordering.

Proposition 1.19. Let M be a commutative R-algebra. There is a unique natural map of
sets N ∶Wn,p(R;M⊗

R
p) → Wn+1,p(R;M), which we call the norm, such that wN = Nww. It is

multiplicative, unital, and it satisfies the identities

RN = NR
FN(x) =∏σ∈Cp σx

for every x ∈Wn,p(R;M⊗
R
p), where σ is the Weyl action.
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Proof. It is sufficient to show that such a unique natural transformation exists on pairs (R;M)
where R is a free commutative ring and M is a free commutative R-algebra. The map N for
a general pair will then be defined as the reflexive coequaliser of the map induced on the Witt
vectors of a free resolution (the fact that N is not a ring homomorphism is not an issue since
reflexive coequalisers of commutative rings are computed in sets). The map will be independent
on the choice of resolution since different free resolutions can be compared by a map as in the
proof of 1.4.

Let us then suppose that (R;M) is such a free pair and denote by ŵ the ghost map of
Wn,p(R;M⊗

R
p). We remark that since the ghost map w ofWn+1,p(R;M) is injective the existence

and uniqueness of N follow if we can prove that the image of Nwŵ is included in the image of w.
In order to verify this we use a version of the Dwork lemma with coefficients which characterises
the image of w. The proof of the lemma is technical and is deferred to the appendix A.8. It
states that when (R;M) is free (or more generally if it has an “external Frobenius”), there are
additive maps

φj ∶ (M⊚
R
pj)Cpj Ð→ (M⊚

R
pj+1)Cpj+1

such that a sequence (b0, b1, . . . , bn) of ∏nj=0(M⊚
R
pj)Cpj lies in the image of the ghost map w if

and only if
φj(bj) ≡ bj+1 mod tr

Cpj+1
e

for every 0 ≤ j < n, where the congruence is modulo the image of the additive transfer map
tr
Cpj+1
e ∶M⊚

R
pj+1 → (M⊚

R
pj+1)Cpj+1 . Thus we need to verify that the sequence

(µpŵ0, ∏
σ∈Cp

σŵ0, ∏
σ∈Cp2 /Cp

σŵ1, . . . , ∏
σ∈Cpn /Cpn−1

σŵn−1)

satisfies these congruences. We start by separately analyzing the first congruence

φµpŵ0x0 = φµpx0 = φw0µpx0 ≡ w1(µpx0) ≡ (µpx0)⊗p = ∏
σ∈Cp

σx0 mod trCpe ,

where the third equality is from the Dwork Lemma, and the last one can be easily verified on
elementary tensors. Now let us take j ≥ 1. When M is a free commutative R-algebra the maps
φj are moreover multiplicative (see A.5). They are defined before taking invariants, and they
satisfy φj−1σj−1 = σjφj−1 where σk denotes the action of a generator of Cpk (Lemma A.6 ).
Moreover the maps

Φj ∶= φj+1∶ (M⊗Rp)⊚Rp
j

=M⊚
R
pj+1 Ð→M⊚

R
pj+2 = (M⊗Rp)⊚Rp

j+1

satisfy the Dwork Lemma for the free R-module M⊗Rp (Lemma A.11). We can now verify that

φj ∏
σ∈Cpj /Cpj−1

σŵj−1 =
p

∏
l=1

φjσ
l
jŵj−1 =

p

∏
l=1

σlj+1φjŵj−1 = ∏
σ∈Cpj+1 /Cpj

σφjŵj−1

= ∏
σ∈Cpj+1 /Cpj

σΦj−1ŵj−1 = ∏
σ∈Cpj+1 /Cpj

σ(ŵj + tr
Cpj
e )

= ( ∏
σ∈Cpj+1 /Cpj

σŵj) + tr
Cpj+1
e ,

and therefore that Nwŵ lands in the image of w. The last equality follows from the Tambara
reciprocity relations of the Cpj+1-Tambara functor M⊗

R
pj+1 (see e.g. [HM19, Corollaries 2.6 and
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2.9]). It can also be verified directly as follows. For every subset V ⊂ {1, . . . , p} and 1 ≤ l ≤ p let
us define tVl ∶= σlj+1ŵj if l ∉ V , and tVl ∶= σlj+1 tr

Cpj
e if l ∈ V . Then

∏
σ∈Cpj+1 /Cpj

σ(ŵj + tr
Cpj
e ) = ∑

V ⊂{1,...,p}

tV1 t
V
2 . . . t

V
p = ( ∏

σ∈Cpj+1 /Cpj

σŵj) + ∑
∅≠V ⊂{1,...,p}

tV1 t
V
2 . . . t

V
p

= ( ∏
σ∈Cpj+1 /Cpj

σŵj) +
p

∑
l=1

∑
l∈V ⊂{1,...,p}

tV1 . . . t
V
l−1(σlj+1 tr

Cpj
e )tVl+1 . . . t

V
p

= ( ∏
σ∈Cpj+1 /Cpj

σŵj) +
p

∑
l=1

∑
l∈V ⊂{1,...,p}

σlj+1 tr
Cpj
e = ∏

σ∈Cpj+1 /Cpj

σ(ŵj) + tr
Cpj+1
e

where the third equality holds by Frobenius reciprocity.
The relations between N , R, F are easily verified in ghost components and are natural, and

therefore they hold in Witt coordinates by the usual resolution argument.

Remark 1.20. There are relations between N and V and N and the sum which are difficult to
express without the help of exponential diagrams. These are the Tambara reciprocity conditions
for norms and transfers and norms and sums of [Tam93, (2.1)(v)] (See also [HM19, Corollaries
2.6 and 2.9]). They can be directly verified in ghost coordinates using Tambara reciprocity for
the Cpj -Tambara functors (M⊗

R
pj)(−).

Proposition 1.21. WhenM is a commutative R-algebra, the map τ ∶M →Wn+1,p(R;M) agrees
with the composite

M
uÐ→M⊗

R
pn =W1,p(R;M⊗

R
pn) NÐ→W2,p(R;M⊗

R
pn−1) NÐ→ ⋅ ⋅ ⋅ NÐ→Wn+1,p(R;M),

where u(m) =m⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ 1.

Proof. In ghost components the iterated norm N sends x ∈M⊗
R
pn to

wNn(x) = (µnp(x), ∏
σ∈Cp

σµn−1
p (x), ∏

σ∈Cp2

σµn−2
p (x), . . . , ∏

σ∈Cpn

σ(x)),

where µn−ip is the composite of the multiplication maps

M⊗Rp
n µpÐ→M⊗Rp

n−1 µpÐ→M⊗Rp
n−2 µpÐ→ ⋅ ⋅ ⋅

µpÐ→M⊗Rp
i

.

After precomposing with u∶M →M⊗
R
pn this sends a ∈M to

wNn(a⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ 1) = (a, a⊗p, a⊗p
2

, . . . , a⊗p
n

) = w(a,0, . . . ,0),

showing that the maps agree in ghost components. By the usual resolution argument they agree
in Witt coordinates.

1.3 The comparison with Kaledin’s polynomial Witt vectors
Kaledin defines in [Kal18a] and [Kal18b] a functor Wn (denoted by W̃n in [Kal18a]) of “poly-
nomial Witt vectors” from the category of vector spaces over a perfect field k of characteristic
p to the category of abelian groups. We show that on k-vector spaces our functor Wn,p can be
described as the cokernel of a transfer map, and use this to identify Wn,p with Wn.

For any R-bimodule M , we let Qpn(R;M) denote the cokernel of the transfer map

(M⊚
R
pn)Cpn

tr
Cpn
eÐÐÐ→ (M⊚

R
pn)Cpn ↠ Qpn(R;M).
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The canonical lax symmetric monoidal structure of (M⊚
R
pn)Cpn (as defined in [DKNP22]) de-

scends to a lax symmetric monoidal structure on the functor Qpn . We let R[m] denote the
m-torsion subgroup of R for every integer m.

Theorem 1.22. Let M be an R-bimodule. For every integer n ≥ 1 there is a surjective natural
lax symmetric monoidal transformation

wn∶Wn,p(R;M/p) =Wn,p(R/p;M/p)↠ Qpn(R;M).

It is an isomorphism when R is commutative, R/p is perfect, M is a free R-module, and the
multiplication by pl-map pl∶R[pl+1]→ R[p] is surjective for every 1 ≤ l ≤ n − 1.

Remark 1.23. When M = R, this in particular states that for commutative rings without
p-power torsion and with perfect R/p, there is a ring isomorphism Wn,p(R/p) ≅ R/pn. For
example Wn,p(Fp) = Z /pn.

Proof of 1.22. We start by observing that the top ghost component wn ofWn+1,p(R;M) modulo
transfer descends along the restriction map

Wn+1,p(R;M) wn //

R
����

(M⊚
R
pn)Cpn

����

Wn,p(R;M) wn
// Qpn(R;M) .

This is because the summand of wn(a0, . . . , an) which depends on an is tr
Cpn
e (an) and it therefore

vanishes in Qpn(R;M). We claim that this map further descends along the map Wn,p(R;M)→
Wn,p(R;M/p) induced by the modulo p reduction M →M/p. We start by computing that for
every 0 ≤ i ≤ n − 1, the i-th summand of wn(a0 + px0, . . . , an + pxn) is

tr
Cpn

Cpn−i
(ai + pxi)⊗p

n−i
= tr

Cpn

Cpn−i
∑

f ∶pn−i→2

sf(1) ⊗ ⋅ ⋅ ⋅ ⊗ sf(pn−i)

= tr
Cpn

Cpn−i
(ai⊗p

n−i
+ (pxi)⊗p

n−i
+
pn−i−1

∑
l=0

∑
{
f ∶pn−i→2

stab(f)=C
pl
}/Cpn−i

tr
Cpn−i
C
pl

(sf(1) ⊗ ⋅ ⋅ ⋅ ⊗ sf(pn−i))),

where s1 = ai and s2 = pxi, and the sum is the decomposed according to the orbits of the
Cpn−i-action on the set of maps pn−i → 2 by precomposition. Every non-constant f ∶pn−i → 2
with stabiliser Cpl needs to have value 2 on at least pl points. Thus each tensor product above
is divisible by pl, and

tr
Cpn

Cpn−i
(ai + pxi)⊗p

n−i
= tr

Cpn

Cpn−i
(a⊗p

n−i
i ) +

pn−i

∑
l=0

tr
Cpn

C
pl
plyl,

for some Cpl -invariant yl ∈ (M⊚
R
pn)Cpl . But then plyl = tr

C
pl

e yl, and the right hand side is
congruent to tr

Cpn

Cpn−i
(a⊗p

n−i
i ) modulo the image of tr

Cpn
e . Note that this is not quite enough

to conclude that the map wn factors over Wn,p(R;M/p) as one needs to handle the kernel of
Wn,p(R;M) → Wn,p(R;M/p). Let M ′ denote the sub-R-bimodule of M ×M of those pairs
(x, y) ∈M with x − y ∈ pM . Then we get a reflexive coequaliser

M ′
a //

b
// Moo // // M/p,
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where the section is the diagonal and a and b are the projections. Consider the diagram

∏n−1
i=0 M

′⊗
R
pi

a∗ //

b∗
//

π

����

∏n−1
i=0 M

⊗
R
pi

π

����

Wn,p(R;M ′)
a∗ //

b∗
// Wn,p(R;M) wn // Qpn(R;M).

From the above congruences we know that wnπa∗ = wnπb∗ and hence, since the left hand
diagram commutes, we get that wna∗π = wnb∗π. But π is surjective and therefore wna∗ = wnb∗.
Since

Wn,p(R;M ′)
a∗ //

b∗
// Wn,p(R;M) // // Wn,p(R;M/p)

is a coequaliser, this gives a well-defined additive natural transformation

wn∶Wn,p(R;M/p)Ð→ Qpn(R;M)

for everyR-bimoduleM , factoring wn∶Wn,p(R;M)Ð→ Qpn(R;M). It is lax symmetric monoidal
because wn is. It is surjective because the fixed-points (M⊚

R
pn)Cpn are generated additively by

elements of the form
tr
Cpn

Cpn−i
a⊗p

n−i
i = wn(0, . . . , ai, . . . ,0)

for 0 ≤ i ≤ n, where ai ∈M⊚
R
pi (this can be verified first for free bimodules, and then by resolving

(R;M) by a free bimodule).
Let us now suppose that R is commutative with perfect R/p, and that M = R(X) ∶= ⊕XR

is a free R-module. Under the isomorphism R(X)⊗Rp
n

≅ R(X×pn), we write the transfer as the
map

tr
Cpn
e ∶R(X×pn)Ð→ R(X×pn)Cpn

which sends a basis element (x1, . . . , xpn) to ∑σ∈Cpn σ(x1, . . . , xpn). For n = 1 the invariants
R(X×p)Cp decompose as

R(X×p)Cp ≅ R(X×p/Cp) ≅ R(X)⊕R((X×p/∆)/Cp)

where the first summand is generated by the diagonal elements (x, . . . , x), and the second sum-
mand by the transferred elements. Thus the second summand is quotiented off in Qp(R;R(X)),
and the first summand is hit by the multiplication by p map. This provides the identification

w1∶W1,p(R;R(X)/p) = R/p(X) ≅Ð→ Qp(R;R(X))

that sends rx to rp(x, . . . , x) for every r ∈ R and x ∈X.
Now suppose inductively that wn is an isomorphism and that pn∶R[pn+1]→ R[p] is surjective,

and let us show that wn+1 is also an isomorphism. The abelian group of invariants R(X×pn)Cpn
decomposes as

R(X×pn)Cpn ≅ R(X×pn/Cpn) ≅ R(X)⊕R((X×p/X)/Cp)⊕ ⋅ ⋅ ⋅ ⊕R((X×pn/X×pn−1)/Cpn)

where X×pi−1 ⊂ Xpi via the pi−1-power of the diagonal map ∆∶X → X×p, and the isomorphism
sends a basis element (x1, . . . , xpi) in X×pi/X×pi−1 to

tr
Cpn

Cpn−i
(x1, . . . , xpi , x1, . . . , xpi , . . . , x1, . . . , xpi).
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The transfer map hits the X×pi/X×pi−1 summand with the multiplication by pn−i map, thus
inducing an isomorphism

Qpn(R;R(X)) ≅ R/pn(X)⊕R/pn−1((X×p/X)/Cp)⊕ ⋅ ⋅ ⋅ ⊕R/p((X×pn−1/X×pn−2)/Cpn−1).

We can therefore define a map R∶Qpn+1(R;R(X))→ Qpn(R;R(X)) which under this decompo-
sition collapses the last summand, and which on the summand X×pi/X×pi−1 is the sum of the
modulo pn−i reductions R/pn+1−i → R/pn−i. We claim that there is a short exact sequence

0→ Qpn(R;R(X)⊗Rp)Cp Ð→ Qpn+1(R;R(X)) RnÐ→ Qp(R;R(X))→ 0

where R(X)⊗Rp ≅ R(X×p) is also a free R-module, and the Cp-action on Qpn(R;R(X)⊗Rp) is
induced by the Weyl action on ((R(X)⊗Rp)⊗Rp

n

)Cpn ≅ (R(X)⊗Rp
n+1

)Cpn . Indeed under the de-
composition above the kernel Kn of Rn is

Kn ≅ R/pn(X)⊕R/pn((X×p/X)/Cp)⊕R/pn−1((X×p2/X×p)/Cp2)⊕ ⋅ ⋅ ⋅ ⊕R/p((X×pn/X×pn−1)/Cpn)

≅ R/pn(X×p/Cp)⊕R/pn−1((X×p2/X×p)/Cp2)⊕ ⋅ ⋅ ⋅ ⊕R/p((X×pn/X×pn−1)/Cpn)

≅ (R/pn(X×p)⊕R/pn−1((X×p2/X×p)/Cp)⊕ ⋅ ⋅ ⋅ ⊕R/p((X×pn/X×pn−1)/Cpn−1))Cp
≅ Qpn(R;R(X×p))Cp ,

where the first isomorphism is due to the fact that since pn∶R[pn+1] → R[p] is surjective, the
kernel of the p-reduction map R/pn+1 → R/p is R/pn. The second isomorphism collects the first
two summands. The third isomorphism commutes the quotient S(Y )Cp ≅ S(Y /Cp) for the free
S-module on a Cp-set Y . The last one is again by the decomposition of Qpn above using that
R(X×p) is free. Thus the bottom row of the commutative diagram

0 // Wn,p(R;R(X×p)/p)Cp
V //

wn≅

��

Wn+1,p(R;R(X)/p) Rn //

wn+1
��

W1,p(R;R(X)/p)

(−)
pn

��

// 0

0 // Qpn(R;R(X×p))Cp
V // Qpn+1(R;R(X)) Rn // Qp(R;R(X)) // 0

is exact, where the bottom map V is induced by tr
Cpn+1
Cpn

∶R(X×pn+1)CpnCp
→ R(X×pn+1)Cpn+1 . The

top row is exact by Proposition 1.15 since R is commutative. Moreover wn is an isomorphism
by the inductive assumption. The right vertical map is the map R/p(X)→ R/p(X) which sends
r ⋅x to rp

n

⋅x, which is an isomorphism since R/p is assumed to be perfect. It follows that wn+1

is an isomorphism.

In [Kal18b, Cor. 2.5] Kaledin shows that there is a unique functor Wn from Fp-vector
spaces to abelian groups such that Wn(A/p) = Qpn(Z;A) for every free abelian group A. Thus
Theorem 1.22 immediately gives the following.

Corollary 1.24. There is a natural isomorphism of abelian groups Wn ≅Wn,p(Fp;−).

This construction is lifted in [Kal18a, Prop 2.3] to a functorWn from k-modules toWn,p(k)-
modules for every perfect field k of characteristic p (and in fact further to a category of Mackey
functors). It is determined by a similar formula

Wn(E/p) = Qpn(Wm,p(k);E)

for every free Wm,p(k)-module E and every m ≥ n.
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Corollary 1.25. Let k be a perfect field of characteristic p, m ≥ n ≥ 1 integers and V a k-vector
space. There is a natural isomorphism of Wn,p(k)-modules

Wn,p(k;V ) ≅Wn(V )

with the polynomial Witt vectors Wn(V ) of [Kal18a] and [Kal18b].

Proof. By Kaledin’s characterisation of the functorWn it is sufficient to show thatWn,p(k;E/p) ≅
Qpn(Wm,p(k);E) for every free Wm,p(k)-module E. Since k is perfect of characteristic p and
m ≥ n, the commutative ring Wm,p(k) satisfies the conditions of Theorem 1.22 and

Wn,p(k;E/p) ≅Wn,p(Wm,p(k)/p;E/p) wnÐ→ Qpn(Wm,p(k);E)

is an isomorphism. Since wn is symmetric monoidal this is an isomorphism of Wn,p(k;k) =
Wn,p(k)-modules.

Remark 1.26. The first Corollary can be deduced by the second one as follows. Let A be a
free abelian group. Since A/p ≅ (A ⊗ Z∧p)/p, the corollary for the perfect field k = Fp gives an
isomorphism

Wn,p(Fp;A/p) ≅Wn,p(Fp; (A⊗Z∧p)/p) ≅ Qpn(Z
∧
p ;A⊗Z∧p) ≅ Qpn(Z;A)⊗Z∧p ≅ Qpn(Z;A)

where the last isomorphism holds because pn = tr
Cpn
e (1) acts as zero on Qpn(Z;Z).

2 Witt vectors with coefficients in homotopy theory
The topological restriction homology (TR) of a ring spectrum R with coefficients in an R-
bimodule M was introduced by Lindenstrauss and McCarthy in [LM12], as a version with
coefficients of the cyclic bar construction. It is defined for every integer n ≥ 0 as the fixed-points
of a genuine Cn-spectrum M7Rn, a homotopical analogue of the algebraic cyclic tensor powers
appearing earlier in the present paper, constructed as the geometric realisation of a simplicial
object with k-simplicies

(M7Rn)k ∶= (M ∧R∧k)∧n,

and with a simplicial structure analogous to that of the n-fold subdivision of the cyclic bar
construction of R. The underlying spectrum is in fact equivalent to THH(R;M∧Rn). In order
to derive this construction appropriately and obtain a genuine equivariant spectrum the authors
employed Bökstedt’s model for the smash product, and in turn defined TR⟨n⟩ as the fixed-points

TR⟨n⟩(R;M) = (M7Rn)Cn .

The foundations of this theory have been reworked in [KMN22] by McCandless and the second
and third authors, and we now review the bases of this construction.

Definition 2.1. [KMN22] A polygonic spectrum X consists of a spectrum Xd with an action
of the cyclic group Cd for every integer d ≥ 1, together with Cd-equivariant Frobenius maps

φp,d∶Xd Ð→ (Xdp)tCp

for every prime p and d ≥ 1, where (−)tCp denotes the Tate construction of the Cp-action.
Given a truncation set T (a subset of N>0 such that if xy ∈ T , then x ∈ T and y ∈ T ), a

T -typical polygonic spectrum is a polygonic spectrum with Xd = 0, whenever d ∉ T . We will
mainly focus on the case where T = ⟨n⟩ is the truncation set of divisors of an integer n ≥ 1,
especially when n is a power of a prime p .
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In [KMN22] the authors introduce a stable and presentable ∞-category PgcSp of polygonic
spectra, and the full ∞-subcategory PgcSpT of T -typical polygonic spectra. Given an inclusion
of truncation sets T ′ ⊂ T , the corresponding inclusion PgcSpT ′ ↪ PgcSpT has a left adjoint
ResTT ′ ∶PgcSpT → PgcSpT ′ which is a localisation, by [KMN22, Section 2 and Construction 2.11].
On objects ResTT ′ sends a T -typical polygonic spectrum X = {Xd}d≥1 to the T ′-typical polygonic
spectrum ResTT ′(X) = {Yd}d≥1 with Yd =Xd whenever d ∈ T ′ and Yd = 0 otherwise. In particular,
we have the localisation

PgcSp⟨m⟩

Res
⟨m⟩
⟨n⟩
// PgcSp⟨n⟩,oo

whenever n divides m.
The∞-category PgcSp is symmetric monoidal by [KMN22, Construction 2.14]. The symmet-

ric monoidal structure comes from levelwise tensoring the entries and using the lax symmetric
monoidality of the Tate construction.

Example 2.2. 1. Any cyclotomic spectrum X as in [NS18] defines a polygonic spectrum,
with Xd = X for all d ≥ 1, and φp,d∶X → XtCp the cyclotomic Frobenius of X for every
d and any prime p. In particular any spectrum X with trivial action defines a polygonic
spectrum Xtriv, for example the sphere spectrum Striv. By applying the truncation we
obtain a T -typical polygonic spectrum Xtriv

T = ResT X
triv, for any truncation set T .

Further, any p-typical cyclotomic spectrum X as in [NS18] defines a ⟨p∞⟩-typical polygonic
spectrum, where ⟨p∞⟩ is the truncation set consisting of all the powers of p. It consists of
the spectra Xpk = X for all k ≥ 0 with maps φp,pk ∶X → XtCp the cyclotomic Frobenius of
X for every k ≥ 0, and Xd = 0 if d is not a power of p. After applying Res

⟨p∞⟩
⟨pn⟩

, we get a
⟨pn⟩-typical polygonic spectrum with Xpk =X for all 0 ≤ k ≤ n.

2. Every space M defines a polygonic spectrum Σ∞
+ M

×, with (Σ∞
+ M

×)n = Σ∞
+ M

×n and with
the Frobenius maps defined by the composite of the canonical maps

Σ∞
+ M

×n → Σ∞
+ (M×pn)hCp → (Σ∞

+ M
×pn)hCp → (Σ∞

+ M
×pn)tCp ,

where the first map is the diagonal, the second is the unique map into the limit and
the last map is the canonical map from the homotopy fixed points to the Tate con-
struction. By applying the appropriate truncation functors we also obtain its T -typical
versions. In particular, we get a ⟨pn⟩-typical polygonic spectrum Res⟨pn⟩Σ

∞
+ M

× with
(Res⟨pn⟩Σ

∞
+ M

×)pk = Σ∞
+ M

×pk for 0 ≤ k ≤ n.
3. For every ring spectrum R and R-bimoduleM , there is a polygonic spectrum THH(R;M)

with THH(R;M)n = THH(R;M∧Rn) and Frobenius maps

φp,nTHH(R;M∧Rn)Ð→ THH(R;M∧Rpn)tCp

defined on the cyclic bar construction from the Tate diagonals, see [KMN22, Construction
6.31].

Definition 2.3. [KMN22] For any T -typical polygonic spectrum X, one defines TRT (X) to be
the mapping spectrum out of the sphere spectrum

TRT (X) = MapPgcSpT
(Striv
T ,X).

For a ring spectrum R and R-bimodule M , we let TRT (R;M) ∶= TRT (ResT THH(R;M)).

Since Striv
T is the unit of the monoidal structure on T -typical polygonic spectra, we have that

TRT is a lax monoidal functor. Let biModS denote the ∞-category of spectral bimodules. Then
the functor

THH∶biModS → PgcSp
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sending (R;M) to THH(R;M) is a lax symmetric monoidal functor, by [KMN22, Section 6].
Hence all in all we conclude that TRT (R;M) is a lax symmetric monoidal functor from biModS
to spectra.

In [KMN22, Proposition 2.10], the authors provide an equaliser formula for TRT (X) anal-
ogous to the description of topological cyclic homology of [NS18] and [BM15]. In the case of
T = ⟨pn⟩, this is the equaliser

TR⟨pn⟩(R;M) = eq ( ∏ni=0 THH(R;M∧Rp
i

)hCpi //
// ∏n−1

i=0 (THH(R;M∧Rp
i+1

)tCp)hCpi ) .

One of the maps of the equaliser is the composite

n

∏
i=0

THH(R;M∧Rp
i

)hCpi →
n−1

∏
i=0

THH(R;M∧Rp
i

)hCpi Ð→
n−1

∏
i=0

(THH(R;M∧Rp
i+1

)tCp)hCpi

of the projection and the product of the homotopy fixed-points of the Frobenius maps. The
other map in the equaliser is the composite

n

∏
i=0

THH(R;M∧Rp
i

)hCpi →
n

∏
i=1

THH(R;M∧Rp
i

)hCpi Ð→
n

∏
i=1

(THH(R;M∧Rp
i

)tCp)hCpi−1

of the other projection followed by the product of the homotopy Cpi−1-fixed points of canonical
maps THH(R;M∧Rp

i

)hCp → THH(R;M∧Rp
i

)tCp .
Example 2.4. Let (R;M) be a bimodule spectrum, where R and M are connective.

1. By definition TR⟨1⟩(R;M) = THH(R;M) is the topological Hochschild homology of R
with coefficients in M . Thus π0 TR⟨1⟩(R;M) ≅ π0M/[π0R,π0M] ≅W⟨1⟩(π0R;π0M).

2. When R = M , we have that TR⟨pn⟩(R;R) = TRn+1(R) is the classical p-typical TR of
[BHM93]. Thus by the calculations of [HM97] and [Hes97] there is a natural isomorphism

W⟨pn⟩(π0R;π0R) ≅ π0 TR⟨pn⟩(R;R)

which is multiplicative when R is commutative.
3. When R = S is the sphere spectrum andM = A is a connective spectrum, there is a natural

equivalence
TR⟨pn⟩(S;A) = (NCpn

e A)Cpn ,
where the right-hand side is the genuine fixed-points of the Hill-Hopkins-Ravenel norm of
A of [HHR16]. Indeed THH(S;A) = A, and the Frobenius maps above

φ∶A∧pi → (A∧pi+1)tCp

are by construction the Tate diagonals of the spectra A∧pi . By identifying the geometric
fixed-points spectrum (NCpn

e A)ΦCpi with A∧pn−i we find that the equaliser formula for
TR⟨pn⟩(S;A) above is equivalent to the iterated pullback of [NS18, Corollary II.4.7] which
describes the genuine fixed points spectrum (NCpn

e A)Cpn . WhenA =H Fp, the components
of this norm is the ring of (n + 1)-truncated p-typical Witt vectors

π0(N
Cpn
e H Fp)Cpn ≅W⟨pn⟩(Fp),

by work of Mazur (see [BGHL19, Proposition 5.23]). For the prime p = 2 on the other
hand, there is a natural ring isomorphism

π0(NC2
e HA)C2 ≅W⟨2⟩(Z;A),

for every ring A by [DMPR21, Proposition 5.5] (compare with 1.11).
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2.1 Witt vectors with coefficients and TR with coefficients
We now state the main result of this section, which extends the calculations of Example 2.4 to
all bimodules.

Theorem 2.5. Let R be a connective ring spectrum and M a connective R-bimodule. There is
an isomorphism

W⟨pn⟩(π0R;π0M) ≅ π0 TR⟨pn⟩(R;M),
which is moreover natural in (R;M) and monoidal. In particular for every connective spectrum
A, this gives an isomorphism W⟨pn⟩(Z;π0A) ≅ π0(N

Cpn
e A)Cpn with the Hill-Hopkins-Ravenel

norm construction, which is a ring isomorphism when A is a ring spectrum.

Remark 2.6. WhenA = Σ∞
+ X is the suspension spectrum of a spaceX, the normN

Cpn
e (Σ∞

+ X) ≅
Σ∞
+ X

×pn is again a suspension spectrum, and the tom Dieck splitting provides a canonical iso-
morphism of abelian groups

π
Cpn

0 N
Cpn
e (Σ∞

+ X) ≅
n

⊕
i=0

π0(Σ∞
+ ((X×pn)Cpn−i ))hCpi ≅

n

⊕
i=0

(Z(π0X)⊗p
i

)Cpi

where Z(π0X) is the free abelian group generated by π0X. Thus by Theorem 2.5 the group
of Witt vectors W⟨pn⟩(Z;Z(π0X)) is isomorphic to the direct sum of the (Z(π0X)⊗p

i

)Cpi ≅
Z((π0X

×pi)Cpi ), and it is in particular free abelian. This product decomposition matches with
the algebraic one of Proposition 1.14.

The proof of Theorem 2.5 will occupy the rest of the section. To set up our proof, and in
particular to construct the map giving the isomorphism of the statement, we need to discuss the
spectrum level analogue of the Witt vectors operators of the previous section. For describing
these operators we will use the stable∞-category SpZ

qfgen of quasifinitely genuine Z-spectra which
was constructed in [KMN22] following ideas of Kaledin. We briefly recall the setup, and refer
to [KMN22, Sections 4-6] for further details.

The ∞-category SpZ
qfgen is defined as the ∞-category of spectral Mackey-functors on spans

of quasifinite Z-sets. In particular, any quasifinitely genuine Z-spectrum Y has genuine and
geometric fixed-points spectra Y dZ and Y ΦdZ for any integer d ≥ 1. By [KMN22, Proposition
5.2, Theorem 5.4] there is an adjunction

SpZ
qfgen

L // PgcSp
TR
oo

which restricts to an equivalence of ∞-categories on uniformly bounded below objects. The left
adjoint L is defined by sending a quasifinitely genuine Z-spectrum Y to the polygonic spectrum
LY = {Xd}d≥1 consisting of the the geometric fixed points spectra Xd = Y ΦdZ with their residual
Cd ≅ Z /dZ-action. The Frobenius maps come from the canonical map from the Cp-geometric
fixed points to the Cp-Tate construction. The right adjoint TR sends a polygonic spectrum
X to a quasifnitely genuine Z-spectrum with genuine fixed points TR(X)nZ = TR(shnX),
where by definition (shnX)d = Xnd for n ≥ 1, with the obvious actions and Frobenius maps
[KMN22, Example 2.28]. This equivalence is symmetric monoidal since the geometric fixed
points are symmetric monoidal. In particular, for uniformly bounded below polygonic spectra
TR is symmetric monoidal. However, since genuine fixed points are only lax symmetric monoidal
this shows that the functor TR(X) is only lax symmetric monoidal which agrees with our
observation above.

For a connective pair (R;M), we have formulas for the genuine and geometric fixed-points
of TR(R;M), given respectively by

TR(R;M)nZ ≃ TR(R;M∧Rn) and TR(R;M)ΦnZ ≃ THH(R;M∧Rn).
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By construction, any quasifinitely genuine Z-spectrum comes equipped with transfer and re-
striction maps, and Weyl actions. Thus TR(R;M) admits a Weyl Cn-action, whose generator
we denote by

σ⟨n⟩∶TR(R;M∧Rn)→ TR(R;M∧Rn),

a restriction map
F ∶TR(R;M)→ TR(R;M∧Rn)hCn

which we call Frobenius, and a transfer

V ∶TR(R;M∧Rn)hCn → TR(R;M)

which we call Verschiebung, for every integer n ≥ 1. Let us now produce truncated versions of
these structure maps.

As mentioned above, the ∞-category of ⟨pn⟩-typical polygonic spectra PgcSp⟨pn⟩ is a local-
isation of PgcSp, where the localisation functor annihilates the values on integers which are
not of the form pk, for 0 ≤ k ≤ n. Under the equivalence above for uniformly bounded below
spectra, this corresponds to the full subcategory of SpZ

qfgen of those Z-spectra X with XΦdZ = 0

unless d = 1, p, . . . pn. The geometric fixed points functor (−)Φpn Z∶SpZ
qfgen → SpCpn to genuine

Cpn -spectra is a localisation whose right adjoint inflation inflpn Z∶SpCpn → SpZ
qfgen [KMN22,

Construction 4.20] is fully faithful with the essential image given by the latter full subcategory
of SpZ

qfgen. This shows (see also [KMN22, Example 2.9]) that the functor

TR(−)Φpn Z∶PgcSp⟨pn⟩ Ð→ SpCpn

is an equivalence on the full subcategories of bounded below objects.

Proposition 2.7. For every n ≥ 0, there is a symmetric monoidal functor TR⟨pn⟩∶biMod≥0
S →

SpCpn from connective spectral bimodules to genuine Cpn-spectra, and a natural equivalence

TR⟨pn⟩(R;M)Cpk ≃ TR⟨pk⟩(R;M∧Rp
n−k

)

for every 0 ≤ k ≤ n.

Proof. Consider the ⟨pn⟩-typical polygonic spectrum Res⟨pn⟩(THH(R;M)) with corresponding
quasifinitely genuine Z-spectrum Y = TR(Res⟨pn⟩(THH(R,M))) (with vanishing dZ-genuine
and geometric fixed points unless d = 1, p, . . . pn). By the equaliser formula of [KMN22, Propo-
sition 2.10], the genuine fixed points spectrum Y p

n−k Z is equivalent to TR⟨pk⟩(R;M∧Rp
n−k

) for
all 0 ≤ k ≤ n. Define

TR⟨pn⟩(R;M) = Y Φpn Z ∈ SpCpn .

Since Y is in the essential image of the inflation inflpn Z, we have a good control on its genuine
fixed-points. Indeed, by definition of the inflation

(TR⟨pn⟩(R;M))Cpk = (Y Φpn Z)Cpk = (Y Φpn Z)
pn−k Z /pn Z

= Y p
n−k Z ≃ TR⟨pk⟩(R;M∧Rp

n−k
).

The symmetric monoidality follows from the definition since the functors (−)Φpn Z and TR and
THH are all symmetric monoidal.
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As a consequence of the latter theorem, we obtain a Cpk -action on TR⟨pn−k⟩(R;M∧Rp
k

), with
generator

σk ∶TR⟨pn−k⟩(R;M∧Rp
k

)→ TR⟨pn−k⟩(R;M∧Rp
k

),
given by the action of the Weyl group Cpn/Cpn−k ≅ Cpk , and maps

F ∶TR⟨pn⟩(R;M)Ð→ TR⟨pn−1⟩(R;M∧Rp)hCp V ∶TR⟨pn−1⟩(R;M∧Rp)hCp Ð→ TR⟨pn⟩(R;M)

corresponding respectively to the restriction and transfer of a spectral Mackey functor, thus
satisfying the homotopy coherent analogue of the double-coset formula of usual Mackey functors.
Analogous maps were also defined in [LM12, Lemma 4.10 and Corollary 5.7]. We also observe
that TR⟨pn⟩(R;M) is naturally lax symmetric monoidal since TR is symmetric monoidal and
the genuine fixed points functor is lax symmetric monoidal.

There are also maps R∶TR⟨pn⟩(R;M) → TR⟨pn−1⟩(R;M), which under the equaliser for-
mula for TR⟨pn⟩ above correspond to projections of product factors, and therefore fit into fibre
sequences

THH(R;M∧Rp
n

)hCpn
VÐ→ TR⟨pn⟩(R;M) RÐ→ TR⟨pn−1⟩(R;M)

for every n ≥ 1 (see also [LM12, Corollary 5.7]).
The final structure that we need on TR⟨pn⟩ is a topological analogue of the Teichmüller

character map. We recall its construction, from [KMN22, Construction 6.33]. Given a connective
bimodule (R,M), there is a Cn-equivariant map

M∧n → THH(R;M∧Rn)

for any n ≥ 1. If we identify M∧n with THH(S;M∧Sn), this is the map induced by the map
of bimodules (S,M) → (R,M). In particular, these maps for all n ≥ 1 assemble into a natural
morphism of polygonic spectra. We then consider the composite

Σ∞
+ (Ω∞M)×n → Σ∞

+ (Ω∞(M∧n))→M∧n → THH(R;M∧Rn)

where the first map is induced by the canonical map from the product to the smash product
of spaces and the lax monoidal structure of Ω∞, and the second map is the counit of the
(Σ∞

+ ,Ω
∞)-adjunction. The source of this map admits a polygonic structure by Example 2.2,

where the Frobenius maps are induced by the diagonal. Similarly, the second term in this
sequence can also be assembled into a polygonic spectrum via the polygonic structure on M∧(−)

and the diagonals, and these maps form a sequence of morphisms of polygonic spectra when
n runs through natural numbers. The spectrum Σ∞

+ (Ω∞M)×n is the geometric fixed points
(Σ∞

+ M)ΦnZ of the suspension spectrum Σ∞
+ M , where M is the quasifinitely genuine Z-space

assigning to any finite orbit S the space (Ω∞M)×S , in particular MnZ = (Ω∞M)×n. Hence we
can interpret the latter composite as a morphism of polygonic spectra

L(Σ∞
+ M)→ THH(R;M)

which by adjunction gives the map of quasifinitely genuine Z-spectra

τ ∶Σ∞
+ M → TR(R;M).

This is the topological analogue of the Teichmüller map. Let us now produce a truncated version
of this map. By composing with the unit of the localisation we get a map of quasifinitely genuine
Z-spectra

Σ∞
+ M → TR(R;M)→ inflpn Z(TR⟨pn⟩(R;M)),

and by adjoining a map of genuine Cpn -spectra

τ ∶Σ∞
+ (Ω∞M)×p

n

≃ (Σ∞
+ M)Φpn Z → TR⟨pn⟩(R;M)
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also denoted by τ . By adjoining and taking Cpk -fixed-points spaces this gives, using the equiv-
alence of Proposition 2.7, a map of spaces

τ ∶ (Ω∞M)×p
n−k
→ Ω∞ TR⟨pk⟩(R;M∧Rp

n−k
)

for any 0 ≤ k ≤ n.
Next, we give a conceptual description of the maps R∶TR⟨pn⟩(R;M) → TR⟨pn−1⟩(R;M)

which will explain why they are compatible with Frobenius, Verschiebung and Weyl actions.

Proposition 2.8. For any n ≥ 0, there is a natural morphism of genuine Cpn+1-spectra

R∶TR⟨pn+1⟩(R;M)→ inflCpn (TR⟨pn⟩((R;M))),

where inflCpn ∶SpCpn → SpCpn+1 is the right adjoint of the geometric fixed points (−)ΦCp . For
0 ≤ k ≤ n + 1, the genuine Cpk -fixed points of this map is equivalent to

R∶TR⟨pk⟩(R;M∧Rp
n+1−k

)→ TR⟨pk−1⟩(R;M∧Rp
n+1−k

),

where the target is interpreted as zero when k = 0.

Proof. By adjunction, we have the truncation map of polygonic spectra

R∶Res⟨pn+1⟩(THH(R;M))→ Res⟨pn⟩(THH(R;M)).

After passing to TR, we get the a map of quasifinitely genuine Z-spectra

R∶TR(Res⟨pn+1⟩(THH(R;M)))→ TR(Res⟨pn⟩(THH(R;M))).

We claim that by taking pn+1 Z-geometric fixed points we obtain the map of the statement. By
definition the pn+1 Z-geometric fixed points of the source are TR⟨pn+1⟩(R;M). For the target,
we use that TR is an equivalence of categories on bounded below objects, and that under this
equivalence the localisation onto the subcategory of ⟨pn⟩-typical polygonic spectra corresponds
to that onto the genuine Cpn-spectra. Thus

Φp
n+1 ZTR(Res⟨pn⟩(THH(R;M))) ≃ TR⟨pn+1⟩(Res⟨pn+1⟩Res⟨pn⟩(THH(R;M)))

≃ TR⟨pn+1⟩(Res⟨pn⟩(THH(R;M)))
≃ inflCpn (TR⟨pn⟩((R;M))).

Lemma 2.9. Let f ∶ (R;M)→ (S;N) be a morphism of connective spectral bimodules. Suppose
that f is 1-connected, i.e., it induces isomorphisms on π0 and surjections on π1 between the
underlying rings and the underlying bimodules. Then the induced map

TR⟨pn⟩(R;M)Ð→ TR⟨pn⟩(S;N)

is 1-connected for any n ≥ 0 and any prime p.

Proof. For any n ≥ 0, the induced map

THH(R;M∧Rp
n

)Ð→ THH(S;N∧Sp
n

)

is 1-connected. This follows by looking at the homotopy fibers and noticing that the property of
being 1-connected is preserved under smash products and geometric realisations. In particular
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the claim holds for n = 0. The general case is proved inductively, by considering the commutative
diagram

THH(R;M∧Rp
n

)hCpn

f∗
��

// TR⟨pn⟩(R;M)

f∗
��

R // TR⟨pn−1⟩(R;M)

f∗
��

THH(S;N∧Rp
n

)hCpn // TR⟨pn⟩(S;N) R // TR⟨pn−1⟩(S;N),

where the left hand map is 1-connected by the previous paragraph, and the right hand map by
the inductive assumption. Hence so is the middle map by the five lemma.

Corollary 2.10. Let (R;M) be a connective bimodule spectrum. For any n ≥ 0 and prime p,
the canonical map induces a natural isomorphism

π0 TR⟨pn⟩(R;M) ≅ π0 TR⟨pn⟩(Hπ0R;Hπ0M).

With this lemma at hand and by using Theorem 1.6, in order to prove Theorem 2.5 we can
equivalently show that for every (discrete) bimodule (R;M) there is an isomorphism

Wn+1,p(R;M) ≅ π0 TR⟨pn⟩(HR;HM),

natural in (R;M) and lax symmetric monoidal. In what follows unless necessary, we will often
suppressH and just write (R;M) instead of (HR;HM), keeping in mind that (R;M) is discrete.

We want to single out the formal properties and structure of TR which makes it possible to
construct the desired isomorphism. Let us define a functor Fn+1∶biMod → Ab for every n ≥ 0,
by

Fn+1(R;M) ∶= π0 TR⟨pn⟩(R;M),

where we make the prime implicit to lighten up the notation. This functor inherits a lax
symmetric monoidal structure from the one of TR⟨pn⟩, as well as operators

F ∶Fn+1(R;M)Ð→ Fn(R;M⊗
R
p) V ∶Fn(R;M⊗

R
p)Ð→ Fn+1(R;M)

R∶Fn+1(R;M)Ð→ Fn(R;M) τ ∶M Ð→ Fn(R;M)

σi∶Fn(R;M⊗
R
pi)Ð→ Fn(R;M⊗

R
pi)

defined by taking π0 of the corresponding maps of TR⟨pn⟩. These operators enjoy the following
properties, and these are all we need for proving Theorem 2.5.

Proposition 2.11.

(i) R, F and V and σi are natural group homomorphisms, with R and F monoidal transfor-
mations, and τ is a natural set valued map.

(ii) For all n ≥ 1, the diagrams

Fn+1(R;M)

R

��

F // Fn(R;M⊗
R
p)

R

��

Fn(R;M⊗
R
p)

R

��

V // Fn+1(R;M)

R

��

Fn(R;M) F // Fn−1(R;M⊗
R
p) Fn−1(R;M⊗

R
p) V // Fn(R;M)

commute. Here we use the convention that F0 = 0.
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(iii) For any i, k ≥ 0, we have σp
i

i = id, Rσi = σiR, and σk = σp
i

i+k as maps

Fn(R; (M⊗Rp
i

)⊗Rp
k

) = Fn(R;M⊗
R
pi+k)→ Fn(R; (M⊗Rp

i

)⊗Rp
k

) = Fn(R;M⊗
R
pi+k).

Moreover the maps

V ∶Fn(R;M⊗
R
pi+1) = Fn(R; (M⊗Rp

i

)⊗Rp)→ Fn+1(R;M⊗
R
pi)

and
F ∶Fn+1(R;M⊗

R
pi)→ Fn(R; (M⊗Rp

i

)⊗Rp) = Fn(R;M⊗
R
pi+1)

are equivariant with respect to the projection Cpi+1 → Cpi+1/Cp ≅ Cpi which sends σi+1 to
σi.

(iv) The following identity holds: FV = ∑p−1
k=0 σ

k
1 ∶Fn(R;M⊗

R
p)→ Fn(R;M⊗

R
p).

(v) For any n ≥ 1, the diagrams

M

τ
%%

τ // Fn+1(R;M)

R

��

Fn(R;M)

M

(−)
⊗p

��

τ //τ // Fn+1(R;M)

F

��

M⊗
R
p τ // Fn(R;M⊗

R
p)

commute. The map τ ∶M → F1(R,M) is additive, it sends [R,M] to zero and induces an
isomorphism

M/[R,M] ≅ F1(R;M).

In particular we have M⊚
R
pn ≅ F1(R,M⊗

R
pn), and under this isomorphism the action of σn

is given by permuting the cyclic tensor factors.

(vi) For any n ≥ 1, the sequence

F1(R;M⊗
R
pn) V n // Fn+1(R;M) R // Fn(R;M) // 0

is exact.

(vii) For any n ≥ 1, the functor Fn commutes with reflexive coequalisers.

Proof. Part (i) follows from the naturality of the operators on TR and the fact that F , V , and
the action of the cyclic generator are maps of spectra, and the monoidality of R and F follows
from the lax monoidality of TR and TR⟨pn⟩. Part (ii) follows from Proposition 2.8. Parts
(iii) and (iv) follow from Propositions 2.7 and 2.8 and the fact that F and V are respectively
restriction and transfer of the Cpn -Mackey functor π0 of TR⟨pn⟩(R;M), and σi its Weyl action.

The first diagram in Part (v) commutes by definition of τ for TR⟨pn⟩ via the truncation of
τ ∶Σ∞

+ M → TR(R;M) and by Proposition 2.8. Let us show that the second diagram commutes.
Since τ is defined from a map of Cpn+1 -spaces, it is compatible with the Frobenius. Thus the
diagram

M

∆

��

τ //τ // Fn+1(R;M)

F

��

M×p
τp
// Fn(R;M⊗

R
p)

commutes, where τp is the value at Cpn+1/Cpn of the map on π0-coefficient systems induced by
the morphism of Cpn+1 -spaces τ . It is then sufficient to show that τp factors as the composite
M×p →M⊗

R
p → Fn(R;M⊗

R
p) of the canonical map and the map τ for the bimodule M⊗

R
p (recall
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that we are assuming that R and M are discrete). By adjoining the infinite loop space and TR,
this is the case if the diagram of polygonic spectra

shpL(Σ∞
+ M)

��

// shpTHH(R;M)

L(Σ∞
+ M

⊗
R
p) // THH(R;M⊗

R
p)

commutes, where the horizontal maps are the maps defining τ under the adjunction, and the
vertical map is induced by the canonical map M×p → M⊗

R
p . This holds by definition of the

horizontal maps.
The properties of F1(R;M) follow from the fact that TR⟨1⟩(R;M) = THH(R;M) (Example

2.4) and the definition of the cyclic action on THH(R;M∧Rp). Part (vi) follows from the fibre
sequence involving the map R for TR⟨pn⟩(R;M). Let us show Part (vii). Given a reflexive
coequaliser

(R1;M1) //
// (R0;M0)oo // // (R;M)

in the category biMod of (discrete) bimodules, we need to show that

Fn(R1;M1) //
// Fn(R0;M0) // // Fn(R;M)

is a coequaliser of abelian groups. Using the right Kan extension, the diagram

(R1;M1) //
// (R0;M0)oo

can be extended to a simplicial object (R●;M●) in biMod (explicitly this can be done by tak-
ing iterated pullbacks which are computed underlying, as limits in biMod are). Upon taking
Eilenberg-MacLane spectra we obtain a simplicial object (HR●;HM●) in the category of bimod-
ule spectra. Since smash powers and smash products of spectra commute with sifted colimits,
THH(R;M∧Rp

k

) commutes with sifted colimits of bimodule spectra for every k ≥ 0. Thus by
induction on the fibre sequences

THH(R;M∧Rp
k

)hC
pk

VÐ→ TR⟨pk⟩(R;M) RÐ→ TR⟨pk−1⟩(R;M)

so does TR⟨pk⟩ for all k ≥ 0. It follows that

∣TR⟨pn−1⟩(HR●;HM●)∣ ≃ TR⟨pn−1⟩(∣HR●∣; ∣HM●∣).

After applying π0 on both sides and using Corollary 2.10 we get an isomorphism

π0∣TR⟨pn−1⟩(HR●;HM●)∣ ≅ π0 TR⟨pn−1⟩(Hπ0∣HR●∣;Hπ0∣HM●∣) ≅ π0 TR⟨pn−1⟩(R;M) = Fn(R;M).

On the other hand π0∣TR⟨pn−1⟩(HR●;HM●)∣ fits into the coequaliser diagram

π0 TR⟨pn−1⟩(HR1;HM1) //
// π0 TR⟨pn−1⟩(HR0;HM0) // // π0∣TR⟨pn−1⟩(HR●;HM●)∣

which proves the desired result.

Remark 2.12. The proof of Theorem 2.5 that we give just below works for any collection of
functors Fn with operators which satisfy the conditions of Proposition 2.11.
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Proof of Theorem 2.5. Let (R;M) be a bimodule. We start by defining a map

In+1∶Wn+1,p(R;M)Ð→ Fn+1(R;M)

by taking a representative (m0,m1, . . . ,mn) of a class in Wn+1,p(R;M) to

In+1(m0,m1, . . . ,mn) ∶=
n

∑
i=0

V iτn−i(mi),

where τn−i∶M⊗Rp
i

→ Fn+1−i(R;M⊗Rp
i

) is the map τ for the bimodule M⊗Rp
i

, and we wrote
V i∶Fn+1−i(R;M⊗Rp

i

)→ Fn+1(R;M) for the iteration of the map V . In order to show that In+1

is well-defined, and ultimately an isomorphism, we need to define an analogue of the ghost maps
for Fn+1(R;M). Define for 0 ≤ j < n + 1,

wj ∶= F jRn−j ∶Fn+1(R;M)→ F1(R;M⊗
R
pj)Cpj ≅ (M⊗

R
pj /[R,M⊗

R
pj ])Cpj = (M⊚

R
pj)Cpj

where for the latter identification we used (v). We want to verify that under the map In+1 this
map corresponds to the usual ghost map, i.e. that the diagram

∏ni=0M
⊗
R
pi In+1 //

wj
&&

Fn+1(R;M)

wj
��

(M⊚
R
pj)Cpj

commutes. To see this we first observe that using (iii)-(iv) the following identities hold:

F jV j = F j−1FV V j−1 = F j−1(
p−1

∑
k=0

σk1)V j−1 = (
p−1

∑
k=0

σkj )F j−1V j−1

= (
p−1

∑
k=0

σkj )(
p−1

∑
k=0

σkpj )F j−2V j−2 = ⋅ ⋅ ⋅ = (
p−1

∑
k=0

σkj )(
p−1

∑
k=0

σkpj )⋯(
p−1

∑
k=0

σkp
j−1

j ) =
pj−1

∑
k=0

σkj = ∑
σ∈Cpj

σ,

as endomorphisms of Fn+1(R;M⊗
R
pj). It then follows that

wjIn+1(m0, . . . ,mn) = F jRn−j
n

∑
i=0

V iτn−i(mi)

= F j
j

∑
i=0

V iRn−jτn−i(mi),

where we used (ii) and in particular that Rn−jV i = 0 on Fn−i+1(R;M⊗
R
pi) if i > j. Further using

(v), (iii) and the previous paragraph, we get

F j
j

∑
i=0

V iRn−jτn−i(mi) =
j

∑
i=0

∑
σ∈Cpj /Cpj−i

σF j−iτ j−i(mi)

=
j

∑
i=0

∑
σ∈Cpj /Cpj−i

σm⊗pj−i
i = wj(m0, . . . ,mn),

which shows that the triangle above commutes.
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Before showing that the map In+1 descends to Witt vectors we check that the morphism

w = (w0, . . . ,wn)∶Fn+1(R,M)→
n

∏
j=0

(M⊚
R
pj)Cpj

is injective when (R;M) is free (or more generally when tr∶ (M⊚
R
pj)Cpj → (M⊚

R
pj)Cpj is injective,

see [DKNP22, Lemma 1.4 and Proposition 1.18]). For n = 0, the map w is just the isomorphism

F1(R;M) ≅M/[R,M].

Now inductively assume that

w = (w0, . . . ,wn−1)∶Fn(R;M)Ð→
n−1

∏
j=0

(M⊚
R
pj)Cpj

is injective. Consider the diagram with exact rows

(M⊚
R
pn)Cpn

tr

��

V n // Fn+1(R;M)

w
��

R // Fn(R;M)

w
��

// 0

0 // (M⊚
R
pn)Cpn // ∏nj=0(M⊚

R
pj)Cpj

proj
// ∏n−1

j=0 (M⊚
R
pj)Cpj // 0

where the left hand diagram commutes because of (ii), (iv) and (v). The commutativity of
the right hand diagram is clear. The left hand vertical map is injective since (R;M) is free.
Assuming inductively that the right-hand map is also injective, the standard diagram chase
shows that the middle map is injective as well.

For free (R;M), since w is injective, the definition of the relation defining Wn+1,p(R;M)
shows that In+1 descends to a well-defined group homomorphism

In+1∶Wn+1,p(R;M)Ð→ Fn+1(R;M)

which is moreover injective. To see that it is also surjective, we consider the diagram

(M⊚
R
pn)Cpn

V n // Wn+1,p(R;M)

In+1
��

R // Wn,p(R;M)

In

��

// 0

(M⊚
R
pn)Cpn

V n // Fn+1(R;M) R // Fn(R;M) // 0.

The right hand square commutes by the construction of In and from the fact that R com-
mutes with V and τ . The left hand square commutes by the description of V n∶ (M⊚

R
pn)Cpn →

Wn+1,p(R;M) of Section 1.2. The exactness of the top row follows from the results of [DKNP22]
(see Section 1.2). Now I0 is surjective by (v), and by induction so is the middle map by the
standard diagram chase.

We have thus constructed a natural isomorphism

In+1∶Wn+1,p(R;M) ≅ Fn+1(R;M)

for any free bimodule (R;M). Using the fact that both the source and target commute with
reflexive coequalisers, this uniquely extends to a natural isomorphism on the whole category
biMod. Also using the naturality one can see that the formula for the general In is given as
claimed above.
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Finally, let us show that In+1 is monoidal. Again since Fn+1 and Wn+1,p commute with
reflexive coequalisers we may show this on the full subcategory of free bimodules. It is then
sufficient to see that

wj(In+1(a) ∗ In+1(b)) = wjIn+1(a ∗ b)

holds for all 0 ≤ j ≤ n. By definition wj = F jRn−1−j and therefore it is monoidal by i), and

wj(In+1(a) ∗ In+1(b)) = wj(In+1(a)) ∗wj(In+1(a)) = wj(a) ∗wj(b)
= wj(a ∗ b) = wjIn−1(a ∗ b).

2.2 The Mackey structure on the components of TR
We now identify the operators of TR and the Witt vectors under the isomorphism of Theorem
2.5. By Proposition 2.7 there is a genuine Cpn -spectrum TR⟨pn⟩(R;M) whose genuine Cpk -

fixed-points are the spectra TR⟨pk⟩(R;M∧Rp
n−k

), and in particular the next result identifies the
Mackey structure of its components.

Proposition 2.13. Let R be a connective ring spectrum and M a connective R-bimodule. For
any n ≥ 1, the following diagrams commute:

W⟨pn−1⟩(π0R;π0M
⊗
π0R

p)

V
��

In

≅
// π0 TR⟨pn−1⟩(R;M∧Rp)

V
��

W⟨pn⟩(π0R;π0M) In+1
≅

// π0 TR⟨pn⟩(R;M),

W⟨pn⟩(π0R;π0M)

R
��

In+1
≅

// π0 TR⟨pn⟩(R;M)

R
��

W⟨pn−1⟩(π0R;π0M) In

≅
// π0 TR⟨pn−1⟩(R;M)

W⟨pn⟩(π0R;π0M)

F
��

In+1
≅

// π0 TR⟨pn⟩(R;M)

F
��

W⟨pn−1⟩(π0R;π0M
⊗
π0R

p) In

≅
// π0 TR⟨pn−1⟩(R;M∧Rp),

W⟨pn−1⟩(π0R;π0M
⊗
π0R

pi)

σi
��

In

≅
// π0 TR⟨pn−1⟩(R;M∧Rp

i

)

σi
��

W⟨pn−1⟩(π0R;π0M
⊗
π0R

pi) In

≅
// π0 TR⟨pn−1⟩(R;M∧Rp

i

)

M

τ

��

id // M

τ
��

W⟨pn⟩(π0R;π0M) In+1
≅
// π0 TR⟨pn⟩(R;M),

In particular the maps Ik, for 1 ≤ k ≤ n + 1, determine a monoidal isomorphism of Cpn-Mackey
functors between π0TR⟨pn⟩(R;M) and the Mackey functor Cpk ↦W⟨pk⟩(π0R;π0M

⊗
π0R

pn−k) equipped
with the restriction maps F and the transfers V of §1.2.

Proof. By Corollary 2.10 we can assume that (R;M) is discrete, and we prove this theorem
for Wn,p(R;M). Our argument will moreover work for any collection of functors Fn satisfying
Proposition 2.11.

The commutativity of the first diagram follows from the construction of the map In. Indeed,
it suffices to show that the diagram commutes after precomposing with the projection

n−1

∏
i=0

(M⊗
R
p)⊗Rp

i

→Wn,p(R;M⊗
R
p).
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We then compute:

V In(m0, . . .mn−1) = V
n−1

∑
i=0

V iτn−1−i(mi) =
n−1

∑
i=0

V i+1τn−1−i(mi)

=
n

∑
i=1

V iτn−1−(i−1)(mi−1) =
n

∑
i=1

V iτn−i(mi−1) = In+1(0,m0, . . . ,mn−1) = In+1V (m0, . . . ,mn−1).

Here we use the description of V on representatives as in Section 1.2 (see also [DKNP22, Propo-
sition 1.23]), the identification

(M⊗
R
p)⊗Rp

i

≅M⊗
R
pi+1

and that under these identifications

τn−1−i = τn−(i+1)∶ (M⊗
R
p)⊗Rp

i

=M⊗
R
pi+1 → Fn−1−i+1(R; (M⊗

R
p)⊗Rp

i

) = Fn−i(R;M⊗
R
pi+1),

which follows from the naturality of τ .
Next we check RIn+1 = InR. Again it suffices to check that the identity holds after precom-

posing with the projection
n

∏
i=0

M⊗
R
pi →Wn+1,p(R;M),

and we get that

RIn+1(m0, . . . ,mn) = R(
n

∑
i=0

V iτn−i(mi)) =
n

∑
i=0

RV iτn−i(mi)

=
n−1

∑
i=0

V iτn−1−i(mi) = InR(m0, . . .mn).

Here we have used the description of R∶Wn+1,p(R;M) →Wn,p(R;M) as in Section 1.2, as well
as (ii) and (v). In particular, we have used RV n(mn) = 0.

For checking the commutativity of the next two diagrams we employ the ghost components.
We first check that

wFIn+1 = wInF

in ∏n−1
j=0 M

⊚
R
pj . This implies the result when (R;M) is free since in this case w is injective as

observed above. For general (R;M) the result then follows by naturality. We verify the latter
identity for every component 0 ≤ j ≤ n − 1:

wjInF = wjF = wj+1 = wj+1In+1 = F j+1Rn−j−1In+1 = F jRn−j−1FIn+1 = wjFIn+1,

where we have used (ii) and [DKNP22, Proposition 1.25].
For the fourth diagram, we check that the identity σiIn = Inσi holds. We can again assume

that (R;M) is free and compute componentwise that for 0 ≤ j ≤ n − 1:

wjInσi = wjσi = σi+jwj = σi+jwjIn = wjσiIn,

where we used (iii).
The compatibility with τ is immediate from the definition of In.
In order to identify the full Mackey structure simply notice that for every 0 ≤ k ≤ n there is

an equivalence of Cpk -equivariant spectra

Res
Cpn

C
pk

(TR⟨pn⟩(R;M)) ≃ TR⟨pk⟩(R;M∧Rp
n−k

).
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It follows that the transfer of TR⟨pn⟩(R;M) from Cpk−1 to Cpk agrees with the same transfer

for TR⟨pk⟩(R;M∧Rp
n−k

), which by the first part of Proposition 2.13 applied to the bimodule

M∧Rp
n−k

agrees with the Witt vectors Verschiebung. A similar argument identifies the lower
restrictions and the Weyl actions.

Remark 2.14. As in Remark2.12, the proof of Proposition 2.13 works for any collection of
functors Fn with operators which satisfy the conditions of Proposition 2.11. In fact, the iso-
morphisms In are the unique isomorphisms which satisfy 2.13.

Remark 2.15. Suppose that R is a connective E∞-ring spectrum and M a connective E∞-R-
algebra. In this case we expect that analogously to the map τ (Section 2.1), one can construct
multiplicative maps

N ∶π0 TR⟨pn−1⟩(R;M∧Rp)Ð→ π0 TR⟨pn⟩(R;M)

for every n ≥ 1 which endow π0TR⟨pn⟩(R;M) with the structure of a Cpn-Tambara functor.
These maps should be characterised algebraically by the commutative diagram

W⟨pn−1⟩(π0R;π0M
⊗
π0R

p)

N
��

In

≅
// π0 TR⟨pn−1⟩(R;M∧Rp)

N
��

W⟨pn⟩(π0R;π0M) In+1
≅

// π0 TR⟨pn⟩(R;M)

where the map N on the left is the norm operator of 1.19. In particular the maps Ik, for 1 ≤
k ≤ n+ 1, should determine an isomorphism of Cpn -Tambara functors between π0TR⟨pn⟩(R;M)

and the Tambara functor Cpk ↦W⟨pk⟩(π0R;π0M
⊗
π0R

pn−k) equipped with the restriction maps F
and the transfers V and the norm N of §1.2.

We leave these observations about the norms on TR as open questions and encourage inter-
ested readers to work out the details.

2.3 Free Tambara functors and Witt vectors
In this section we describe the free Cpn -Tambara functor in terms of Witt vectors with coeffi-
cients. This is a result analogous to Brun’s [Bru05, Theorem B] which establishes a relationship
between these Tambara functors and the usual Witt vectors of a commutative ring.

We recall that that a Cpn -Tambara functor T consists of a commutative ring T (Cpk) with a
Cpn−k -action for every 0 ≤ k ≤ n, together with equivariant maps

T (Cpk+1) F // T (Cpk)
V
oo

Noo

for all 0 ≤ k ≤ n − 1, where F is a ring homomorphism, V is additive, and R is multiplicative.
These satisfy certain relations, which can be encoded by declaring T to be a finite products
preserving functor on a certain category of double-spans (see [Tam93]). We already saw in
Remark 1.20 that for every commutative ring A, the functor W ⟨pn⟩(Z;A) that sends Cpk to the
commutative ring

W ⟨pn⟩(Z;A)(Cpk) ∶=W⟨pk⟩(Z;A⊗pn−k)

and equipped with the operators of §1.2 is a Cpn-Tambara functor. Let U be the forgetful
functor that takes a Cpn -Tambara functor T to the underlying commutative ring T (1).

Proposition 2.16. The functor that takes a commutative ring A to W ⟨pn⟩(Z;A) is left adjoint
to U .
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Proof. Let us start by defining a natural transformation

homCpn -Tamb(W ⟨pn⟩(Z;A), T )Ð→ homRing(A,T (1))

from the morphism set in the category of Tambara functors to that of the category of com-
mutative rings. We send a morphism of Tambara functors α∶W ⟨pn⟩(Z;A) → T to the ring
homomorphism

f ∶A id⊗1⊗⋅⋅⋅⊗1ÐÐÐÐÐÐ→ A⊗pn α0Ð→ T (1)

where α0 is the value at the trivial group of the natural transformation α. We notice that by
assumption α0 is Cpn -equivariant, and therefore f does not depend on the choice of ordering
made in the first map. Moreover α0 can be recovered by f , since by equivariancy

α0(a1 ⊗ ⋅ ⋅ ⋅ ⊗ apn) = α0(a1 ⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ 1) ⋅ ⋅ ⋅ ⋅ ⋅ α0(1⊗ ⋅ ⋅ ⋅ ⊗ 1⊗ apn) =
pn

∏
l=1

σlpnf(al)

where σpn ∈ Cpn is a generator (in other words, A⊗pn is the free commutative Cpn -ring on the
commutative ring A).

In order to see that the map above defined on hom sets is a bijection, we first assume
that A = Z[X] is the polynomial ring on a set X. We can then define an inverse as follows.
Given a ring homomorphism f ∶Z[X] → T (1), we define α0∶Z[X]⊗p

n

→ T (1) by the formula
above. In order to define αC

pk
for 0 < k ≤ n we recall from Proposition 1.14 that the group

W⟨pk⟩(Z;Z[X]⊗p
n−k

) is free abelian, generated by the elements V iτk−i(m1 ⊗ ⋅ ⋅ ⋅ ⊗mpi), where
0 ≤ i ≤ k, and (m1, . . . ,mpi) ranges through the orbits of the Cpi-action on the pi-fold product
of additive generators of the free abelian group Z[X]⊗p

n−k
, that is on the monomials ml in the

set X∐pn−k . Since τ relates to N by Proposition 1.21 and α needs to be compatible with the
Tambara structure, we must define αC

pk
by

αC
pk

(V iτk−i(m1 ⊗ ⋅ ⋅ ⋅ ⊗mpi)) = V iNk−iα0((m1 ⊗ ⋅ ⋅ ⋅ ⊗mpi)⊗ 1⊗(p
k−i

−1))

where V and N on the right hand side are the transfer and norm maps of T , and 1 is the unit
of Z[X]⊗p

n−k+i
. Since these are free generators, this gives a well-defined additive map

αC
pk
∶W⟨pk⟩(Z;Z[X]⊗p

n−k
)Ð→ T (Cpk),

for every 0 ≤ k ≤ n. This map is moreover multiplicative, since by the formula of Proposition
1.14, αC

pk
sends the product of two generators, with i ≤ j, to (abusing notation below, we will

denote the unit of some tensor powers of A just by 1)

αC
pk

(V iτk−i(⊗p
i

l=1ul) ⋅ V
jτk−j(⊗p

j

h=1vh)) = αCpk ( ∑
σ∈Cpi

V j(τk−j((σ(⊗p
i

l=1ul))
⊗pj−i ⋅ (⊗p

j

h=1vh))))

= ∑
σ∈Cpi

V jNk−jα0(((σ(⊗p
i

l=1ul))
⊗pj−i ⋅ (⊗p

j

h=1vh))⊗ 1⊗(p
k−j

−1))

= ∑
σ∈C

pk
/C
pk−i

V jNk−jα0( ∏
ω∈C

pk−i /Cpk−j

ωσ((u1 ⊗ ⋅ ⋅ ⋅ ⊗ upi)⊗ 1⊗(p
k−i

−1)) ⋅ ((v1 ⊗ ⋅ ⋅ ⋅ ⊗ vpj)⊗ 1⊗(p
k−j

−1)))

= V iNk−iα0((u1 ⊗ ⋅ ⋅ ⋅ ⊗ upi)⊗ 1⊗(p
k−i

−1)) ⋅ V jNk−jα0((v1 ⊗ ⋅ ⋅ ⋅ ⊗ vpj)⊗ 1⊗(p
k−j

−1))

= αC
pk

(V iτk−i(⊗p
i

l=1ul)) ⋅ αCpk (V
iτk−j(⊗p

j

h=1vh)).

The fourth equality holds by an argument analogous to the calculation of the multiplicative
structure of Proposition 1.14, by using the Mackey and Tambara identities of T .
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Let us now show that the collection of maps α is compatible with the Tambara structures.
The map α commutes with the transfer maps, since these are additive and on generators

V αC
pk

(V iτk−i(m1 ⊗ ⋅ ⋅ ⋅ ⊗mpi)) = V V iNk−iα0((m1 ⊗ ⋅ ⋅ ⋅ ⊗mpi)⊗ 1⊗(p
k−i

−1))

= V i+1Nk+1−(i+1)α0((m1 ⊗ ⋅ ⋅ ⋅ ⊗mpi ⊗ 1⊗(p
k+1−(i+1)

−1))

= αC
pk+1 (V

i+1τk+1−(i+1)(m1 ⊗ ⋅ ⋅ ⋅ ⊗mpi))

= αC
pk+1 (V V

iτk−i(m1 ⊗ ⋅ ⋅ ⋅ ⊗mpi))

A similar argument shows that α commutes with the restriction maps F on generators, and
therefore on all elements since F is additive. Finally let us show that α is compatible with the
norms. The norm of a sum of elements is the sum of the norms of those elements plus a sum
of transfer terms, see e.g. [Ang15, Lemma 5.2] for a precise formula. Since We already showed
that α is compatible with transfers and multiplication, it is sufficient to show that it commutes
with the norms on additive generators. By [HM19, Corollary 2.9], for abelian p-groups norm
of a transfer can be described as a transfer applied to a specific polynomial only depending on
the group under the consideration. Since we know that α is multiplicative and commutes with
transfers and Weyl actions, this shows that α also commutes with norms.

This shows that α is a well-defined map of Tambara functors. Using again that the Witt
vectors above are free as abelian groups, one can easily see that the map that sends f to α is an
inverse for the map above, showing that the Witt vectors are a left adjoint on the subcategory
of free commutative rings.

Now assume that A is any commutative ring, and consider the functorial reflexive coequaliser
diagram of bimodules

(Z;Z[Z[A]]) //
// (Z;Z[A]) // // (Z;A) .

Since the category of Tambara functors is a category of product-preserving functors, and reflexive
coequalisers of product-preserving functors are computed pointwise, the diagram

W ⟨pn⟩(Z;Z[Z[A]]) //
// W ⟨pn⟩(Z;Z[A]) // // W ⟨pn⟩(Z;A)

is a coequaliser in the category of Cpn -Tambara functors. Thus for every Cpn -Tambara functor
T , there is a bijection

homCpn -Tamb(W ⟨pn⟩(Z;A), T ) ≅ homCpn-Tamb ( colim( W ⟨pn⟩(Z;Z[Z[A]]) //
// W ⟨pn⟩(Z;Z[A])) , T )

≅ lim ( homCpn-Tamb(W ⟨pn⟩(Z;Z[Z[A]]), T ) //
// homCpn -Tamb(W ⟨pn⟩(Z;Z[A]), T ) )

≅ lim ( homRing(Z[Z[A]], T (0)) //
// homRing(Z[A], T (0)) )

≅ homRing ( colim( Z[Z[A]] //
// Z[A] ), T (0)) ≅ homRing(A,T (0))

where the third isomorphism follows from the free case above. It is moreover not difficult to see
that this bijection coincides with the natural transformation defined above.

Remark 2.17. It is also possible to prove Proposition 2.16 from the results of [Ull13], by
identifying W ⟨pn⟩(Z;A) with the components of the norm via 2.15, and use that NCpn

e is the
left adjoint of the forgetful functor from genuine Cpn -commutative equivariant ring spectra to
E∞-ring spectra.
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Example 2.18. Let us describe explicitly the free Cp-Tambara functor on a commutative ring
A. This is the diagram

L(A) = ( A⊗pCp 88 W2,p(Z;A) ≅ A × (A⊗p)CpFoo
//V

//
N

),

where the Cp-action on A⊗p is the standard one, and

F (a, [x]) = a⊗p + ∑
σ∈Cp

σx

V (x) = (0, [x])
N(x) = (µp(x),0)

where µp∶A⊗p → A is the multiplication map. The ring structure on the right-hand term is that
described explicitly in Examples 1.11 and 1.12.

We now explain the relationship between this result and [Bru05, Theorem B]. Let U ′ be
the forgetful functor from Cpn -Tambara functors to commutative rings with Cpn-action, which
sends T to T (0) with its Cpn-action. Let L′ denote its left adjoint.

Theorem 2.19 ([Bru05]). Let A be a commutative ring, and let us regard A as a commutative
ring with the trivial Cpn-action. There is a natural ring isomorphism

L′(A)(Cpn/Cpn) ≅W⟨pn⟩(A).

We remark that since the restriction of the Cpn -Tambara functor π0TR⟨pn⟩(A) to the sub-
group Cpn−1 is the Cpn−1-Tambara functor π0TR⟨pn⟩(A), Brun’s Theorem in fact provides a
natural isomorphism of Tambara functors

L′(A)(Cpn/Cpi) ≅W⟨pi⟩(A),

where the Tambara structure on W⟨p(−)⟩(A) is defined by the Frobenius maps F , the Ver-
schiebung V , and the norm maps N of [Ang15]. The unit and the multiplication map of A
define a morphism of commutative monoids (Z;A⊗pn−i)→ (A;A) in the category of bimodules,
and thus a ring homomorphism

m∶W⟨pi⟩(Z;A⊗pn−i)Ð→W⟨pi⟩(A;A) =W⟨pi⟩(A),

which by naturality of the operators is a natural morphism of Tambara functors.

Proposition 2.20. For every commutative ring A, there is a commutative diagram of Cpn-
Tambara functors

W⟨pi⟩(Z;A⊗pn−i)

m

��

≅ // L(A)(Cpn/Cpi) = L′(A⊗pn)(Cpn/Cpi)

L′(µpn)

��

W⟨pi⟩(A) ≅ // L′(A)(Cpn/Cpi)

where the upper isomorphism is from 2.16 and the lower isomorphism is from Brun’s Theorem.

Proof. For convenience we denote by m also the map L(A)→ L′(A) obtained by transporting m
through the horizontal isomorphisms. Since L′ is a left adjoint, the maps m and L′(µpn) agree
if and only if

(U ′L′(µpn)) ○ η = U ′(m) ○ η,
where η∶ id→ U ′L′ is the unit of the adjunction. These agree since

U ′L′(µpn) = µpn = U ′(m)

are both the pn-fold multiplication map.
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A The Dwork Lemma

A.1 Congruences of tensor p-powers
Once and for all, we fix a prime number p and we regard the cyclic groups Cpj as subgroups of
the complex circle, so that we have chosen generators σj = e2iπ/pj of Cpj with the property that

σp
k

j+k = σj

for every j, k ≥ 0. For every abelian group A we equip A⊗pj with the Cpj -action on which the
generator σj acts by

σj(a1 ⊗ ⋅ ⋅ ⋅ ⊗ apj) = apj ⊗ a1 ⊗ ⋅ ⋅ ⋅ ⊗ apj−1.

We let (−)⊗p
j

∶A → (A⊗pj)Cpj be the (non-additive) map that sends a to the pj-fold tensor
product a⊗ ⋅ ⋅ ⋅ ⊗ a.

The following is analogous to the fact that if two elements a, b ∈ A of a commutative ring A
are congruent modulo p, then ap

k

and bp
k

are congruent modulo pk+1. It plays a fundamental
role in the proof of the Dwork Lemma A.8.

Proposition A.1. Let A be an abelian group, and let a and b be elements of (A⊗p)Cp which
are congruent modulo tr

Cp
e . Then for every k ≥ 0

ωk+1(a⊗p
k

) ≡ ωk+1(b⊗p
k

) mod tr
C
pk+1

e ,

where ωk+1 is the automorphism of {1, . . . , p}×k+1 that reverses the order of the product factors.

Let τn be the element of the symmetric group Σpn of automorphisms of the set {1, . . . , p}×n
that cyclically permutes the n-coordinates

τn(i1, . . . , in) = (in, i1, i2, . . . , in−1)

for all 1 ≤ i1, . . . , in ≤ p. The key combinatorial ingredient for Proposition A.1 is the interaction
between τn and the cyclic permutations, which is summarised in the following lemma. We write
{1, . . . , p}×n in lexicographical order, and think of it as the disjoint union of pn−1 blocks of size
p, or of p-blocks of size pn−1.

Lemma A.2. The permutation τn ∈ Σpn satisfies

τ−1
n σnτn = (σ1 ∐ idpn−p) ○ (σn−1 × idp)
τnσnτ

−1
n = (σn−1 ∐ idpn−pn−1)(σ1 × idpn−1)

for every n ≥ 1, where (σn−1 × idp) permutes the pn−1 blocks of size p by the generator of Cpn−1 ,
and (σ1 ∐ idpn−p) applies the generator σ1 of Cp to the first block, and similarly for the second
equation.

Proof. The equations can be directly verified using the description of the cyclic permutations

σn(i1, . . . , in) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(i1, . . . , in + 1) , in < p
(i1, . . . , in−1 + 1,1) , in = p, in−1 < p

⋮
(i1 + 1,1, . . . , ,1) , in = . . . , i2 = p, i1 < p
(1, . . . ,1) , in = . . . , i1 = p
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(σn−1 × idp)(i1, . . . , in) =

⎧⎪⎪⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎪⎪⎩

(i1, . . . , in−1 + 1, in) , in−1 < p
(i1, . . . , in−2 + 1,1, in) , in−1 = p, in−2 < p

⋮
(i1 + 1,1, . . . ,1, in) , in−1 = . . . , i2 = p, i1 < p
(1, . . . ,1, in) , in−1 = . . . , i1 = p

(σ1 ∐ idpn−p)(i1, . . . , in) =
⎧⎪⎪⎪⎨⎪⎪⎪⎩

(i1, . . . , in) , (i1, . . . , in−1) ≠ (1, . . . ,1)
(1, . . . ,1, in + 1) , in < p, (i1, . . . , in−1) = (1, . . . ,1)
(1, . . . ,1,1) , in = p, (i1, . . . , in−1) = (1, . . . ,1).

and the analogous formulas for (σn−1 ∐ idpn−pn−1) and (σ1 × idpn−1).

Proof of A.1. We start by observing that ωk+1σk+1ωk+1 is the composition of a block sum of
cyclic permutations of Cp, and of a permutation of blocks of size p. Thus since a is in (A⊗p)Cp

σk+1ωk+1(a⊗p
k

) = ωk+1(a⊗p
k

),

and similarly for ωk+1(b⊗p
k

). Thus both ωk+1(a⊗p
k

) and ωk+1(b⊗p
k

) belong to (A⊗pk+1)Cpk+1 ,
as well as the elements of the image of tr

C
pk+1

e .
We prove the congruence by induction on k. For k = 0 the claim holds by assumption. For

the induction step, we recall the relative binomial formula

(r + s)⊗p = r⊗p + s⊗p + ∑
{∅≠V ⊊p}/Cp

trCpe (tV1 ⊗ ⋅ ⋅ ⋅ ⊗ tVp ),

where the sum runs through the orbits of the action of Cp on the subsets of the p-elements set,
and tVj = r if j ∈ V , and tVj = s otherwise. By supposing that the lemma holds for k − 1 we see
that

ωk+1(a⊗p
k

) = ωk+1((a⊗p
k−1

)⊗p) = ωk+1((b⊗p
k−1

+ ωk tr
C
pk

e (c))⊗p)

= ωk+1(idp ×ωk)((ωk(b⊗p
k−1

) + tr
C
pk

e (c))⊗p) = τ−1
k+1((ωk(b⊗p

k−1
) + tr

C
pk

e (c))⊗p)

= ωk+1(b⊗p
k

) + τ−1
k+1((tr

C
pk

e (c))⊗p) + ∑
{∅≠U⊊p}/Cp

τ−1
k+1 trCpe sU1 ⊗ ⋅ ⋅ ⋅ ⊗ sUp ,

where sUj = ωkb⊗p
k−1

if j ∈ U , and otherwise it lies in the image of tr
C
pk

e . Let us analyze the
terms of the last sum. Let us suppose without loss of generality that a transferred term lies in
the first tensor factor . Then the term of the sum corresponding to a subset U is

τ−1
k+1 trCpe (tr

C
pk

e (x)⊗ sU2 ⊗ ⋅ ⋅ ⋅ ⊗ sUp ) =
p

∑
j=1

pk

∑
l=1

τ−1
k+1(σ

j
1 × idpk)(σlk ∐ idpk+1−pk)(x⊗ sU2 ⊗ ⋅ ⋅ ⋅ ⊗ sUp )

Let us write any n ∈ {1, . . . , pk+1} as pl + j for unique l ∈ {0,1, . . . , pk − 1} and j ∈ {1, . . . , p}. It
is not hard to verify that

τk+1σ
pl+j
k+1 τ

−1
k+1 = (σl+1

k ∐ ⋅ ⋅ ⋅ ∐ σl+1
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j

∐σlk ∐ ⋅ ⋅ ⋅ ∐ σlk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p−j

)(σj1 × idpk)

= (σj1 × idpk)(σlk ∐ ⋅ ⋅ ⋅ ∐ σlk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p−j

∐σl+1
k ∐ ⋅ ⋅ ⋅ ∐ σl+1

k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j

),
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by induction on n from the identity of Lemma A.2. Since all the terms sUj for j = 2, . . . , p are
invariant under the Cpk action, we can rewrite the expression above as

τ−1
k+1 trCpe (tr

C
pk

e (x)⊗ sU2 ⊗ ⋅ ⋅ ⋅ ⊗ sUp )

=
p

∑
j=1

pk−1

∑
l=0

τ−1
k+1(σ

j
1 × idpk)(σlk ∐ ⋅ ⋅ ⋅ ∐ σlk

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
p−j

∐σl+1
k ∐ ⋅ ⋅ ⋅ ∐ σl+1

k
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

j

)(x⊗ sU2 ⊗ ⋅ ⋅ ⋅ ⊗ sUp )

=
p

∑
j=1

pk−1

∑
l=0

σpl+jk+1 τ
−1
k+1(x⊗ sU2 ⊗ ⋅ ⋅ ⋅ ⊗ sUp )

=
pk+1

∑
n=1

σnk+1τ
−1
k+1(x⊗ sU2 ⊗ ⋅ ⋅ ⋅ ⊗ sUp )

= tr
C
pk+1

e τ−1
k+1(x⊗ sU2 ⊗ ⋅ ⋅ ⋅ ⊗ sUp ).

This shows that the last term of the expression above lies in the image of tr
C
pk+1

e , and we are
left with verifying that the same holds for τ−1

k+1((tr
C
pk

e (c))⊗p) for every k ≥ 1. We recall that the
relative multinomial formula for a sequence of n-elements b1, . . . , bn of an abelian group B is

(b1 + ⋅ ⋅ ⋅ + bn)⊗p = ∑
f ∶p→n

bf(1) ⊗ ⋅ ⋅ ⋅ ⊗ bf(p),

where the sum runs through the set of maps f ∶p→ n. Now let us consider the case where n = pk
for some k ≥ 1. The group Cpk+1 acts freely on the set of maps {f ∶p→ pk} by

(σk+1f)(i) = { f(σ−1
1 i) if i ≠ 1

σkf(σ−1
1 i) if i = 1.

The powers of the generator act as

(σpl+jk+1 f)(i) = { σlkf(σ
−j
1 i) if j + 1 ≤ i ≤ p

σl+1
k f(σ−j1 i) if 1 ≤ i ≤ j,

where l ∈ {0,1, . . . , pk −1} and j ∈ {1, . . . , p}. Indeed, the generator acts freely since if σk+1f = f ,
then mod pk we must have

f(p) + 1 = f(1) = f(2) = ⋅ ⋅ ⋅ = f(p),

which is a contradiction. Similarly, if f has non-trivial proper stabilisers we must have that
f = σp

n

k+1f for some n ∈ {1, . . . , k}. By writing pn = p(pn−1 − 1) + p we see that we must have

f(i) = (σp
n

k+1f)(i) = σ
pn−1

k f(σ−p1 i) ≡ f(i) + pn−1 mod pk,

which is a contradiction. We can therefore decompose the multinomial formula as

(b1 + ⋅ ⋅ ⋅ + bpk)⊗p = ∑
{f ∶p→pk}/C

pk+1

pk+1

∑
n=1

b(σn
k+1f)(1)

⊗ ⋅ ⋅ ⋅ ⊗ b(σn
k+1f)(p)

= ∑
{f ∶p→pk}/C

pk+1

p

∑
j=1

pk−1

∑
l=0

(bσl+1
k
f(σ−j1 1) ⊗ ⋅ ⋅ ⋅ ⊗ bσl+1

k
f(σ−j1 j) ⊗ bσl

k
f(σ−j1 (j+1)) ⊗ ⋅ ⋅ ⋅ ⊗ bσl

k
f(σ−j1 p)).
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We apply this formula to the sequence σkc, σ2
kc, . . . , σ

pk

k c of the abelian group B = A⊗pk , and
find the expression

τ−1
k+1((tr

C
pk

e (c))⊗p)

= ∑
{f ∶p→pk}/C

pk+1

p

∑
j=1

pk−1

∑
l=0

τ−1
k+1((σ

σl+1k f(σ−j1 1)

k c)⊗ ⋅ ⋅ ⋅ ⊗ (σσ
l+1
k f(σ−j1 j)

k c)

⊗ (σσ
l
kf(σ

−j
1 (j+1))

k c)⊗ ⋅ ⋅ ⋅ ⊗ (σσ
l
kf(σ

−j
1 p)

k c))

= ∑
{f ∶p→pk}/C

pk+1

p

∑
j=1

pk−1

∑
l=0

τ−1
k+1(σl+1

k ∐ ⋅ ⋅ ⋅ ∐ σl+1
k

´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶
j

∐σlk ∐ ⋅ ⋅ ⋅ ∐ σlk
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

p−j

)(σj1 × idpk)(σ
f(1)
k c⊗ ⋅ ⋅ ⋅ ⊗ σf(p)k c)

= ∑
{f ∶p→pk}/C

pk+1

p

∑
j=1

pk−1

∑
l=0

σpl+jk+1 τ
−1
k+1(σ

f(1)
k c⊗ ⋅ ⋅ ⋅ ⊗ σf(p)k c)

= ∑
{f ∶p→pk}/C

pk+1

tr
C
pk+1

e τ−1
k+1(σ

f(1)
k c⊗ ⋅ ⋅ ⋅ ⊗ σf(p)k c),

which concludes the proof.

A.2 External Frobenius and the Dwork Lemma
We give a characterisation of the image of the ghost map when the bimodule (R;M) is equipped
with an “external Frobenius lift”. In the following we will always denote by ⊗ the tensor product
over the integers.

Definition A.3. An external Frobenius on a ring R is a ring homomorphism

ϕ∶R Ð→ (R⊗p)Cp

which is congruent to the p-th power map (−)⊗p modulo the image of the additive transfer map
tr
Cp
e ∶ (R⊗p)Cp → (R⊗p)Cp , which sends x to ∑σ∈Cp σ(x).

Now let M be an R-bimodule. The abelian group (M⊗p)Cp is a (R⊗p)Cp -bimodule, where
the bimodule actions are factorwise. If R has an external Frobenius ϕ we may then consider
(M⊗p)Cp as an R-bimodule by restricting scalars along ϕ∶R → (R⊗p)Cp .

Definition A.4. Let (R,ϕ) be a ring with an external Frobenius. A Frobenius on an R-
bimodule M is a morphism of R-bimodules

φ∶M Ð→ (M⊗p)Cp

which is congruent to (−)⊗p∶M → M⊗p modulo the image of tr
Cp
e ∶ (M⊗p)Cp → (M⊗p)Cp . By

saying that an R-bimodule M has an external Frobenius we will implicitly imply that R also
has an external Frobenius.

Example A.5.

1. If a ring R has an external Frobenius ϕ, the composite

R
ϕÐ→ (R⊗p)Cp

µpÐ→ R

with the p-fold multiplication map is a Frobenius lift on R in the usual sense, since
µp((−)⊗p) = (−)p and µp tr

Cp
e ≡ pµp modulo [R,R] . When R is commutative this is
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a ring endomorphism of R which is congruent to the p-th power map modulo p. For a
non-commutative ring this is in the sense of [Hes97, §1.3], an additive endomorphism of
R which preserves the commutators subgroup [R,R], and which is congruent to the p-th
power map modulo pR + [R,R].

2. The ring of integers has an external Frobenius, defined by the canonical isomorphism
Z ≅ (Z⊗p)Cp which sends n to n(1⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ 1).

3. Let us denote by Z(X) ∶= ⊕X Z the free abelian group on a set of generators X, which we
regard as a Z-bimodule. Then Z(X) has an external Frobenius

φ∶Z(X)Ð→ Z(X)⊗p ≅ Z(X×p),

which is defined by sending a basis element x to the diagonal basis element x⊗p = (x, . . . , x).
We show that that this is congruent to the map (−)⊗p modulo additive transfer. Let f be a
linear combination in Z(X). By induction, we can assume that f is the linear combination
of two basis elements f = nx +my. By the relative binomial formula

f⊗p = (nx +my)⊗p = (nx)⊗p + (my)⊗p + ∑
{∅≠U⊊p}/Cp

trCpe (tU1 ⊗ ⋅ ⋅ ⋅ ⊗ tUp ),

where Cp acts on the subsets of the p-elements set by the image map, and tUk = nx if k ∈ U
and tUk =my otherwise. Thus

f⊗p ≡ (nx)⊗p + (my)⊗p ≡ npφ(x) +mpφ(y)⊗p mod trCpe .

Finally np is congruent to nmodulo p, and similarly formp, and therefore there are integers
k and l such that

f⊗p ≡ nφ(x) +mφ(y) + pφ(lx + ky) ≡ φ(nx +my) + trCpe (φ(lx + ky)) ≡ φ(f) mod trCpe ,

where the second congruence holds since the transfer acts by multiplication by p on the
fixed-points of Z(X)⊗p.

4. A completely analogous argument shows that polynomial rings Z[X] and non-commutative
polynomial rings Z{X} have external Frobenius maps which sends x to x⊗p. These re-
fine the standard Frobenius lift in the sense that µpφ recover the usual Frobenius lift
endomorphisms, and they are moreover multiplicative.

5. Let us denote by Re(X) ∶= ⊕X(R⊗R) the free R-bimodule on a set of generators X, and
suppose that R has an external Frobenius ϕ. Then Re(X) has an external Frobenius

φ∶Re(X)Ð→ (Re(X)⊗p)Cp ≅ (⊕
X×p

(R⊗R)⊗p)Cp ≅ ⊕
(X×p)Cp

((R⊗R)⊗p)Cp⊕ ⊕
(X×p/∆)/Cp

(R⊗R)⊗p,

which is the unique morphism of R-bimodules that sends a basis element x to (x, . . . , x) in
the first summand. It sends an element r ⊗ s in the x-summand to the element χ(ϕ(r)⊗
ϕ(s)) in the (x, . . . , x)-summand, where χ is the shuffle permutation which acts as

χ(r1 ⊗ r2 ⊗ ⋅ ⋅ ⋅ ⊗ rp ⊗ s1 ⊗ s2 ⊗ ⋅ ⋅ ⋅ ⊗ sp) = (r1 ⊗ s1 ⊗ r2 ⊗ s2 ⊗ ⋅ ⋅ ⋅ ⊗ rp ⊗ sp).

We show that φ is congruent to the power map (−)⊗p modulo transfer. As in the example
above it is sufficient to show this on the sum of two elements (r ⊗ s)x + (t ⊗ u)y, and by
the binomial formula

((r ⊗ s)x + (t⊗ u)y)⊗p ≡ ((r ⊗ s)x)⊗p + ((t⊗ u)y)⊗p mod trCpe .
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Therefore it is sufficient to show that φ((r ⊗ s)x) = χ(ϕ(r)⊗ ϕ(s))(x, . . . , x) is congruent
to (r⊗ s)⊗p(x, . . . , x) modulo transfers for every r, s ∈ R and x ∈X. Since ϕ is an external
Frobenius on R there are v,w ∈ R such that

φ((r ⊗ s)x) = χ((r⊗p + trCpe (v))⊗ (s⊗p + trCpe (w)))(x, . . . , x) = (χ(r⊗p ⊗ s⊗p) + χ(T ))(x, . . . , x)
= (r ⊗ s)⊗p(x, . . . , x) + χ(T )(x, . . . , x)

where T ∈ R⊗p ⊗R⊗p is a sum of transfers of R⊗p tensored with a fixed-point of (R⊗p)Cp
(in either order). Thus we need to show that χ(T ) ∈ (R⊗R)⊗p is a transfer. We show this
when T = a⊗ tr

Cp
e (w) for a fixed element a ∈ R⊗p, and

χ(a⊗ trCpe (w)) = ∑
σ∈Cp

χ(a⊗ σ(w)) = ∑
σ∈Cp

χ(σ(a)⊗ σ(w)) = ∑
σ∈Cp

σχ(a⊗w) = trCpe χ(a⊗w)

where the second equality holds because a is a cyclic invariant.
6. A construction analogous to the previous example shows that if R is commutative, M is

a free or free commutative R-algebra, and if R has an external Frobenius, then M has an
external Frobenius which is multiplicative.

If M is an R-bimodule with an external Frobenius and n ≥ 1 is an integer, we let

φ⊗p
n−1

∶M⊗pn−1 Ð→M⊗pn

be the composite of the map that sends m1⊗⋅ ⋅ ⋅⊗mpn−1 to φ(m1)⊗⋅ ⋅ ⋅⊗φ(mpn−1) ∈ (M⊗p)⊗p
n−1

,
and the canonical isomorphism (M⊗p)⊗p

n−1
≅M⊗pn that sends a generator m1 ⊗ ⋅ ⋅ ⋅ ⊗mpn to

(m1 ⊗ ⋅ ⋅ ⋅ ⊗mp)⊗ (mp+1 ⊗ ⋅ ⋅ ⋅ ⊗m2p)⊗ ⋅ ⋅ ⋅ ⊗ (m(pn−1−1)p+1 ⊗ ⋅ ⋅ ⋅ ⊗mpn).

This map is not well-behaved with respect to the cyclic action. In particular, we want to modify
this map in such a way that it restricts to a group homomorphism on cyclic invariants. We
recall that τn ∈ Σpn is defined by

τn(i1, . . . , in) = (in, i1, i2, . . . , in−1)

for all 1 ≤ i1, . . . , in ≤ p.
Lemma A.6. LetM be an R-bimodule with an external Frobenius φ, and let n ≥ 1 be an integer.
The map

φn−1∶M⊗pn−1 φ⊗p
n−1

ÐÐÐÐ→M⊗pn τnÐ→M⊗pn

satisfies the following properties:

1. It is congruent to (−)⊗p modulo the image of the transfer tr
Cp
e ∶M⊗pn → (M⊗pn)Cp .

2. It descends to a group homomorphism φn−1∶M⊚
R
pn−1 → M⊚

R
pnwhich satisfies φn−1σn−1 =

σnφn−1, where σk is the chosen generator of Cpk . In particular it restricts to a group
homomorphism

φn−1∶ (M⊚
R
pn−1)Cpn−1 Ð→ (M⊚

R
pn)Cpn .

3. For every i, k ≥ 0 and element mi ∈M⊗pi we have φk+i(m⊗pk

i ) ≡m⊗pk+1
i mod tr

C
pk+1

e .

Example A.7. Let us consider a free abelian group Z(X) with the external Frobenius that
sends x to (x, . . . , x) in Z(X×p) ≅ Z(X)⊗p. Under the isomorphism Z(X×pn) ≅ Z(X)⊗p

n

, the
higher Frobenius φn−1 sends a generator (x1, . . . , xpn−1) to

φn−1(x1, . . . , xpn−1) = (x1, . . . , xpn−1 , x1, . . . , xpn−1 , . . . , x1, . . . , xpn−1),

whereas φ⊗p
n−1

sends it to (x1, . . . , x1, x2, . . . , x2, . . . , xpn−1 , . . . , xpn−1).
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Proof of A.6. We start by showing that φn−1 descends to a map on the cyclic tensor powers
over R. Let us consider the commutative diagram

M⊗pn−1

����

φ⊗p
n−1

// M⊗pn τn //

����

M⊗pn

����

M⊚
R
pn−1

φ
⊚
R
pn−1

// (M⊗p)⊚Rp
n−1

// // (M⊗p)⊚((R⊗p)Cp )p
n−1

τn
// M⊚

R
pn .

The bottom-left horizontal map is well-defined because φ is a map of R-bimodules, where the
bimodule structure on the target is via the external Frobenius ϕ∶R → (R⊗p)Cp of R. The middle
bottom horizontal map is the projection map that regards M⊗p as an (R⊗p)Cp -bimodule. Thus
we need to show that the permutation τn gives a well-defined map on the bottom-right. We
show that it is well-defined with respect to tensoring over (R⊗p)Cp for the first tensor factor,
the others are similar. For every m ∈M⊗pn and r ∈ R⊗p we need to show that

τn(m ⋅ (r ⊗ 1⊗(p
n
−p))) = τn((1⊗p ⊗ r ⊗ 1⊗(p

n
−2p)) ⋅m).

Since in the target we are tensoring over R, we can turn the right action of an element of R⊗pn

into the left action by a cyclic permutation of this element, and by Lemma A.2

τn(m ⋅ (r ⊗ 1⊗(p
n
−p))) = τn(m) ⋅ τn(r ⊗ 1⊗(p

n
−p)) = (σnτn(r ⊗ 1⊗(p

n
−p))) ⋅ τn(m)

= (τn(σ1 ∐ idpn−p) ○ (σn−1 × idp)(r ⊗ 1⊗(p
n
−p))) ⋅ τn(m)

= (τn(1⊗p ⊗ r ⊗ 1⊗(p
n
−2p))) ⋅ τn(m)

= τn((1⊗p ⊗ r ⊗ 1⊗(p
n
−2p)) ⋅m).

Let us now show that φn−1 and (−)⊚Rp are congruent modulo the transfer map. Let x =
∑a1⊗ ⋅ ⋅ ⋅ ⊗apn−1 be an element of M⊗pn−1 , and bj ∈M⊚

R
p such that φ(aj) = aj⊚Rp + tr

Cp
e bj . Then

in M⊚
R
pn we have that

φn−1(x) =∑ τn(φ(a1)⊗ ⋅ ⋅ ⋅ ⊗ φ(apn−1)) =∑ τn((a⊗p1 + trCpe b1)⊗ ⋅ ⋅ ⋅ ⊗ (a⊗p
pn−1 + trCpe bpn−1))

=∑ τn(a⊗p1 ⊗ ⋅ ⋅ ⋅ ⊗ a⊗p
pn−1 + ∑

∅≠V ⊂pn−1
tV1 ⊗ ⋅ ⋅ ⋅ ⊗ tVpn−1)

=∑((a1 ⊗ ⋅ ⋅ ⋅ ⊗ apn−1)⊗p + ∑
∅≠V ⊂pn−1

τn(tV1 ⊗ ⋅ ⋅ ⋅ ⊗ tVpn−1)).

The inner sum runs through the non-empty subsets of the set with pn−1 elements, where tVj =
tr
Cp
e bj if j ∈ V , and tVj = a⊗pj otherwise. Each of the terms of this sum contains at least one

transferred tensor factor, let us say for simplicity the first one. Then

τn(tV1 ⊗ ⋅ ⋅ ⋅ ⊗ tVpn−1) = τn(tr
Cp
e b1 ⊗ tV2 ⊗ ⋅ ⋅ ⋅ ⊗ tVpn−1) = τn(( ∑

σ∈Cp

σ(b1))⊗ tV2 ⊗ ⋅ ⋅ ⋅ ⊗ tVpn−1)

= ∑
σ∈Cp

τn(σ(b1)⊗ tV2 ⊗ ⋅ ⋅ ⋅ ⊗ tVpn−1) = ∑
σ∈Cp

τn(σ(b1)⊗ σ(tV2 )⊗ ⋅ ⋅ ⋅ ⊗ σ(tVpn−1))

= ∑
σ∈Cp

(σ × idpn−1)τn(b1 ⊗ tV2 ⊗ ⋅ ⋅ ⋅ ⊗ tVpn−1)

= trCpe τn(b1 ⊗ tV2 ⊗ ⋅ ⋅ ⋅ ⊗ tVpn−1),

where the fourth equality holds because tVj is Cp-invariant for every j. It follows that

φn−1(x) ≡∑(a1 ⊗ ⋅ ⋅ ⋅ ⊗ apn−1)⊗p mod trCpe .
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Let us show that this is congruent to the p-th tensor power of x = ∑a1⊗⋅ ⋅ ⋅⊗apn−1 . By induction
we can assume that x is the sum of two elementary tensors x = a1 ⊗ ⋅ ⋅ ⋅ ⊗ apn−1 + a′1 ⊗ ⋅ ⋅ ⋅ ⊗ a′pn−1 ,
and

x⊗p = (a1 ⊗ ⋅ ⋅ ⋅ ⊗ apn−1)⊗p + (a′1 ⊗ ⋅ ⋅ ⋅ ⊗ a′pn−1)
⊗p + ∑

∅≠U⊊p

sU1 ⊗ ⋅ ⋅ ⋅ ⊗ sUp

= (a1 ⊗ ⋅ ⋅ ⋅ ⊗ apn−1)⊗p + (a′1 ⊗ ⋅ ⋅ ⋅ ⊗ a′pn−1)
⊗p + ∑

{∅≠U⊊p}/Cp

trCpe (sU1 ⊗ ⋅ ⋅ ⋅ ⊗ sUp ),

where sUj = a1 ⊗ ⋅ ⋅ ⋅ ⊗ apn−1 if j ∈ U , and sUj = a′1 ⊗ ⋅ ⋅ ⋅ ⊗ a′pn−1 otherwise. The last equality holds
because sUj is constant for different values of j ∈ U , and Cp acts on the proper non-empty subsets
of p by cyclically permuting their elements. This concludes the proof that φn−1 and (−)⊗p are
congruent modulo tr

Cp
e .

Now let us show that φn−1 is equivariant. By the relations of Lemma A.2

σnφn−1 = σnτnφ⊗p
n−1

= τn(σ1 ∐ idpn−p) ○ (σn−1 × idp)φ⊗p
n−1

= τn(σ1 ∐ idpn−p)φ⊗p
n−1
σn−1

= τnφ⊗p
n−1
σn−1 = φn−1σn−1.

The fourth equality holds since φ takes values in the invariants (M⊗p)Cp .
For the last statement, we calculate that on representatives

φk+i(m⊗pk

i ) = τk+i+1φ
⊗pk+i(m⊗pk

i ) = τk+i+1((φ⊗p
i

mi)⊗p
k

)

= (τk+1 × idpi)((τi+1φ
⊗pimi)⊗p

k

) = (τk+1 × idpi)((φimi)⊗p
k

)

= (ωk+1 × idpi)((φimi)⊗p
k

) = (ωk+1 × idpi)(m⊗pk+1
i ) + tr

C
pk+1

e

=m⊗pk+1
i + tr

C
pk+1

e ,

where the fifth equality follows since τk+1 = ωk+1(ωk × idp), and (φiai)⊗p
k

is invariant under the
action of Σpk . The sixth equality holds in M⊗pk+i+1 by the congruence of Proposition A.1, since
φi is congruent to (−)⊗p modulo tr

Cp
e as elements of M⊗pi+1 .

Theorem A.8 (Dwork Lemma). Let M be an R-bimodule with an external Frobenius φ∶M →
(M⊗p)Cp . A sequence (b0, b1, . . . , bn−1) of ∏n−1

j=0 (M⊚
R
pj)Cpj lies in the image of the ghost map

w∶Wn,p(R;M)→∏n−1
j=0 (M⊚

R
pj)Cpj if and only if

φj(bj) ≡ bj+1 mod tr
Cpj+1
e

for every 0 ≤ j < n − 1, where the congruence is modulo the image of the additive transfer map
tr
Cpj+1
e ∶M⊚

R
pj+1 → (M⊚

R
pj+1)Cpj+1 .

Proof. Let us start by showing that a sequence in the image of the relative ghost map satisfies
these congruences, that is that

φj(
j

∑
i=0

tr
Cpj

Cpj−i
(m⊗pj−i

i )) ≡
j+1

∑
i=0

tr
Cpj+1
Cpj+1−i

(m⊗pj+1−i
i ) mod tr

Cpj+1
e .

We observe that the (j + 1)-st term of the sum on the right is in the image of tr
Cpj+1
e , and thus

it is sufficient to show that for every 0 ≤ i ≤ j

φj(tr
Cpj

Cpj−i
(m⊗pj−i

i )) ≡ tr
Cpj+1
Cpj+1−i

(m⊗pj+1−i
i ) mod tr

Cpj+1
e .
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We calculate the left-hand side

φj(tr
Cpj

Cpj−i
(m⊗pj−i

i )) = φj( ∑
σ∈Cpj /Cpj−i

σ(m⊗pj−i
i )) =

pi

∑
l=1

φj(σlj(m
⊗pj−i
i )) =

pi

∑
l=1

σlj+1φj(m
⊗pj−i
i )

= tr
Cpj+1
Cpj+1−i

φj(m⊗pj−i
i ) = tr

Cpj+1
Cpj+1−i

(m⊗pj+1−i
i + tr

Cpj−i+1
e (zi,j))

= tr
Cpj+1
Cpj+1−i

(m⊗pj+1−i
i ) + tr

Cpj+1
e (zi,j),

where the fifth equality is from Lemma A.6. Conversely, let (b0, b1, . . . ) be a sequence which
satisfies the congruences of the statement, and suppose that we found a0, . . . , aj such that
bj = ωj(a0, . . . , aj). Then

bj+1 = φj(bj) + tr
Cpj+1
e (x) = φj(ωj(a0, . . . , aj)) + tr

Cpj+1
e (x)

= ωj+1(a0, . . . , aj ,0) + tr
Cpj+1
e (y) + tr

Cpj+1
e (x)

= ωj+1(a0, . . . , aj , y + x).

Corollary A.9. Let M be an R-bimodule with an external Frobenius φ∶M → (M⊗p)Cp , such
that the transfer maps tr

Cpj
e ∶ (M⊚

R
pj)Cpj → (M⊚

R
pj)Cpj are injective (for example if (R;M) is a

free bimodule). Then there is a canonical isomorphism of abelian groups

fφ∶
n−1

⊕
i=0

(M⊚
R
pi)Cpi

≅Ð→Wn,p(R;M)

with ghosts wjfφ(a0, . . . , an−1) = ∑ji=0 tr
Cpj

Cpj−i
φj−i(ai), where φj−i(ai) = φi+j . . . φi+1φi(ai) ∈

(M⊚
R
pj)

Cpj−i
Cpi

.

Proof. The formula for wjfφ gives an additive map fw ∶⊕n−1
j=0 (M⊚

R
pj)Cpj → ∏

n−1
j=0 (M⊚

R
pj)Cpj .

Since tr
Cpj

Cpj−i
φi(ai) = φj−i tr

Cpj−i
e (ai) we see that

φjf
w
j = φj(

j

∑
i=0

tr
Cpj

Cpj−i
φj−i(ai)) = fwj+1 − tr

Cpj+1
e aj .

Thus by the Dwork lemma fw hits precisely the image of w. Since the transfers are injective the
ghost w is injective and fw lifts to a surjection fφ onto Wn,p(R;M). Again since the transfers
are injective it is easy to see inductively that fw is injective, and therefore so is fφ.

Remark A.10. We observe that the maps fφ are not natural with respect to morphisms of
free bimodules, as these are not necessarily compatible with the external Frobenius. They are
however natural with respect to those morphisms of bimodules which are induced by a map of
bases. This is analogous to the tom-Dieck splitting, which is natural with respect to maps of
spaces but not with respect to all the maps of suspension spectra.

Lemma A.11. Let ϕ∶R → (R⊗p)Cp be an external Frobenius on a ring R. Then for every k ≥ 0

Φ ∶= ϕk = τk+1ϕ
⊗pk ∶R⊗pk Ð→ (R⊗pk+1)Cp

is an external Frobenius on the ring R⊗pk , with higher Frobenius Φn = ϕk+n.
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If M is an R-bimodule with an external Frobenius φ∶M → (M⊗p)Cp and k ≥ 0, then

Φ ∶= φk = τk+1φ
⊗pk ∶M⊗pk Ð→ (M⊗pk+1)Cp

is an external Frobenius on the R⊗pk -bimodule M⊗pk , with higher Frobenius Φn = φk+n. More-
over this descends to an external Frobenius

Φ∶M⊗
R
pk Ð→ ((M⊗

R
pk)⊗p)Cp

on the R-bimodule M⊗
R
pk .

Proof. We start by proving the claim for the Frobenius of R⊗pk . Since ϕkσk = σk+1ϕk we have
that Φ = ϕk lands in the Cp-fixed-points, since the generator of Cp ⊂ Cpk+1 acts by

σp
k

k+1Φ = Φσp
k

k = Φ.

Moreover by Lemma A.6 Φ is congruent to the p-th power map modulo tr
Cp
e . Next, we determine

the higher Frobenius:

Φn = (τn+1 × idp)Φ⊗pn = (τn+1 × idp)(τk+1ϕ
⊗pk)⊗p

n

= (τn+1 × idpk)(idpn ×τk+1)ϕ⊗p
n+k

= τn+k+1ϕ
⊗pn+k = ϕn+k.

The claim for M⊗pk is completely analogous, by remarking that φk is indeed a map of R⊗pk -
bimodules. As for M⊗

R
pk , the proof that τk+1φ

⊗pk is well-defined is analogous to the first argu-
ment of the proof of A.6. It remains to verify that it is a map of R-bimodules. By definition

τk+1φ
⊗pk(r ⋅m1 ⊗ ⋅ ⋅ ⋅ ⊗mpk) = τk+1(φ(r ⋅m1)⊗ ⋅ ⋅ ⋅ ⊗ φ(mpk))

= τk+1((ϕ(r) ⋅ φ(m1))⊗ ⋅ ⋅ ⋅ ⊗ φ(mpk))

= τk+1((ϕ(r)⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ 1) ⋅ φ⊗p
k

(m1 ⊗ ⋅ ⋅ ⋅ ⊗mpk))

= τk+1((ϕ(r)⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ 1)) ⋅ τk+1φ
⊗pk(m1 ⊗ ⋅ ⋅ ⋅ ⊗mpk),

and the action of r of the left R-module structure on ((M⊗
R
pk)⊗p)Cp induced by ϕ∶R → (R⊗p)Cp

is precisely multiplication by τk+1((ϕ(r)⊗ 1⊗ ⋅ ⋅ ⋅ ⊗ 1)).
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