Algebraic K-Theory	Higher Semiadditivity	Higher Semiadditive K-Theory and Redshift	Closing Remarks

Higher Semiadditive Algebraic K-Theory and Redshift joint with Tomer Schlank, arXiv:2111.10203

Shay Ben Moshe

06/05/2022

- Algebraic K-theory and redshift
- · Higher semiadditivity, height and redshift
- Higher semiadditive K-theory and redshift
- Closing remarks

Algebraic K-Theory

Group-complete K-theory (baby case)

- Stable category $\mathfrak{C}\in\mathrm{Cat}^{\mathrm{st}}$
- Space of objects $\mathcal{C}^{\simeq} \in \mathrm{CMon}(\mathbb{S})$ (w.r.t direct sum)
- Group complete to get $(\mathcal{C}^{\simeq})^{\operatorname{gpc}} \in \operatorname{CMon}^{\operatorname{gl}}(S) = \operatorname{Sp}_{>0}$

Algebraic K-theory

- Neglected stable structure (co)fiber sequences
- Force Y = X + Z for $X \to Y \to Z$ (S_•-construction)

$$\mathrm{K}\colon \mathrm{Cat}^{\mathrm{st}}\to \mathrm{Sp}$$

Example

$$\mathcal{K}_0(\mathcal{C}) = (\pi_0 \mathcal{C}^{\simeq})^{\mathrm{gpc}} / \{Y = X + Z\}$$

Higher Semiadditivity

Higher Semiadditive K-Theory and Redshift

Closing Remarks

K-Theory of Rings

Definition

For $R \in Alg(Sp)$ (e.g. $R \in Alg(Ab)$), we let

 $\mathrm{K}(R):=\mathrm{K}(\mathrm{Mod}_R^{\mathrm{dbl}}(\mathrm{Sp}))$

Example

 $\mathrm{K}(\mathbb{C})^\wedge_p = \mathrm{ku}^\wedge_p$ (same for $\overline{\mathbb{Q}}$)

- C has height 0
- K(C) has height 1

Redshift Conjecture (Ausoni-Rognes)

Conjecture

Let R have height n, then K(R) has height $\leq n + 1$, i.e.

- $L_{T(m)} K(R) = 0$ for m > n + 1
- $L_{\mathrm{T}(n+1)} \operatorname{K}(R) \neq 0$
- Until recently, only in examples for $n \leq 1$
- First part by Land-Mathew-Meier-Tamme + Clausen-Mathew-Naumann-Noel
- Second part by Hahn-Wilson and Yuan (examples for all n)

Higher Semiadditivity in Vector Spaces

 Vect_k is always

- Pointed (initial object = terminal object)
- Semiadditive (finite coproducts = finite products)

Definition

Let $G \in \text{Grp}$ act on $V \in \text{Vect}_k$, define $\text{Nm} \colon V_G \to V^G$ by $\text{Nm}([x]) := \sum_g gx$

- If |G| is invertible in k then Nm is an isomorphism
- Otherwise, can be 0
- $V_G = \operatorname{colim}_{\operatorname{B}G} V$ and $V^G = \lim_{\operatorname{B}G} V$

Corollary

If char(k) = 0 then colimits = limits over finite groupoids

Higher Semiadditivity

Definition

- $A \in S$ is *m*-finite if
 - $\pi_0 A$ is finite
 - $\pi_i(A, a)$ is finite for any $a \in A$

•
$$\pi_i(A, a) = 0$$
 for $i > m$

 $A \in S$ is π -finite if it is m-finite for some m

Example

- (-1)-finite = \emptyset , *
- 0-finite = finite set
- 1-finite = finite coproduct of BG's where G is finite

Higher Semiadditivity

Higher Semiadditive K-Theory and Redshift

Closing Remarks

Higher Semiadditivity

Definition (Hopkins-Lurie)

 \mathfrak{C} is *m*-semiadditive if for any *m*-finite $A \in \mathfrak{S}$ and $X: A \to \mathfrak{C}$

$$\operatorname{colim}_A X \xrightarrow{\operatorname{Nm}} \lim_A X$$

is an isomorphism

Example

- (-1)-semiadditive = pointed
- 0-semiadditive = semiadditive

Higher Semiadditivity in Vector Spaces

Example

 $\operatorname{Vect}_{\mathbb{Q}}$ is ∞ -semiadditive

Example

 $\operatorname{Vect}_{\mathbb{F}_p}$ is 0-semiadditive but *not m*-semiadditive for $m \geq 1$

Higher Semiadditivity in Chromatic Homotopy

Theorem (Carmeli-Schlank-Yanovski)

 $\operatorname{Sp}_{\operatorname{T}(n)}$ is ∞ -semiadditive for any height $n < \infty$

Known previously

- $\operatorname{Sp}_{\mathbb{Q}}$ is ∞ -semiadditive (easy)
- $\operatorname{Sp}_{\operatorname{T}(n)}$ is 1-semiadditive (Kuhn)
- $\operatorname{Sp}_{\mathrm{K}(n)} \subset \operatorname{Sp}_{\mathrm{T}(n)}$ is ∞ -semiadditive (Hopkins-Lurie)

Higher Commutative Monoids

- Commutative monoid $X \in CMon(\mathcal{C})$
 - Summation of finite families of elements $\sum_A : X^A \to X$
 - Comm., assoc. and unital up to specified homotopies
- (Harpaz) ∞ -commutative monoid $X \in CMon_{\infty}(\mathcal{C})$
 - "Integration" of π -finite families of elements $\int_A : X^A \to X$
 - Comm., assoc. and unital up to specified homotopies

Example (Harpaz)

If ${\mathbb C}$ is $\infty\text{-semiadditive, every object }X\in {\mathbb C}$ is canonically an $\infty\text{-commutative monoid with integration}$

$$\lim_A X \xrightarrow{\operatorname{Nm}^{-1}} \operatorname{colim}_A X \xrightarrow{\nabla} X$$

Higher Commutative Monoids

Example (Cocartesian structure)

 $\operatorname{Cat}_{\pi\operatorname{-fin}}$ is $\infty\operatorname{-semiadditive}$, every object $\mathfrak{C}\in\operatorname{Cat}_{\pi\operatorname{-fin}}$ is canonically an ∞ -commutative monoid with integration

 $\operatornamewithlimits{colim}_A\colon \mathfrak{C}^A\to \mathfrak{C}$

Corollary

If C is ∞ -semiadditive, every object $X \in C$ is an ∞ -commutative monoid in C, and C itself is an ∞ -commutative monoid in $Cat_{\pi\text{-fin}}$

Higher Commutative Monoids

Proposition

 $\operatorname{CMon}(\mathbb{S})$ is the universal presentable semiadditive category

Theorem (Harpaz)

 $\mathrm{CMon}_\infty(\mathbb{S})$ is the universal presentable $\infty\text{-semiadditive category}$

Definition

 $\textbf{\textbf{2}}:= CMon_{\infty}(Sp),$ the universal presentable stable $\infty\text{-semiadditive category}$

Example

ន $ightarrow \operatorname{Sp}_{\operatorname{T}(n)}$, with fully faithful right adjoint

Semiadditive Height

- $X \in \operatorname{Sp}_{(p)}$ is of height
 - 0 if *p*-invertible
 - > 0 if *p*-complete
- Multiplication-by- $p = x \mapsto \sum_p x$
- Multiplication-by- $|A| = x \mapsto \int_A x$

Definition (Carmeli-Schlank-Yanovski)

We say $X \in \mathfrak{C}$ has *semiadditive height* ht(X)

- $\leq n$ if $|\mathbf{B}^n C_p|$ -invertible
- > n if $|B^nC_p|$ -complete

Higher Semiadditivity

Semiadditive Height

Example

Every object $X \in \operatorname{Sp}_{\operatorname{T}(n)}$ is of semiadditive height $\operatorname{ht}(X) = n$

Proposition

If $F : \mathbb{C} \to \mathcal{D}$ is ∞ -semiadditive (preserves (co)limits over π -finite spaces), then $ht(X) \le n$ implies $ht(FX) \le n$

Algebraic K-Theory

Higher Semiadditivity

Higher Semiadditive K-Theory and Redshift

Closing Remarks

Semiadditive Redshift

Theorem (Carmeli-Schlank-Yanovski)

Let ${\mathbb C}$ be $\infty\text{-semiadditive, then TFAE}$

- $ht(X) \leq n$ for any $X \in \mathfrak{C}$
- $ht(\mathcal{C}) \leq n+1$ (as an object of $Cat_{\pi\text{-fin}}$)

Higher Semiadditive K-Theory

Slogan

Carry ∞ -commutative monoid structure along K-theory

Group-complete semiadditive K-theory (baby case)

- Stable category with π -finite colimits $\mathcal{C} \in \operatorname{Cat}_{\pi\text{-fin}}^{st}$
- Space of objects $\mathcal{C}^{\simeq} \in \mathrm{CMon}_{\infty}(\mathbb{S})$ (w.r.t colimits)
- Group complete to get $(\mathfrak{C}^{\simeq})^{\mathrm{gpc}} \in \mathfrak{L}$

Semiadditive K-theory

- Again, neglected (co)fiber sequences
- S_{\bullet} -construction preserves ∞ -commutative monoids

$$\mathrm{K}^{[\infty]}\colon \mathrm{Cat}^{\mathrm{st}}_{\pi\operatorname{-fin}} \to \mathbf{L}$$

Redshift?

Proposition

 $\mathrm{K}^{[\infty]} \colon \mathrm{Cat}_{\pi\text{-fin}}^{\mathrm{st}} \to \mathfrak{Z} \text{ is an } \infty\text{-semiadditive functor (preserves (co)limits over <math>\pi\text{-finite spaces})$

Corollary

If $ht(\mathfrak{C}) \leq n$ then $ht(K^{[\infty]}(\mathfrak{C})) \leq n$

Evidently, this does not exhibit redshift

Algebraic K-Theory	Higher Semiadditivity	Higher Semiadditive K-Theory and Redshift	Closing Remarks
Redshift!			

- Categorification!
- Let $R \in Alg(Sp_{T(n)})$, then $Mod_R^{dbl}(Sp_{T(n)})$ is ∞ -semiadditive

Definition

 $\mathbf{K}^{[\infty]}(R) := \mathbf{K}^{[\infty]}(\mathrm{Mod}_R^{\mathrm{dbl}})$

Corollary (of semiadditive redshift)

 $\operatorname{ht}(\operatorname{Mod}_R^{\operatorname{dbl}}) \leq n+1$

Theorem (B.M.-Schlank)

 $\operatorname{ht}(\mathbf{K}^{[\infty]}(R)) \le n+1$

Cyclotomic Extensions

- $ht(Mod_R^{dbl}) = n + 1$ controlled by colimits over B^nC_p
- Leads to consider $R[B^nC_p] := \operatorname{colim}_{B^nC_p} R$

Theorem (Carmeli-Schlank-Yanovski)

Let $R \in Alg(Sp_{T(n)})$, there is a splitting

$$R[\mathbf{B}^n C_p] = R \times R[\omega_p^{(n)}]$$

- For rational ring, $R[\omega_p^{(0)}]$ is the *p*-cyclotomic extension
- $R[\omega_p^{(n)}]$ behaves analogously

Roots of Unity and Redshift

Definition

We say that $R \in Alg(Sp_{T(n)})$ has (height n) p-th roots of unity if $R[\omega_p^{(n)}] = \prod_{p=1} R$

Theorem (B.M.-Schlank)

If *R* has *p*-th roots of unity then $ht(K^{[\infty]}(R)) = n + 1$

Example (Carmeli-Schlank-Yanovski)

 E_n has *p*-th roots unity, thus $ht(K^{[\infty]}(E_n)) = n + 1$

Closing Remarks

Relationship to Ordinary K-Theory

- In general, there is a map $K(R) \to K^{[\infty]}(R)$
- Gives $L_{\mathcal{T}(n+1)} \operatorname{K}(R) \to L_{\mathcal{T}(n+1)} \operatorname{K}^{[\infty]}(R)$
 - When is $K^{[\infty]}(R)$ in the full subcategory $\operatorname{Sp}_{\operatorname{T}(n+1)} \subset$ 2?
 - When is this T(n+1)-equivalence?
- *n* = 0
 - Quillen-Lichtenbaum conjecture for $\mathbb{S}[p^{-1}]$
 - Clausen-Mathew-Naumann-Noel

Theorem (B.M.-Schlank)

Let $R \in \operatorname{Alg}(\operatorname{Sp}[p^{-1}])$ then $\operatorname{K}^{[\infty]}(R) = L_{\operatorname{T}(1)}\operatorname{K}(R)$

Example

 $\mathrm{K}^{[\infty]}(\overline{\mathbb{Q}}) = \mathrm{KU}_p^\wedge$

Things I Didn't Talk About

- Multiplicative structure
- Atomic objects (and monoidal Yoneda embedding)
- *m*-semiadditive K-theory

Further Directions

- $L_{\mathrm{T}(n+1)}\,\mathrm{K}$ and $\mathrm{K}^{[\infty]}$ (Carmeli-Schlank-Yanovski)
- Semiadditive Grothendieck-Witt (Carmeli-Yuan)
- Blumberg-Gepner-Tabuada type universal property

Thank You!