Übungsblatt 8 (Homotopietheorie 1, WS 2019/20)

Achim Krause, Thomas Nikolaus

zur Abgabe und Besprechung in der Übungsgruppe am 04.12.

Aufgabe 1. Sei X ein Raum. Beweisen Sie die Existenz eines CW-Komplexes K mit schwacher Äquivalenz $K \to X$ ohne Benutzung simplizialer Mengen.

Aufgabe 2. Sei M eine kompakte, zusammenhängende, orientierbare 3-Mannigfaltigkeit M, mit Fundamentalgruppe $\pi_1(M) = A_5$.

Zeigen Sie: Für eine solche Mannigfaltigkeit M hat $M \setminus \operatorname{pt}$ die Homologie eines Punktes, ist aber nicht zusammenziehbar.

Aufgabe 3. Seien X, Y CW-Komplexe. Wir können drei verschiedene Arten von simplizialen "Abbildungsräumen" formen.

- (1) $\underline{\operatorname{Hom}}(\operatorname{Sing}(X),\operatorname{Sing}(Y))$, wie in Blatt 5, Aufgabe 3, wo *n*-Simplizes gegeben sind durch Abbildungen $\Delta^n \times \operatorname{Sing}(X) \to \operatorname{Sing}(Y)$.
- (2) $\operatorname{Map}^{\Delta}(X,Y)$, wo n-Simplizes gegeben sind durch Abbildungen $|\Delta^n| \times X \to Y$.
- (3) $\operatorname{Map}^{\Delta,\operatorname{cell}}(X,Y)$, wo *n*-Simplizes gegeben sind durch zelluläre Abbildungen $|\Delta^n| \times X \to Y$.

Zeigen Sie, dass alle drei Definitionen homotopieäquivalente Kankomplexe liefern.

Aufgabe 4. Zeigen Sie: Die Lokalisierung von sSet an naiven Homotopieäquivalenzen (also Abbildungen $f: X \to Y$ für die ein $g: Y \to X$ und Homotopien $X \times \Delta^1 \to Y$, $Y \times \Delta^1 \to X$ zwischen gf und id_X bzw. fg und id_Y existieren) stimmt nicht mit Ho(Kan) überein.

¹Eine solche Mannigfaltigkeit existiert: Die Poincaré-Sphäre $SU(2)/A_5$ haben wir in Topologie 2 als Beispiel konstruiert.