Übungsblatt 5 (Homotopietheorie 1, WS 2019/20)

Achim Krause, Thomas Nikolaus

zur Abgabe und Besprechung in der Übungsgruppe am 13.11.

Aufgabe 1. Sei K ein punktierter Kankomplex. Zeigen Sie: Zwei punktierte Abbildungen $f, g: \Delta^n/\partial \Delta^n \to K$ sind genau dann punktiert homotop, wenn es eine Abbildung $h: \Delta^{n+1} \to K$ gibt, sodass $h|_{\partial_0 \Delta^{n+1}} = f$, $h|_{\partial_1 \Delta^{n+1}} = g$, und $h|_{\partial_i}$ konstant für jedes i > 1 ist.

Aufgabe 2. Für eine simpliziale Menge K definieren wir einen Gruppoid¹ $\Pi_1(K)$, dessen Objekte die 0-Simplices von K sind, durch die folgende universelle Eigenschaft: Funktoren $\Pi_1(K) \to \mathcal{G}$ in einen Gruppoid \mathcal{G} korrespondieren zu Abbildungen $K \to N(\mathcal{G})$. Zeigen Sie:

- (a) Ist K ein Kankomplex mit Basispunkt x, so ist $\operatorname{Hom}_{\Pi_1(K)}(x,x) \cong \pi_1(K,x)$.
- (b) Ist $A \to X$ anodyn, so ist $\Pi_1(A) \to \Pi_1(X)$ eine Äquivalenz von Kategorien.

Aufgabe 3. Zeigen Sie:

(a) Es existiert ein Funktor $\underline{\mathrm{Hom}}: \mathrm{sSet^{op}} \times \mathrm{sSet} \to \mathrm{sSet}$ mit natürlicher Äquivalenz

$$\operatorname{Hom}_{\operatorname{sSet}}(X, \operatorname{\underline{Hom}}(Y, Z)) \cong \operatorname{Hom}_{\operatorname{sSet}}(X \times Y, Z).$$

(b) Wenn K ein Kankomplex und X eine beliebige simpliziale Menge ist, so ist $\underline{\text{Hom}}(X,K)$ ebenfalls Kan.

Aufgabe 4. Sei X eine simpliziale Menge. Zeigen Sie, dass die kanonische Abbildung $X \to \text{Sing } |X|$ einen Isomorphismus auf Homologie induziert.

¹Eine Kategorie, in der alle Morphismen invertierbar sind