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The road ahead

model theory︸ ︷︷ ︸
mathematical logic

of valued fields︸ ︷︷ ︸
algebra

.

Today, we will try to:
▶ Tell you what valued fields are.
▶ Give you an idea of what our results look like.
▶ Tell you about an obstacle in this area and how we turned it into a tool.
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Valuations and where to find them

Definition

A valuation on a field K is a surjective map v : K× → Γ , where (Γ ,+,⩽, 0) is an ordered abelian group, such
that:

▶ v(xy) = v(x) + v(y), multiplying two elements sums their valuations

▶ v(x + y) ⩾ min{v(x), v(y)}. all triangles are isosceles

(Counter)intuition: an element r ∈ K× is large if if its valuation v(r) ∈ Γ is small, i.e. close to 0. Along this
intuition, we usually set v(0) := ∞.

The ordered abelian group Γ is called the value group. We also denote it by vK .
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Our favourite example

Fix a prime number p.
▶ If a ∈ Z \ {0}, then

vp(a) := max{n ∈ N : pn divides a}.

For example, v3(6560) = 0. According to v3, then, 6560 is “big”. But v3(6561) = 8, which is then
“smaller” than 6560. If a, b ∈ Z \ {0} are coprime, then

vp
(a
b

)
:= vp(a) − vp(b).

▶ This defines a valuation vp : Q \ {0} → Z, called the p-adic valuation. With it, we can define a distance
on Q by setting dp(a, b) := p−vp(a−b).

▶ If we complete the corresponding metric space, we obtain a (new) valued field called Qp, with its own
valuation vp. These are the p-adic numbers.
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Why you should like the p-adics

▶ (Qp, vp) is crucial for algebraic purposes. But we are logicians (allegedly)!
▶ A valuation is “the same” as its valuation ring, i.e. the subring

Ov = {x ∈ K | v(x) ⩾ 0}.

This is the part where we should tell you that∞ is larger than all elements of Γ , and thus 0 ∈ Ov .

▶ In the case of Qp, this subring is called Zp (guess why!). Julia Robinson pointed out something
remarkable about Zp (for p ̸= 2):

Zp = {x ∈ Qp | ∃Y(Y 2 = 1+ px2)}.

There is a similar formula for p = 2.

▶ Zp is given, as a subset of Qp, by a polynomial equation together with some quantifiers.
We say that it is a definable set in the language of rings.
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Logicians, assemble! cont’d

Big question: Is this common? When is some valuation ring
definable in the language of rings?
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The problem of henselianity

Not all valuations are created equal.

▶ Take a field K with a valuation v. We give you an algebraic extension L of K , e.g. L = K(α) where α is
the root of some polynomial over K . Can you extend v to L?
Yes, but often in several different ways.

▶ v is henselian if there is a unique way to extend v to any algebraic extension of K . A henselian
valuation is a bit like a fill the gaps exercise in a textbook.

▶ vp is henselian. We will only care about henselian valuations.
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The big qestion, take 2

Big question: when is
a henselian valuation ring definable in the language of rings?
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Two fields in disguise

▶ To any valued field (K , v) we can associate another “smaller” field, called the residue field,

Kv := {x ∈ K : v(x) ⩾ 0}⧸{x ∈ K : v(x) > 0}.

Indeed, mv := {x ∈ K : v(x) > 0} is the unique maximal ideal of Ov = {x ∈ K | v(x) ⩾ 0}.

▶ Example: (Q, vp) and (Qp, vp) both have residue field Fp, the finite field with p elements
In fact, Q ⊆ Qp is an immediate extension: They have the same value groups and residue fields.

▶ So a valued field consists of two fields: the “big” valued field and the “smaller” residue field. If we talk
about the characteristic of a valued field, we talk about the characteristics of the two fields
• equicharacteristic zero: char(K) = char(Kv) = 0
• mixed characteristic: char(K) = 0 < p = char(Kv), where p is prime
• positive characteristic: char(K) = char(Kv) = p, where p is prime
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A canonical friend

▶ Henselian valuations on a given field K arrange themselves nicely according to whether their residue
field is separably closed or not,

H1(K) := {v : Kv is not separably closed} vs. H2(K) := {v : Kv is separably closed}.

▶ H1(K) is linearly ordered by inclusion.
The “middle point” between H1(K) and H2(K) is the canonical henselian valuation vK .

H1(K)

H2(K)

vK
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The gist of it

∃ definable (non-trivial) henselian valuation︸ ︷︷ ︸
Logic question

⇐⇒ Conditions on the canonical henselian valuation︸ ︷︷ ︸
(Almost) algebra answer
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What we proved

Theorem (Jahnke, Koenigsmann, 2017; Ketelsen, Ramello, Szewczyk, 2023)

Let K be a non-separably closed henselian field.
If char(K) = p > 0, then assume that K is perfect.
If char(K) = 0 < p = char(KvK), then assume that OvK/p is semi-perfect.
Then,

K admits a definable non-trivial henselian valuation ⇐⇒



KvK = KvsepK , or

KvK is not t-henselian, or

∃L ⪰ KvK with vLL divisible, or

vKK is not divisible, or

(K , vK) is not defectless, or

∃L ⪰ KvK with (L, vL) not defectless.
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What we had before

Theorem (Jahnke, Koenigsmann, 2017; Ketelsen, Ramello, Szewczyk, 2023)

Let K be a non-separably closed henselian field, char(Kv) = 0.
If char(K) = p > 0, then assume that K is perfect.
If, further, char(K) = 0 < p = char(KvK), then further assume that OvK/p is semi-perfect.
Then,

K admits a definable non-trivial henselian valuation ⇐⇒



KvK = KvsepK , or

KvK is not t-henselian, or

∃L ⪰ KvK with vLL divisible, or

vKK is not divisible, or

(K , vK) is not defectless, or

∃L ⪰ KvK with (L, vL) not defectless.
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We don’t talk about defect

Actually, we do now.
▶ Given a henselian valuation v and a finite field extension K ⊆ L, then there is a unique extension of v

to L, which we denote by v again. Then, we have

[L : K ] ⩾ [Lv : Kv](vL : vK).

More precisely,
[L : K ] = pd [Lv : Kv](vL : vK),

where p = char(Kv), if the latter is positive, and p = 1 if char(Kv) = 0.
▶ We say that (K , v) ⊆ (L, v) is defectless if

[L : K ] = [Lv : Kv](vL : vK).

In particular, then, if char(Kv) = 0, then p = 1 and so equality holds. Otherwise, not being defectless (=
having defect) is a problem.

▶ For us, however, defect is a source of information! (At least when it is “of independent type”).
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