A proof of Greenberg's Theorem using ultrapowers

Margarete Ketelsen

Technische Universität Dresden
ALGAR 2021
19 August 2021

Notation

Let K be a field and

$$
v: K^{\times} \rightarrow \Gamma
$$

a valuation on K. (Γ can be any ordered abelian group.)
We write

- $\mathcal{O}_{v}=\{x \in K: v(x) \geq 0\}$ for the valuation ring.
- $\mathfrak{m}_{v}=\{x \in K: v(x)>0\}$ for the maximal ideal.
- $\Gamma_{v}=v K=v\left(K^{\times}\right)$for the value group.
- $K v=\mathcal{O}_{v} / \mathfrak{m}_{v}$ for the residue field.

We write (K, v) or $\left(K, v, \Gamma_{v}\right)$ for the valued field.

Ershov's Generalization of Greenberg's Theorem

Theorem (Ershov 1967, Proposition 3.1.7 in [2])

Let (K, v) be a henselian and defectless valued field and let $f_{1}, \ldots, f_{m} \in \mathcal{O}_{v}\left[X_{1}, \ldots, X_{n}\right]$ polynomials, such that for every $\gamma \in \Gamma_{v}$ there are $x_{1}, \ldots, x_{n} \in \mathcal{O}_{v}$ with

$$
v\left(f_{i}\left(x_{1}, \ldots, x_{n}\right)\right)>\gamma \text { for } i=1, \ldots, m
$$

Then there exist $y_{1}, \ldots, y_{n} \in \mathcal{O}_{v}$ with

$$
f_{i}\left(y_{1}, \ldots, y_{n}\right)=0 \text { for } i=1, \ldots, m .
$$

Henselian and Defectless

Remark

- "henselian" means that the valuation extends uniquely to every algebraic extension. Or equivalently, (some variant of) Hensel's Lemma holds.
- "defectless" means that there is equality in the fundamental inequality for any finite extension.
- henselian and defectless $\Longrightarrow[L: K]=e(w \mid v) f(w \mid v)=(w L: v K)[L w: K v]$, for any finite field extension L of K, where w is the unique prolongation of v to K.
- Complete discretely valued fields are henselian and defectless.
- The valuation v does not need to be discrete. The proof also works for positive characteristic.

The Model Theory in the Proof

For the proof we will need an extension $\left(K^{*}, v^{*}\right)$ of (K, v) that satisfies:

1. $\left(K^{*}, v^{*}\right)$ is again henselian.
2. If $\left\{f_{1}, \ldots, f_{m}\right\}$ has a zero in $\mathcal{O}_{v^{*}}$, then it already has a zero in \mathcal{O}_{v}.
3. There is $\gamma_{0} \in \Gamma_{v^{*}}$ with $\gamma_{0} \gg \Gamma_{v}$, i.e. $\gamma_{0}>\gamma$ for every $\gamma \in \Gamma_{v}$. There is some $\underline{x}^{*} \in\left(K^{*}\right)^{n}$ with $v^{*}\left(f_{i}\left(\underline{x}^{*}\right)\right)>\gamma_{0}$.
4. $K^{*} v^{*} \mid K v$ is separable.
5. $\Gamma_{v^{*}} / \Gamma_{v}$ is torsion-free.

We will construct this extension via an ultrapower construction.

Ultrapowers

Ultrafilters

Let I be an infinite set.

Definition

A set $\mathcal{F} \subseteq \mathcal{P}(I)$ is called filter if

1. $\emptyset \notin \mathcal{F}$
2. $U \in \mathcal{F}, V \supseteq U \Longrightarrow V \in \mathcal{F}$
3. $U, V \in \mathcal{F} \Longrightarrow U \cap V \in \mathcal{F}$
for any $U, V \in \mathcal{P}(I)$.
In addition, we call \mathcal{F} an ultrafilter if for any $U \in \mathcal{P}(I)$
4. $U \in \mathcal{F}$ or $I \backslash U \in \mathcal{F}$
holds.

Remark

The ultrafilters are exactly the maximal filters (with respect to inclusion).

Ultrapowers

Ultrafilters

Example

- $\mathcal{F}_{\{a\}}:=\{A \subset I: a \in A\}$, the principal filter is an ultrafilter for $a \in I$.
- $\mathcal{F}_{0}:=\{A \subseteq I: I \backslash A$ is finite. $\}$, the Fréchet filter is a filter, bot not an ultrafilter.

Lemma

Every filter is contained in an ultrafilter
Proof. Zorn's Lemma.

Ultrapowers

of Valued Fields

Let (K, v, Γ). We now consider the set

$$
K^{\prime}=\prod_{i \in I} K=\left\{\left(a_{i}\right)_{i \in I}: a_{i} \in K\right\}
$$

of sequences in K.
Given an ultrafilter \mathcal{F} we have the following equivalence relation on K^{\prime} :

$$
\left(a_{i}\right)_{i \in I} \sim\left(b_{i}\right)_{i \in I}: \Longleftrightarrow\left\{i \in I: a_{i}=b_{i}\right\} \in \mathcal{F}
$$

and we write [a] for the equivalence class of $a \in K^{\prime}$.

Ultrapowers

of Valued Fields

Now, the ultrapower of K is given by

$$
K^{*}:=K^{\prime} / \mathcal{F}:=K^{\prime} / \sim:=\left\{[a]: a \in K^{\prime}\right\}
$$

and we define addition and multiplication on K^{*} componentwise as follows

$$
\begin{aligned}
& {\left[\left(a_{i}\right)_{i}\right]+\left[\left(b_{i}\right)_{i}\right]: }=\left[\left(a_{i}+b_{i}\right)_{i}\right] \\
& {\left[\left(a_{i}\right)_{i}\right] \cdot\left[\left(b_{i}\right)_{i}\right]:=\left[\left(a_{i} \cdot b_{i}\right)_{i}\right] }
\end{aligned}
$$

Addition and multiplication are well-defined and K^{*} is again a field. (easy exercise)

Ultrapowers

of Valued Fields

We repeat a similar construction for the value group Γ and get its ultrapower

$$
\Gamma^{*}=\Gamma^{\prime} / \mathcal{F}
$$

and again Γ^{*} is an ordered abelian group by

$$
\begin{gathered}
{\left[\left(\gamma_{i}\right)_{i}\right]+\left[\left(\delta_{i}\right)_{i}\right]:=\left[\left(\gamma_{i}+\delta_{i}\right)_{i}\right]} \\
{\left[\left(\gamma_{i}\right)_{i}\right] \leq\left[\left(\delta_{i}\right)_{i}\right]: \Longleftrightarrow\left\{i \in I: \gamma_{i} \leq \delta_{i}\right\} \in \mathcal{F}}
\end{gathered}
$$

Now we define a valuation $v^{*}: K^{*} \rightarrow \Gamma^{*} \cup\left\{\infty^{*}\right\}$.

$$
v^{*}\left(\left[\left(a_{i}\right)_{i}\right]\right):=\left[\left(v\left(a_{i}\right)\right)_{i}\right]
$$

Ultrapowers

The Diagonal Embedding

Definition (diagonal embedding)

$$
\begin{aligned}
& \iota: K \rightarrow K^{*}, a \mapsto\left[(a)_{i}\right] \\
& \iota: \Gamma \rightarrow \Gamma^{*}, \gamma \mapsto\left[(\gamma)_{i}\right]
\end{aligned}
$$

For $a \in K$, we have

$$
v^{*}(\iota(a))=v^{*}\left(\left[(a)_{i}\right]\right)=\left[(v(a))_{i}\right]=\iota(v(a)) .
$$

Thus v^{*} is a prolongation of the valuation v of K to K^{*}.
In the following, we will say that $K \subseteq K^{*}$ and that $(K, v) \leq\left(K^{*}, v^{*}\right)$ is an extension of valued fields.

Łoś's Theorem

Theorem

In (K, v) and in $\left(K^{*}, v^{*}\right)$ the same formulas with no free variables and with parameters in K hold.

Example (formulas with parameters in K)

- $\exists X(f(X)=0)$ for some $f \in K[X]$, i.e. f has a zero. The coefficients are parameters in K.
$-\forall a_{0}, \ldots, a_{n-2} \exists X\left(\left(v\left(a_{0}\right)>0 \wedge \ldots \wedge v\left(a_{n-2}\right)>0\right) \rightarrow X^{n}+X^{n-1}+a_{n-2} X^{n-2}+\ldots+a_{0}=0\right)$, i.e. every polynomial $X^{n}+X^{n-1}+a_{n-2} X^{n-2}+\ldots+a_{0}$ with a_{0}, \ldots, a_{n-2} in the maximal ideal has a zero, this is a variant of Hensel's Lemma.

Non-examples:

- $\exists X(f(X)=0)$ with $f \in K^{*}[X] \backslash K[X]$. (Parameters are not in K.)
$-\forall X \exists n \in \mathbb{N}: n>v(X)$, i.e. the value group is archimedian ordered. (Quantifiers over \mathbb{N} are not allowed.)

Some Remarks

- In model theory, an extension with this property is called elementary extension: $(K, v) \prec\left(K^{*}, v^{*}\right)$
- More generally, if $\left(K_{i}, v_{i}, \Gamma_{i}\right)$ is a valued field for every $i \in I$, then one can define the ultraproduct by taking

$$
\prod_{i \in I} K_{i}=\left\{\left(a_{i}\right)_{i \in I}: a_{i} \in K_{i}\right\}
$$

instead of K^{l} and defining the analog equivalence relation there.

- This construction works for any model-theoretic structure.
- One can prove the existence of an extension with the desired properties using the compactness theorem from model theory instead.

Properties following directly from Łoś’s Theorem

- If (K, v) is henselian, then also the ultrapower $\left(K^{*}, v^{*}\right)$ is.
- Let $f_{1}, \ldots, f_{m} \in \mathcal{O}_{v}\left[X_{1}, \ldots, X_{n}\right]$. If they have a common zero in $\left(\mathcal{O}_{v^{*}}\right)^{n}$, then they also have in \mathcal{O}_{v}^{n}.
- Let $f_{1}, \ldots, f_{m} \in \mathcal{O}_{v}\left[X_{1}, \ldots, X_{n}\right]$. If for any $\gamma \in \Gamma$ there is some $\underline{x} \in \mathcal{O}_{v}^{n}$, such that

$$
v\left(f_{i}(\underline{x})\right)>\gamma, i=1, \ldots, m
$$

then also for every $\gamma^{*} \in \Gamma^{*}$, there is some $\underline{x}^{*} \in\left(\mathcal{O}_{v^{*}}\right)^{n}$ with

$$
v^{*}\left(f_{i}\left(\underline{x}^{*}\right)\right)>\gamma^{*}, i=1, \ldots, m .
$$

- $K^{*} v^{*} \mid K v$ is separable. (Note that in general $K^{*} \mid K$ is not algebraic.)
- Γ^{*} / Γ is torsion-free.

Separability for Transcendental Field Extensions

Definition

- A finitely generated field extension $L \mid K$ is separably generated, if a separating transcendence basis exists, i.e. there is a transcendence basis t_{1}, \ldots, t_{n} such that $L \mid K\left(t_{1}, \ldots t_{n}\right)$ is a finite separable extension.
- A field extension $L \mid K$ is separable, if every finitely generated extension of K, which is contained in L is separably generated over K.

Theorem

$L \mid K$ is separable if and only if L and $K^{1 / p}$ are linearly disjoint over K, i.e. every tuple $a_{1}, \ldots, a_{n} \in K^{1 / p}$ that is linearly independent over K stays linearly independent over L.

The Infinitely Large Element

We don't want just any ultrapower, we want one where an "infinitely large element" exists, i.e. that there is some $\gamma_{0} \in \Gamma^{*}$, such that $\gamma_{0}>\gamma$ for every $\gamma \in \Gamma$.
! This is not true in general, but we can enforce this by choosing a suitable ultrafilter !

Set $I=\Gamma$. It is easy to verify that the set of cofinal subsets

$$
\mathcal{F}_{0}:=\{U \subseteq I \mid \exists \gamma \in U: \forall \delta \in I: \delta \geq \gamma \Longrightarrow \delta \in U\}
$$

is a filter on $I . \mathcal{F}_{0}$ is contained in an ultrafilter \mathcal{F}. The ultrapower of Γ with respect to this ultrafilter \mathcal{F} possesses such an infinitely large element:
Let $\gamma_{0}:=\left[(\delta)_{\delta \in I}\right]$. Then for $\gamma \in \Gamma$, we have $\{\delta \in I: \delta \geq \gamma\} \in \mathcal{F}_{0} \subseteq \mathcal{F}$, so $\gamma_{0} \geq \gamma$.

From now on, we will accept, that there is an extension $\left(K^{*}, v^{*}\right)$ of our henselian valued field (K, v) that satisfies:

1. $\left(K^{*}, v^{*}\right)$ is again henselian.
2. If $\left\{f_{1}, \ldots, f_{m}\right\} \subseteq \mathcal{O}\left[X_{1}, \ldots, X_{n}\right]$ has a zero in $\mathcal{O}_{v^{*}}$, then it already has a zero in \mathcal{O}_{v}.
3. There is $\gamma_{0} \in \Gamma_{v^{*}}$ with $\gamma_{0} \gg \Gamma_{v}$, i.e. $\gamma_{0}>\gamma$ for every $\gamma \in \Gamma_{v}$. There is $\underline{x}^{*} \in\left(K^{*}\right)^{n}$ with $v^{*}\left(f_{i}\left(\underline{x}^{*}\right)\right)>\gamma_{0}$.
4. $K^{*} v^{*} \mid K v$ is separable.
5. $\Gamma_{v^{*}} / \Gamma_{v}$ is torsion-free.

Proof sketch

- Let $\left(K^{*}, v^{*}\right)$ be the extension obtained from the ultrapower construction with the desired properties.
- Goal: Find a solution in K^{*}, then there is one in K.
- Let $\Delta \leq \Gamma_{v^{*}}$ be the smallest convex subgroup, that contains Γ_{v}.
- Consider the decomposition of $v^{*}=\bar{v} \circ w$ with respect to Δ, i.e.

$$
\bar{v}:\left\{\begin{array}{rll}
\left(K^{*} w\right)^{\times} & \rightarrow \Delta \\
x+\mathfrak{m}_{w} & \mapsto & v^{*}(x)
\end{array} \quad \text { and } \quad w:\left\{\begin{array}{rl}
\left(K^{*}\right)^{\times} & \rightarrow \Gamma_{v^{*}} / \Delta \\
x & \mapsto
\end{array} v^{*}(x)+\Delta .\right.\right.
$$

$\left(\Gamma_{V^{*}} / \Delta\right.$ is again an ordered abelian group with

$$
\gamma+\Delta<\delta+\Delta: \Longleftrightarrow \gamma+\Delta \neq \delta+\Delta \text { and } \gamma<\delta)
$$

Consider the decomposition of $v^{*}=\bar{v} \circ w$ with respect to Δ, i.e.

$$
\bar{v}:\left\{\begin{array}{rll}
\left(K^{*} w\right)^{\times} & \rightarrow \Delta \\
x+\mathfrak{m}_{w} & \mapsto & v^{*}(x)
\end{array} \quad \text { and } \quad w:\left\{\begin{array}{rl}
\left(K^{*}\right)^{\times} & \rightarrow \Gamma_{v^{*}} / \Delta \\
x & \mapsto
\end{array} v^{*}(x)+\Delta .\right.\right.
$$

Note that:

- w is trivial on K.
- K embedds into $K^{*} w$ via the residue mapping res ${ }_{w}$.
- Let $\underline{x}^{*} \in\left(K^{*}\right)^{n}$ be the approximate solution for the infinitely large element $\gamma_{0} \in \Gamma_{v^{*}}$, then

$$
w\left(f_{i}\left(\underline{x}^{*}\right)\right)=v^{*}\left(f_{i}\left(\underline{x}^{*}\right)\right)+\Delta>\gamma_{0}+\Delta>0+\Delta, \quad \text { i.e. } f_{i}\left(\underline{x}^{*}\right) \in \mathfrak{m}_{w} .
$$

- $\bar{f}_{i}\left(\overline{\bar{x}}^{*}\right)=0 \in K^{*} w, \quad \underline{\bar{x}}^{*}=\left(\bar{x}_{1}^{*}, \ldots, \bar{x}_{n}^{*}\right), \quad \bar{x}_{i}^{*}=x_{i}+\mathfrak{m}_{w} \in K^{*} w$

Thus we found a zero in $K^{*} w$.

Lemma

Let (K, v) be a henselian and defectless valued field and (L, w) some extension.

$$
\Gamma_{w} / \Gamma_{v} \text { torsion-free and } L w \mid K v \text { separable } \Longrightarrow L \mid K \text { separable }
$$

Apply the Lemma to

$$
\bar{v}:\left\{\begin{array}{rll}
\left(K^{*} w\right)^{x} & \rightarrow & \Delta \\
x+\mathfrak{m}_{w} & \mapsto & v^{*}(x)
\end{array}\right.
$$

Value group: $\Gamma_{\bar{v}}=\Delta \subseteq \Gamma_{V^{*}}$
Residue field: $\left(K^{*} w\right) \bar{v}=K^{*} v^{*}$
From our ultrapower construction, we know that
$\Delta \Delta / \Gamma_{v} \leq \Gamma_{v^{*}} / \Gamma_{v}$ is torsion-free.

- $K^{*} v^{*} \mid K v$ is separable.
\Longrightarrow Lemma: $K^{*} w \mid K$ is separable

From $K^{*} w$ to K^{*}

Lemma

Let $K^{*} \mid K$ be a field extension, and w a henselian valuation on K^{*} that is trivial on K. (K embedds into $K^{*} w$ via the residue mapping res ${ }_{w}$. We write $K \subseteq K^{*} w$.)
Let $F \subseteq K^{*} w$ be a finitely generated separable extension of K. Then there exists some extension $F^{\prime} \subseteq \mathcal{O}_{w}$ of K, such that the residue mapping res ${ }_{w}$ restricts to an isomorphism $F^{\prime} \rightarrow F$.

Proof:

Bibliography

国 Engler，A．J．and Prestel，A．：Valued Fields．Springer， 2005.
Ershov，Yu．L．：Multi－Valued Fields．Springer， 2001.
国 Ershov，Yu．L．：Rational Points over Henselian Fields．Algebra i Logika 6．3，1967， p．39－49（in Russian）．
囯 Hodges，W．：A Shorter Model Theory．Cambridge University Press， 1997.
园 Lang，S．：Algebra．Springer， 2002.

