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Notation

Let K be a field and
v : K× → Γ

a valuation on K . (Γ can be any ordered abelian group.)
We write

▶ Ov = {x ∈ K : v(x) ≥ 0} for the valuation ring.

▶ mv = {x ∈ K : v(x) > 0} for the maximal ideal.

▶ Γv = vK = v(K×) for the value group.

▶ Kv = Ov/mv for the residue field.

We write (K , v) or (K , v , Γv ) for the valued field.



Ershov’s Generalization of Greenberg’s Theorem

Theorem (Ershov 1967, Proposition 3.1.7 in [2])

Let (K , v) be a henselian and defectless valued field and let f1, ..., fm ∈ Ov [X1, . . . ,Xn]
polynomials, such that for every γ ∈ Γv there are x1, . . . , xn ∈ Ov with

v(fi (x1, . . . , xn)) > γ for i = 1, . . . ,m.

Then there exist y1, . . . , yn ∈ Ov with

fi (y1, . . . , yn) = 0 for i = 1, . . . ,m.



Henselian and Defectless

Remark

▶ “henselian” means that the valuation extends uniquely to every algebraic
extension. Or equivalently, (some variant of) Hensel’s Lemma holds.

▶ “defectless” means that there is equality in the fundamental inequality for any
finite extension.

▶ henselian and defectless =⇒ [L : K ] = e(w |v)f (w |v) = (wL : vK )[Lw : Kv ],
for any finite field extension L of K , where w is the unique prolongation of v to K .

▶ Complete discretely valued fields are henselian and defectless.

▶ The valuation v does not need to be discrete. The proof also works for positive
characteristic.



The Model Theory in the Proof

For the proof we will need an extension (K ∗, v∗) of (K , v) that satisfies:

1. (K ∗, v∗) is again henselian.

2. If {f1, ..., fm} has a zero in Ov∗ , then it already has a zero in Ov .

3. There is γ0 ∈ Γv∗ with γ0 ≫ Γv , i.e. γ0 > γ for every γ ∈ Γv .
There is some x∗ ∈ (K ∗)n with v∗(fi (x

∗)) > γ0.

4. K ∗v∗|Kv is separable.

5. Γv∗/Γv is torsion-free.

We will construct this extension via an ultrapower construction.



Ultrapowers
Ultrafilters

Let I be an infinite set.

Definition

A set F ⊆ P(I ) is called filter if

1. ∅ /∈ F
2. U ∈ F ,V ⊇ U =⇒ V ∈ F
3. U,V ∈ F =⇒ U ∩ V ∈ F

for any U,V ∈ P(I ).
In addition, we call F an ultrafilter if for any U ∈ P(I )

4. U ∈ F or I \ U ∈ F
holds.

Remark

The ultrafilters are exactly the maximal filters (with respect to inclusion).



Ultrapowers
Ultrafilters

Example

▶ F{a} := {A ⊂ I : a ∈ A}, the principal filter is an ultrafilter for a ∈ I .

▶ F0 := {A ⊆ I : I \ A is finite.}, the Fréchet filter is a filter, bot not an ultrafilter.

Lemma

Every filter is contained in an ultrafilter

Proof. Zorn’s Lemma.



Ultrapowers
of Valued Fields

Let (K , v , Γ). We now consider the set

K I =
∏
i∈I

K = {(ai )i∈I : ai ∈ K}

of sequences in K .
Given an ultrafilter F we have the following equivalence relation on K I :

(ai )i∈I ∼ (bi )i∈I :⇐⇒ {i ∈ I : ai = bi} ∈ F

and we write [a] for the equivalence class of a ∈ K I .



Ultrapowers
of Valued Fields

Now, the ultrapower of K is given by

K ∗ := K I/F := K I/ ∼ :=
{
[a] : a ∈ K I

}
and we define addition and multiplication on K ∗ componentwise as follows

[(ai )i ] + [(bi )i ] := [(ai + bi )i ]

[(ai )i ] · [(bi )i ] := [(ai · bi )i ] .

Addition and multiplication are well-defined and K ∗ is again a field. (easy exercise)



Ultrapowers
of Valued Fields

We repeat a similar construction for the value group Γ and get its ultrapower

Γ∗ = ΓI/F ,

and again Γ∗ is an ordered abelian group by

[(γi )i ] + [(δi )i ] := [(γi + δi )i ]

[(γi )i ] ≤ [(δi )i ] :⇐⇒ {i ∈ I : γi ≤ δi} ∈ F

Now we define a valuation v∗ : K ∗ → Γ∗ ∪ {∞∗}.

v∗([(ai )i ]) := [(v(ai ))i ]



Ultrapowers
The Diagonal Embedding

Definition (diagonal embedding)

ι : K → K ∗, a 7→ [(a)i ]

ι : Γ → Γ∗, γ 7→ [(γ)i ]

For a ∈ K , we have

v∗(ι(a)) = v∗([(a)i ]) = [(v(a))i ] = ι(v(a)).

Thus v∗ is a prolongation of the valuation v of K to K ∗.
In the following, we will say that K ⊆ K ∗ and that (K , v) ≤ (K ∗, v∗) is an extension of
valued fields.



 Loś’s Theorem

Theorem

In (K , v) and in (K ∗, v∗) the same formulas with no free variables and with parameters
in K hold.

Example (formulas with parameters in K )

▶ ∃X (f (X ) = 0) for some f ∈ K [X ], i.e. f has a zero. The coefficients are
parameters in K .

▶ ∀a0, . . . , an−2∃X ((v(a0) > 0∧. . .∧v(an−2) > 0) → X n+X n−1+an−2X
n−2+. . .+a0 = 0),

i.e. every polynomial X n + X n−1 + an−2X
n−2 + . . .+ a0 with a0, . . . , an−2 in the

maximal ideal has a zero, this is a variant of Hensel’s Lemma.

Non-examples:

▶ ∃X (f (X ) = 0) with f ∈ K ∗[X ] \ K [X ]. (Parameters are not in K .)

▶ ∀X∃n ∈ N : n > v(X ), i.e. the value group is archimedian ordered. (Quantifiers
over N are not allowed.)



Some Remarks

▶ In model theory, an extension with this property is called elementary extension:
(K , v) ≺ (K ∗, v∗)

▶ More generally, if (Ki , vi , Γi ) is a valued field for every i ∈ I , then one can define
the ultraproduct by taking ∏

i∈I
Ki = {(ai )i∈I : ai ∈ Ki}

instead of K I and defining the analog equivalence relation there.

▶ This construction works for any model-theoretic structure.

▶ One can prove the existence of an extension with the desired properties using the
compactness theorem from model theory instead.



Properties following directly from  Loś’s Theorem

▶ If (K , v) is henselian, then also the ultrapower (K ∗, v∗) is.

▶ Let f1, . . . , fm ∈ Ov [X1, . . . ,Xn]. If they have a common zero in (Ov∗)n, then they
also have in On

v .

▶ Let f1, . . . , fm ∈ Ov [X1, . . . ,Xn]. If for any γ ∈ Γ there is some x ∈ On
v , such that

v(fi (x)) > γ, i = 1, . . . ,m,

then also for every γ∗ ∈ Γ∗, there is some x∗ ∈ (Ov∗)n with

v∗(fi (x
∗)) > γ∗, i = 1, . . . ,m.

▶ K ∗v∗|Kv is separable. (Note that in general K ∗|K is not algebraic.)

▶ Γ∗/Γ is torsion-free.



Separability for Transcendental Field Extensions

Definition

▶ A finitely generated field extension L|K is separably generated, if a separating
transcendence basis exists, i.e. there is a transcendence basis t1, . . . , tn such that
L|K (t1, ...tn) is a finite separable extension.

▶ A field extension L|K is separable, if every finitely generated extension of K ,
which is contained in L is separably generated over K .

Theorem

L|K is separable if and only if L and K 1/p are linearly disjoint over K, i.e. every tuple
a1, . . . , an ∈ K 1/p that is linearly independent over K stays linearly independent over L.



The Infinitely Large Element

We don’t want just any ultrapower, we want one where an “infinitely large element”
exists, i.e. that there is some γ0 ∈ Γ∗, such that γ0 > γ for every γ ∈ Γ.

! This is not true in general, but we can enforce this by choosing a suitable ultrafilter !

Set I = Γ. It is easy to verify that the set of cofinal subsets

F0 := {U ⊆ I | ∃γ ∈ U : ∀δ ∈ I : δ ≥ γ =⇒ δ ∈ U}

is a filter on I . F0 is contained in an ultrafilter F . The ultrapower of Γ with respect to
this ultrafilter F possesses such an infinitely large element:
Let γ0 := [(δ)δ∈I ]. Then for γ ∈ Γ, we have {δ ∈ I : δ ≥ γ} ∈ F0 ⊆ F , so γ0 ≥ γ.



From now on, we will accept, that there is an extension (K ∗, v∗) of our henselian
valued field (K , v) that satisfies:

1. (K ∗, v∗) is again henselian.

2. If {f1, ..., fm} ⊆ O[X1, . . . ,Xn] has a zero in Ov∗ , then it already has a zero in Ov .

3. There is γ0 ∈ Γv∗ with γ0 ≫ Γv , i.e. γ0 > γ for every γ ∈ Γv .
There is x∗ ∈ (K ∗)n with v∗(fi (x

∗)) > γ0.

4. K ∗v∗|Kv is separable.

5. Γv∗/Γv is torsion-free.



Proof sketch

▶ Let (K ∗, v∗) be the extension obtained from the ultrapower construction with the
desired properties.

▶ Goal: Find a solution in K ∗, then there is one in K .

▶ Let ∆ ≤ Γv∗ be the smallest convex subgroup, that contains Γv .

▶ Consider the decomposition of v∗ = v̄ ◦ w with respect to ∆, i.e.

v̄ :

{
(K ∗w)× → ∆
x +mw 7→ v∗(x)

and w :

{
(K ∗)× → Γv∗/∆

x 7→ v∗(x) + ∆.

(Γv∗/∆ is again an ordered abelian group with

γ +∆ < δ +∆ :⇐⇒ γ +∆ ̸= δ +∆ and γ < δ)



Consider the decomposition of v∗ = v̄ ◦ w with respect to ∆, i.e.

v̄ :

{
(K ∗w)× → ∆
x +mw 7→ v∗(x)

and w :

{
(K ∗)× → Γv∗/∆

x 7→ v∗(x) + ∆.

Note that:

▶ w is trivial on K .

▶ K embedds into K ∗w via the residue mapping resw .

▶ Let x∗ ∈ (K ∗)n be the approximate solution for the infinitely large element
γ0 ∈ Γv∗ , then

w(fi (x
∗)) = v∗(fi (x

∗)) + ∆ > γ0 +∆ > 0 + ∆, i.e. fi (x
∗) ∈ mw .

▶ f̄i (x̄
∗) = 0 ∈ K ∗w , x̄∗ = (x̄∗1 , . . . , x̄

∗
n ), x̄∗i = xi +mw ∈ K ∗w

Thus we found a zero in K ∗w .



Lemma

Let (K , v) be a henselian and defectless valued field and (L,w) some extension.

Γw/Γv torsion-free and Lw |Kv separable =⇒ L|K separable

Apply the Lemma to

v̄ :

{
(K ∗w)× → ∆
x +mw 7→ v∗(x)

Value group: Γv̄ = ∆ ⊆ Γv∗

Residue field: (K ∗w)v̄ = K ∗v∗

From our ultrapower construction, we know that

▶ ∆/Γv ≤ Γv∗/Γv is torsion-free.

▶ K ∗v∗|Kv is separable.

=⇒ Lemma: K ∗w |K is separable



From K ∗w to K ∗

Lemma

Let K ∗|K be a field extension, and w a henselian valuation on K ∗ that is trivial on K.
(K embedds into K ∗w via the residue mapping resw . We write K ⊆ K ∗w.)
Let F ⊆ K ∗w be a finitely generated separable extension of K. Then there exists some
extension F ′ ⊆ Ow of K, such that the residue mapping resw restricts to an
isomorphism F ′ → F .

Proof: K∗ ⊇ Ow K∗w

F ′ = K (t ′1, . . . , t
′
l )(α

′) F = K (t1, . . . , tl)(α)

K (t ′1, . . . , t
′
l ) K (t1, . . . , tl)

K

resw : x 7→ x +mw

∼=

∼=
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