Präsenzaufgaben für 15.06.2018.

Aufgabe 1

Beschreiben Sie das algebraische Tensorprodukt $\mathbb{C}^n \odot \mathbb{C}^m$, das Tensorprodukt $\mathbb{C}^n \otimes \mathbb{C}^m$ von Hilberträumen und das minimale Tensorprodukt $\mathbb{C}^n \otimes_{\min} \mathbb{C}^m$ von C^* -Algebran.

Aufgabe 2

Es seien \mathcal{H} und \mathcal{K} Hilberträume. Zeigen Sie, dass die kanonische Abbildung $\mathcal{B}(\mathcal{H}) \odot \mathcal{B}(\mathcal{K}) \rightarrow \mathcal{B}(\mathcal{H} \otimes \mathcal{K})$ injektiv ist.

Aufgabe 3

Es seien A, B und C C^* -Algebran.

- (a) Zeigen Sie, dass $\|.\|_{\min}$ und $\|.\|_{\max}$ die C^* -Identität (auf $A \odot B$) erfüllen.
- (b) Zeigen Sie, dass \otimes_{\min} und \otimes_{\max} kommutativ sind, d.h. es existieren kanonische *-Isomorphismen $A \otimes B \cong B \otimes A$ und $A \otimes_{\max} B \cong B \otimes_{\max} A$.
- (c) Zeigen Sie, dass \otimes_{\min} und \otimes_{\max} assoziativ sind, d.h. es existieren kanonische *-Isomorphismen $(A \otimes B) \otimes C \cong A \otimes (B \otimes C)$ und $(A \otimes_{\max} B) \otimes_{\max} C \cong A \otimes_{\max} (B \otimes_{\max} C)$.
- (d) Zeigen Sie, dass kanonische *-Isomorphismen $(A \oplus B) \otimes C \cong (A \otimes C) \oplus (B \otimes C)$ und $(A \oplus B) \otimes_{\max} C = (A \otimes_{\max} C) \oplus (B \otimes_{\max} C)$ existieren.

Aufgabe 4

Es seien A und B unitale C^* -Algebren. Zeigen Sie, dass das maximale Tensorprodukt von A und B *-isomorph ist zur universellen C^* -Algebra, welche von kommutierenden Kopien von A und B erzeugt wird, d.h.

$$A \otimes_{\max} B \cong C^*(A, B \mid [A, B] = 0).$$