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One of the central themes that recurs in discussions of Robert Zimmer’s work and
its wide-ranging influence, indeed a theme that unites the three topics that David
Fisher, Alex Lubotzky, and Gregory Margulis have chosen to illustrate this influence
in their foreword to the volume under review, is that of rigidity. The term “rigidity”
is commonly used to refer to the situation in which an a priori weaker notion of
equivalence or homology between mathematical objects of a certain type implies a
formally much stronger one. One may also desymmetrize this set-up and speculate
about individual objects which fail to have any but the most simply structured or even
trivial relations with members of an exhaustive class of objects of the same kind, a
sociological condition of extreme isolation which in its most pronounced manifestations
has acquired the name “superrigidity”.

While rigid behaviour is something that pervades mathematics, and indeed is at the
basis of many classification theorems, the theory that is generally invoked through the
marquee use of the terms “rigidity” and “superrigidity” has a distinctive flavour to
it. It is a theory that is essentially analytic in nature, in the sense that it involves
structures of a noncompact or infinite asymptotic character (in fact the notion of
boundary as a “compactification” of asymptotic information underpins many rigidity
results), and it employs tools and arguments that can often be conceptualized by
means of a local-to-global principle in which nonuniform estimates or conditions get
automatically upgraded to uniform ones. This automatic upgrading has the effect of
blocking the existence of examples or relations of an “interesting” or nonobvious nature,
and precludes phenomena of higher complexity that in more flexible circumstances
could be engineered by piecing together finitary information into an infinitary whole
through an asymptotic process (one can think for instance of mixing properties or
entropy in dynamics, or of inductive limit constructions in operator algebras). Simply
put, rigidity drives a wedge between the finite and the infinite, thwarting passage from
one to the other.

While the conclusion of a rigidity theorem may be peremptory, there is nothing
perfunctory in what it takes to prove such results, which are hard by nature. Beyond
the fact that anything of this kind can be established at all, what has been absolutely
remarkable, starting with the dramatic groundbreaking work of Mostow and Margulis
in the 1960s and early 1970s, is how deeply the theory of rigidity has intertwined
many branches of mathematics (Lie groups, representation theory, topology, differential
geometry, ergodic theory, geometric group theory, hyperbolic dynamics, PDEs, number
theory, harmonic analysis, conformal geometry, operator algebras) in a wide variety of
novel and frequently unexpected ways. This syncretism has become a hallmark of the
subject, indeed one that can make it hard to penetrate. Those with a philosophical
inclination may recognize something almost Hegelian in the whole endeavor, a kind of
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“negation of the negation” in which the degrees of freedom that get locked out of the
objects of the theory reappear in sublated form, at the level of the theory itself, as a
dizzying complex of ideas and techniques crisscrossing different parts of mathematics.

What types of objects, then, are we actually talking about, or not talking about?
To a large extent the theory we have been describing here is, in one way or another,
a theory about groups, both infinite discrete groups and noncompact Lie groups, and
often the two considered in tandem via the notion of lattice (i.e., discrete subgroups for
which the associated quotient admits a finite invariant measure). Groups, as it turns
out, serve as a kind of universal parameter or coordinate space, a kind of Goldilocks
structure, for rigidity results across a broad network of different settings.

One possibility is for the group to arise as a functorial skeleton for a fleshier ob-
ject, such as in the geometric formulation of Mostow rigidity, which says that the
fundamental group determines a closed manifold with constant negative curvature and
dimension at least three up to isometry [20]. This picture may also be turned around
so that we start instead with the group and pass to a canonically defined enveloping
object with an a priori higher degree of homogeneity, as in the question of when a
group can be recovered from its associated von Neumann algebra [15].

Another possibility is to regard the group as more of an external object and in-
vestigate the rigidity properties of maps or embeddings from the group into other
spaces. This viewpoint goes back to the historical origins of the subject, to Hilbert’s
fifth problem in the case of Lie groups and, in the case of their discrete subgroups,
to work of Selberg, Calabi, Vesentini, and Weil from the late 1950s and early 1960s
[24, 5, 6, 26, 27]. The local rigidity theorem that emerged from the latter flurry of
activity, due to Weil in its general form, asserts that cocompact discrete subgroups of
most semisimple Lie groups are deformation rigid in the sense that any embedding of
the subgroup which is path-connected to the canonical one is in fact conjugate to it
within the ambient Lie group. A similar local rigidity phenomenon had been observed
to occur in smooth dynamics, and in the 1960s Anosov established a pivotal result in
this context showing that if a diffeomorphism of a compact manifold has hyperbolic
structure (is “Anosov”) then its perturbations are topologically conjugate to it [1].
Efforts to improve the regularity of such a conjugacy under various conditions would
eventually lead, remarkably enough, to a certain conjunction between hyperbolic dy-
namics and the rigidity theory of Lie groups and their lattices, and indeed some of the
recent striking advances in the latter subject revolve around a significant deepening of
this connection, as we will see.

While the expression “local rigidity” may initially sound like an oxymoron, it usefully
distinguishes this type of result from the “global” or “strong” ones which, from the
viewpoint of Weil’s local rigidity theorem, free the embeddings of the subgroup from
any hypothesized internal relations within the ambient Lie group. The archetype of
such a global result is the algebraic formulation of Mostow rigidity, which asserts that,
for n ≥ 3, every isomorphism from one cocompact discrete subgroup of PSO(1, n) to
another extends to an automorphism of PSO(1, n). The key to Mostow’s approach
was to examine the ergodic properties of an asymptotic boundary, an idea that was
also used by Furstenberg in the 1960s to study the question of when a given discrete
group embeds as a lattice in a Lie group. In Furstenberg’s case the instrument in
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question was his probabilistic notion of Poisson boundary, which was to become a
ubiquitous tool in the rigidity business [13]. Later in the early 1970s, as part of his
deep work on lattices and arithmeticity, Margulis established his superrigidity theorem,
demonstrating among other things that every finite-dimensional representation of an
irreducible lattice in a connected semisimple Lie group G with finite centre and real
rank at least two has a simple description in terms of the structure of G itself [18].

Although based on different technology, Margulis’s normal subgroup theorem from
the same period has a similar superrigidity flavour [17]. One form of the statement is
that the normal subgroups of an irreducible lattice in a semisimple real Lie group of
real rank at least two are either finite or of finite index, i.e., such lattices are “almost”
simple. This is a particularly stark illustration of the principle of sociological sepa-
ration up to finitary information, in this case within the category of discrete groups.
While simplicity itself may not sound like an exceptional property from an abstract
group theory point of view, what is remarkable here is the analytic-dynamical un-
derpinning of the result, which reflects in a rather direct way the dichotomy between
amenability and property (T) on which the proof hinges. This dichotomy represents a
distillation of the deformation-versus-rigidity paradigm in its most fundamental group-
theoretic terms: an amenable group, according to the characterization of Følner, is one
which, like the prototypical Zn, admits finite sets which are approximately invariant
under translation, a property which leads to a rich structure theory based on finite
approximation (from Ornstein–Weiss quasitower decompositions and entropy theory
in dynamics to hyperfiniteness and classification in operator algebras), while property
(T), originally introduced by Kazhdan to show that many lattices (e.g., SL(3,Z)) are
finitely generated, requires that every unitary representation of the group admitting
approximately invariant unit vectors has a genuinely invariant unit vector, a universal
rigidity condition that has been discovered over the years to have many powerful and
astonishing ramifications. The finiteness in Margulis’s theorem boils down to the fact
that only finite groups can both be amenable and have property (T). Underscoring the
somewhat subtle analytic nature of the conclusion is the fact that many examples of
the lattices in question, like SL(3,Z), admit subgroups of arbitrarily large finite index.

One of the great novelties in the work of Mostow and Margulis was the use of ideas
and methods from ergodic theory, above all via boundary theory but also, for example,
in the dynamical verification of amenability in the proof of the normal subgroup theo-
rem. Zimmer’s profound and far-reaching contribution to the conceptual development
of this whole line of research was to have made ergodic theory itself the object of anal-
ysis, most decisively in the cocycle superrigidity theorem that he established in the
late 1970s as a versatile generalization of Margulis’s superrigidity [30]. An important
part of this program was Zimmer’s introduction of a version of amenability for ac-
tions, which, despite extending the ordinary notion of amenability for groups, becomes
quite a different creature when applied to actions of nonamenable groups, with crucial
connections to Furstenberg’s Poisson boundary and many applications outside of the
rigidity framework [28, 29].

Given a measure-preserving action G y (X,µ) of a group on a standard probabil-
ity space (p.m.p. action for short), a cocycle is a measurable map ρ : G × X → H
into another group satisfying the identity ρ(g1g2, x) = ρ(g1, g2x)ρ(g2, x). One natural
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source of cocycles are orbit equivalences between two free p.m.p. actions, i.e., measure
isomorphisms that send orbits to orbits. Zimmer’s cocycle superrigidity theorem con-
cerns cocycles for ergodic actions when, among more general possible situations, the
source and target groups are simple centreless Lie groups of real rank at least two.
The conclusion in this case is that the cocycle, under most circumstances of interest,
will be cohomologous in a natural sense to one that takes the form of an isomorphism
between the groups, with no space dependence (“untwisting”). There is also a version
for lattices, with the untwisting occurring within the ambient Lie groups. As a part of
a more general pair of statements, Zimmer showed that from cocycle superrigidity one
can derive orbit equivalence rigidity for the class of ergodic p.m.p. actions of the above
mentioned Lie groups (i.e., orbit equivalence among two such actions implies isomor-
phism of the groups and conjugacy of the actions), as well as for certain families of
lattice actions like the canonical ones of SL(n,Z) on Rn/Zn for n ≥ 2 [30]. This should
be contrasted with a theorem of Ornstein and Weiss which asserts that all free p.m.p.
actions of countably infinite amenable groups are orbit equivalent [21]. Zimmer’s orbit
equivalence rigidity can also be framed in more geometric terms as a statement about
the measure-theoretic structure of a foliation determining the Riemannian structure
along the leaves, much in the spirit of Mostow rigidity.

As explained in the preface to the book, it took quite a bit of time before the impact
of this work of Zimmer became fully manifest in the form of orbit equivalence super-
rigidity results, first by Furman in the late 1990s [10] and then a bit later by Monod
and Shalom in the context of bounded cohomology [19] and by Popa in a framework
inspired by von Neumann algebra theory that enabled a direct use of property (T)
and related spectral gap conditions [22, 23]. Together with neighbouring streams of
research in ergodic theory exploring orbit equivalence and related phenomena for ac-
tions of amenable and nonamenable groups (stemming from work of Dye in the 1950s
and of Ornstein and Weiss in the 1970s and involving invariants like cost and `2-Betti
numbers), a full-throttled embrace of the groupoid viewpoint advocated early on by
Zimmer’s doctoral advisor George Mackey in his virtual group formalism, and con-
stantly replenishing connections to operator algebras that cycle all the way back to
von Neumann, this has all coalesced into an area of mathematics that has been dubbed
measured group theory [25, 14, 11].

In his introduction to the book, Zimmer gives an illuminating personal account of
the gestation of his research program, driven as it was by his sense as a student that
there was a whole domain of investigation waiting to be tapped at the interface of
ergodic theory and the study of noncompact Lie groups and their discrete subgroups.
On the heels of his cocycle superrigidity theorem, and motivated by its tantalizing
geometric implications, Zimmer began to direct his attention to actions of Lie groups
and their discrete subgroups on compact manifolds, which became the focus of a series
of theorems and conjectures in the 1980s that launched what has come to be known as
the “Zimmer program”. This is a voluminous subject with many surprising twists and
various tentacles to other spheres of activity, including the rigidity theory of Anosov
actions of higher rank Abelian groups pioneered by Katok and Spatzier [16]. The con-
nection to cocycle superrigidity is that, in the context of volume-preserving actions
on compact manifolds, it furnishes a mechanism for producing (in conjunction with
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other tools like property (T)) an invariant measurable Riemannian metric, whose ex-
istence implies subexponential derivative growth through the vanishing of Lyapunov
exponents [31]. The search for rigidity results in this setting thereby shifts towards
the problem of leveraging of the slow growth condition to promote measurable metrics
to smooth ones. As Zimmer discovered, this can be accomplished using property (T)
when there is some control on the growth, and in particularly favourable circumstances
one can even get property (T) to function as a replacement for cocycle superrigidity
[32].

Encouraged by a theorem he had obtained on perturbations of isometric actions,
Zimmer conjectured that volume-preserving actions of higher rank semisimple Lie
groups and their lattices on compact manifolds should generally behave in an alge-
braically structured way, and in particular that actions of lattices should be isometric
or even factor through a finite group when the dimension of the manifold is low enough.
This served to lay out the basic coordinates of the Zimmer program, and can be viewed
as a nonlinear version of the picture that issues from Margulis’s superrigidity describ-
ing the finite-dimensional representation theory of lattices. In the 1980s Zimmer veri-
fied the conjecture in the presence of various additional geometric structures, like the
smooth distal ones treated in [33]. As another example of progress from a somewhat
different angle, Zimmer proved in [34] that, for smooth volume-preserving actions of a
property (T) group on a compact manifold, the existence of an invariant measurable
Riemannian metric implies that the action is compact (or, in older terminology, has
discrete spectrum), which means that the associated unitary representation on the
Hilbert space of L2 functions decomposes into finite-dimensional subrepresentations.
Combined with cocycle superrigidity technology, one could then infer that the actions
appearing in the conjecture are compact, which can be interpreted as a measurable
version of the conjecturally expected isometric behaviour, one that is strong enough to
rule out mixing properties. Similar dynamical statements were established by Furman
and Monod for a large class of products of property (T) groups [12], part of a trend
starting in the late 1990s and early 2000s that has expanded the study of rigidity be-
yond lattices to groups of a more general nature. These and many other results in and
around the Zimmer program, including influential ideas and results of Gromov con-
cerning rigid geometric structures, are discussed in a comprehensive survey by David
Fisher that was published a decade ago and is reprinted in this volume.

Despite all of the advances, strategies for resolving the general form of Zimmer’s
conjecture remained elusive at the time of Fisher’s survey. The situation has changed
dramatically, however, with a recent breakthrough of Brown, Fisher, and Hurtado,
who proved among more general statements that, for n > 2, every smooth action of
a cocompact lattice in SL(n,R) on a compact manifold of dimension less than n − 1
factors through a finite quotient [2, 3]. This achievement at the heart of the Zimmer
program has given occasion to the additional text that Fisher has prepared as an after-
ward to the volume, a highly engaging personal narrative chronicling the pollination,
percolation, and cross-fertilization of ideas that led to the results. The Brown–Fisher–
Hurtado argument uses cocycle superrigidity in accord with Zimmer’s basic template
but makes an important shift of perspective toward the problem of uniformizing esti-
mates of subexponential derivative growth across invariant measures, a reorientation
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inspired by advances in the rigidity theory of Anosov Zd-actions. To produce invariant
measures, the proof elaborates on the “nonresonance implies invariance” principle that
had recently been developed by Brown, Rodriguez Hertz, and Wang [4], making use of
ideas and results from measure rigidity that concern the algebraic nature of invariant
measures in higher rank situations, including Ratner’s theorems on unipotent flows
and the deployment of Ledrappier and Young’s work on entropy. The smooth metric
whose existence leads to the conclusion (via a standard appeal to Margulis superrigid-
ity) is obtained by a novel application of Lafforgue’s strong property (T). The latter
is defined in terms of an exponentially convergent averaging procedure and is used to
absorb the subexponential derivative growth descending from superrigidity, mirroring
a maneuver that had been made earlier in the ostensibly quite different framework of
Anosov Zd-actions [9]. One of the most intriguing aspects of the whole theory sur-
rounding the Zimmer program is the role of entropy-type growth conditions like those
on display here. Entropy often serves as a kind of gauge for rigid behaviour, and indeed
Zimmer ends his introduction with some speculative thoughts on the complementary
relationship between entropy and arithmeticity for actions of higher rank simple Lie
groups and the factor maps between them, a topic that he explored in the 2000s [35]
and that seems ripe for revisiting in the wake of Brown–Fisher–Hurtado.

The 38 papers of Zimmer collected in the volume are organized into eight thematic
categories which, to some degree, are also chronological. Section 1 contains early work
on the structure theory of p.m.p. actions. This includes the structure theorem itself
for ergodic actions, which was inspired by the topological-dynamical structure theo-
rem of Furstenberg and was also subsequently developed by Furstenberg to give his
celebrated proof of Szemerédi’s theorem on arithmetic progressions in positive density
subsets of the integers. Another important result here is a dichotomy concerning the
question of when the ergodicity of an action of a simple Lie group is inherited by a
discrete subgroup, notable for its use of the Howe–Moore–Sherman mixing phenome-
non for unitary representations of such groups. Section 2 is devoted to papers treating
amenable actions and some of their diverse applications to Lie groups, operator al-
gebras, and foliation theory. In Section 3 one finds the papers establishing cocycle
superrigidity and some of its consequences for orbit equivalence rigidity among actions
of Lie groups. The nine papers in Section 4 lay out the foundations of the Zimmer
program on actions of Lie groups and their lattices on compact manifolds. Section 5
is devoted to a single paper with Stuck which shows that, for many semisimple Lie
groups with property (T), the stabilizers of every faithful irreducible properly ergodic
p.m.p. action are almost everywhere trivial, another expression of rigidity which is
closely related to Margulis’s normal subgroup theorem and has gained much currency
over the last few years within the framework of invariant random subgroups. Section 6
bundles several papers on holonomy groups, fundamental groups, and arithmeticity,
representing a branch of the Zimmer program that takes inspiration from Margulis’s
arithmeticity theorem and investigates, for example, the situation in which the fun-
damental group of a manifold on which a Lie group acts relates back to the acting
group in a rigidly algebraic way. The articles in Section 7 explore rigidity in manifolds
endowed with geometric structure, as expressed for example through their automor-
phism groups. Finally, the papers in Section 8, written in collaboration with Nevo,
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pursue the idea of using stationary measures to study actions of semisimple Lie groups
on compact manifolds, a setting in which the invariant measures guaranteed to exist
for amenable acting groups are often absent.

This collection has been conceived and prepared with a considerable amount of
care, and is a pleasure to peruse. If there is anything to fault the book with, although
this really speaks to one of its virtues, it is that one is left yearning for additional
commentary, in the same spirit and style, covering other aspects of the context and
impact of this distinguished body of research. For those who have benefited in any
number of ways from the insights and expansive reach of Zimmer’s work, or those
wishing to delve into a fascinating branch of mathematics at the crossroads of ergodic
theory, Lie groups, topology, geometry, smooth dynamics, and operator algebras, this
is a perfect opportunity to dig into some of the key sources. The book is also a
compelling testament to the value of cultivating a personal vision, of having one’s
“own garden”, to quote Alain Connes [7]. In Zimmer’s case one is even tempted to
see a teleology at work, but, to use Zimmer’s own words, “this would be retrojection
too grandiose and deterministic”. What is ultimately on display here are the rewards
of venturing bold questions about the way that fundamental, and even fundamentally
different, structures interact with and illuminate each other, a pursuit that could even
be said to epitomize what has become, through the revolutionary transformations that
reset the basic parameters of the subject a little more than century ago, the modern
mathematical enterprise.
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