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Abstract. Let G be a second countable locally compact group and H a closed subgroup.
We characterize the lack of Kazhdan’s property T for the pair (G, H) by the genericity
of G-actions on the hyperfinite II1 factor with a certain asymptotic Abelianness property
relative to H, as well as by the genericity of measure-preserving G-actions on a nonatomic
standard probability space that are weakly mixing for H. The latter furnishes a definitive
generalization of a classical theorem of Halmos for single automorphisms and strengthens
a recent result of Glasner, Thouvenot, and Weiss on generic ergodicity. We also establish
a weak mixing version of Glasner and Weiss’s characterization of property T for discrete
G in terms of the invariant state space of a Bernoulli shift and show that on the CAR
algebra a type of norm asymptotic Abelianness is generic for G-actions when G is discrete
and admits a nontorsion Abelian quotient.

1. Introduction

Among the various asymptotic independence properties in ergodic theory, weak mixing
occupies a distinguished intermediate position. It enjoys stability properties that the
weaker notion of ergodicity lacks, and it occurs much more commonly than mixing or
completely positive entropy. Most importantly, weak mixing captures the appropriate kind
of randomness that leads to a structure theorem for ergodic systems, the applications of
which include Furstenberg’s celebrated dynamical proof of Szemerédi’s theorem [12, 25, 31].

A theorem of Halmos asserts that weak mixing is generic for measure-preserving auto-
morphisms of a nonatomic standard probability space with respect to the weak topology
[19]. Rokhlin showed on the other hand that mixing fails generically in this context [26].
The proofs of these facts, as presented in Halmos’s classic book on ergodic theory [18], rely
in one way or another on periodic approximation, which is particular to integer actions or
at least suggestive of amenability if understood in some generalized form. One of the goals
of the present paper is to extend Halmos’s result as far as it will go within the realm of
actions of second countable locally compact groups (the second countability assumption
ensuring that the set of actions is a Baire space under the weak topology). We prove
that, for actions of a second countable locally compact group G on a nonatomic standard
probability space, generic weak mixing holds precisely when G lacks Kazhdan’s property
T [22]. This gives a complete answer to a question of Bergelson and Rosenblatt [5] and
yields in particular a new approach to the single automorphism case. The ergodicity ver-
sion of this dynamical characterization of property T was recently established for discrete
G by Glasner, Thouvenot, and Weiss [15] by applying a correspondence principle [14] to
transfer an analogous theorem due to Glasner and Weiss [16] from the setting of invariant
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probability measures for Bernoulli shifts. In the case of discrete minimally almost periodic
G without property T, generic weak mixing follows from the Glasner-Thouvenot-Weiss re-
sult, as minimal almost periodicity is equivalent to the property that every ergodic unitary
representation is weakly mixing ([5], Theorem 3.2). We also point out that, as part of his
recent solution to the homogeneous spectrum problem, Ageev showed that weak mixing
is generic for certain virtually Abelian G [1].

We also establish a weak mixing analogue of Glasner and Weiss’s Bernoulli shift re-
sult for discrete G. Here the correspondence principle of [14] still applies, but we have
developed a separate argument so as to be able to formulate the statement in a general
noncommutative framework, to which the correspondence principle does not extend.

In fact one of our original aims was to investigate generic mixing properties for G-
actions in the noncommutative domain. For dynamical systems on highly noncommutative
operator algebras, mixing properties are closely related to asymptotic Abelianness (see
Sections 9 and 10 of [24] and Example 4.3.24 in [6]). We prove that G-actions on the
hyperfinite II1 factor with a certain asymptotic Abelianness property relative to the trace
norm are generic precisely when G does not have property T, and as a corollary obtain the
parallel statement for weak mixing in accord with the commutative case. These statements
also apply to the CAR algebra with respect to the unique tracial state and its associated
norm. However, if we replace the trace norm with the operator norm then we can no longer
obtain a handle on asymptotic commutation relations using the same measure-theoretic
devices. Nevertheless, we are able to show that a type of norm asymptotic Abelianness
is generic for G-actions on the CAR algebra when G is discrete and admits a nontorsion
Abelian quotient, generalizing a result for single ∗-automorphisms from [24].

The element that is common to the proofs of all of our dynamical genericity results is
an orthogonal-distribution-across-a-product construction which was conceived by Glasner
and Weiss in [16]. The crucial difference here is that, while [16] uses joinings to achieve an
approximation by invariant states possessing the global property of ergodicity, we employ
the product construction in a multifold manner for purely local purposes, with the desired
genericity of asymptotic Abelianness or weak mixing resulting from a direct Baire category
argument.

For the sake of generality, all results involving property T will actually be formulated
and proved for the relative case of a pair (G, H) where H is a closed subgroup of G.

We begin the main body of the paper in Section 2 by characterizing the lack of prop-
erty T by the genericity of weak mixing for representations on a fixed separable infinite-
dimensional Hilbert space. This generalizes a result of Bergelson and Rosenblatt [5],
who showed generic weak mixing when G possesses what later became identified as the
Haagerup property (see Chapter 2 of [8]). It also illustrates in a more basic linear-geometric
framework some of the main ideas involved in the relation between weak mixing and prop-
erty T and puts into perspective the more delicate local arguments required in the dynam-
ical context, where an additional multiplicative structure must be negotiated. Sections 3
and 4 treat actions on the hyperfinite II1 factor and on a nonatomic standard probability
space, respectively, while Section 5 deals with Bernoulli shifts. Finally in Section 6 we
turn to actions on the CAR algebra and norm asymptotic Abelianness.

We now summarize some general facts and terminology used throughout the paper. As
above we suppose G to be a second countable locally compact (Hausdorff) group and H a
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closed subgroup. By a unitary representation of G on a Hilbert space we mean a strongly
continuous unitary representation. Given a unitary representation π : G → B(H), a
nonempty set K ⊆ G and an ε > 0, we say that a vector ξ ∈ H is (K, ε)-invariant
if sups∈K ‖π(s)ξ − ξ‖ < ε‖ξ‖. The representation π has almost invariant vectors if it
admits a (K, ε)-invariant vector for every nonempty compact set K ⊆ G and ε > 0. The
pair (G, H) is said to have property T if every unitary representation which has almost
invariant vectors admits a nonzero H-invariant vector. Equivalently, there exist a compact
set K ⊆ G and an ε > 0 such that every unitary representation of G possessing a (K, ε)-
invariant vector admits a nonzero H-invariant vector. The group G itself is said to have
property T if the pair (G, G) has property T. If G has property T and is amenable then
it must be compact. Prototypical examples of noncompact groups with property T are
SL(n, R) and SL(n, Z) for n ≥ 3. The semidirect product SL(2, Z) n Z2 for the canonical
action along with the subgroup Z2 yields an example of a pair which has property T
although the groups themselves do not. See [21] for information on property T for pairs
and [20] for a general reference on property T.

Write m for the unique G-invariant mean on the unital C∗-algebra WAP(G) of weakly
almost periodic continuous bounded functions on G. A unitary representation π : G →
B(H) is said to be ergodic if m(f) = 0 for every matrix coefficient f , weakly mixing if
m(|f |) = 0 for every matrix coefficient f , and mixing if every matrix coefficient vanishes
at infinity. Ergodicity is equivalent to the nonexistence of nonzero G-invariant vectors.
Recall that a subset J of G is said to be syndetic if there is a finite set F ⊆ G such that
FJ = G and thickly syndetic if for every finite set F ⊆ G the set

⋂
s∈F sJ is syndetic, and

note that thick syndeticity is closed under taking finite intersections. Weak mixing for π
is equivalent to each of the following conditions:

(1) π ⊗ π̄ is ergodic,
(2) π has no nonzero finite-dimensional subrepresentations,
(3) for every finite subset Ω of a given dense subset of H and every ε > 0 there exists

an s ∈ G such that |〈π(s)ξ, ζ〉| < ε for all ξ, ζ ∈ Ω,
(4) for all ξ, ζ in a given dense subset of H and every ε > 0 the set of all s ∈ G such

that |〈π(s)ξ, ζ〉| < ε is thickly syndetic.

If π is weakly mixing and ρ : G → B(K) is another unitary representation then π ⊗ ρ
is weakly mixing, as is clear from condition (3). We say that π is H-ergodic, weakly H-
mixing, or H-mixing if its restriction to H has the corresponding property. For information
on weak mixing see [5], where characterizations (3) and (4) are established.

Let α be a continuous σ-preserving action of G on a von Neumann algebra M with
normal state σ. On the GNS Hilbert space L2(M,σ) (defined by completing the seminorm
a 7→ σ(a∗a)1/2 on M) we have, associated to α, the unitary representation πσ of G given
by πσ(s)aξ = αs(a)ξ for a ∈ M , where ξ is the canonical cyclic vector and M is viewed as
acting on L2(M,σ) via left multiplication. Denote by L2

0(M,σ) the orthogonal complement
of the scalars in L2(M,σ) and by πσ,0 the restriction of πσ to L2

0(M,σ). We say that α is
ergodic, weakly mixing, or mixing if πσ,0 has the corresponding property, and H-ergodic,
weak H-mixing, or H-mixing if the restriction of πσ,0 to H has the corresponding property.
We apply the same terminology for a σ-preserving action on a unital C∗-algebra with state
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σ by employing the GNS representation for σ. We will also speak of H-ergodicity and
weak H-mixing as properties of G-invariant states.

By characterization (3) above for weak mixing for unitary representations, we see that
weak mixing for a σ-preserving action α of G on M is equivalent to the condition that for
every finite set Ω ⊆ M and ε > 0 there is an s ∈ G such that |σ(b∗αs(a))− σ(b∗)σ(a)| < ε
for all a, b ∈ Ω. Weak mixing for α is also equivalent to the ergodicity of the tensor
product action α ⊗ α on M⊗M with respect to σ ⊗ σ. Ergodicity for α is equivalent to
the nonexistence of a nonscalar element of M fixed by α. In the case of a continuous
µ-preserving action α of G on a standard probability space (X, µ), weak mixing is further-
more equivalent to the condition that for every finite collection Ω of measurable subsets of
X and ε > 0 there is an s ∈ G such that |µ(αs(A)∩B)− µ(A)µ(B)| < ε for all A,B ∈ Ω.
See [13] for a general reference on mixing properties in ergodic theory.

After this paper was finished we became aware of a preprint of Kechris [23] which
contains some overlap with the present work, namely Lemmas 2.1 and 2.3, Theorem 2.5,
and the characterization of property T by the closedness of the set of weak mixing actions,
which Theorem 4.2 includes and strengthens.

Acknowledgements. The first author was partially supported by NSF grant DMS-0600907.
The second author was supported by an EPDI Post-doctoral Fellowship and is grateful to
IHES and the Isaac Newton Institute for Mathematical Sciences for their hospitality. Part
of this work was carried out during a visit of the second author to Texas A&M University
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2. Unitary representations

Fix a separable infinite-dimensional Hilbert space H. Let G be a second countable
locally compact group and H a closed subgroup. We denote by Rep(G, H) the set of
unitary representations of G on H equipped with the topology which has as a basis the
sets

V (π,K,Ω, ε) = {ρ ∈ Rep(G, H) : ‖ρ(s)ξ − π(s)ξ‖ < ε for all s ∈ K and ξ ∈ Ω}

where π ∈ Rep(G, H), K is a compact subset of G, Ω is a finite subset of H, and ε > 0.
Taking a dense sequence {ξk}∞k=1 in the unit ball of H and an increasing sequence K1 ⊆
K2 ⊆ . . . of compact subsets of G whose union is G, we can define on Rep(G, H) the
compatible metric

d(π, ρ) =
∞∑

k=1

∞∑
j=1

2−j−k sup
s∈Kj

‖π(s)ξk − ρ(s)ξk‖

under which Rep(G, H) is complete, so that it is Polish and hence Baire.
The following is a relativization to pairs of Proposition 2.3 in [5] and follows by essen-

tially the same argument.

Lemma 2.1. The set of weakly H-mixing representations in Rep(G, H) is a Gδ (and
hence is itself Polish).
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The next lemma relativizes to pairs a result of Bekka and Valette [4] and appears as
Theorem 8 in [3] and part of Theorem 1.2 in [21].

Lemma 2.2. The pair (G, H) does not have property T if and only if there exists a weakly
H-mixing representation of G which has almost invariant vectors.

The proof of the following Rokhlin-type property for the conjugation action of the
unitary group U(H) on Rep(G, H) is similar to that of its dynamical analogue in [15].

Lemma 2.3. The subset of representations in Rep(G, H) with dense U(H)-orbit is a dense
Gδ.

Proof. Take a dense sequence {πn}∞n=1 in Rep(G, H) and a unitary isomorphism V : H →
H⊕N and define the unitary representation π : G → B(H) by s 7→ V −1

( ⊕∞
n=1 πn

)
(s)V .

We will show that π has dense U(H)-orbit in Rep(G, H). Let ρ be a representation in
Rep(G, H), Ω a finite subset of the unit ball of H, K a compact subset of G, and δ > 0.
Then there is an n0 such that ‖ρ(s)ξ − πn0(s)ξ‖ < δ/3 for all s ∈ K and ξ ∈ Ω. The
continuity of ρ and π yields a finite set F ⊆ K such that for every s ∈ K there is an s′ ∈ F
for which maxξ∈Ω ‖ρ(s)ξ − ρ(s′)ξ‖ < δ/3 and maxξ∈Ω ‖π(s)V −1ξn0 − π(s′)V −1ξn0‖ < δ/3
where ξn0 denotes the vector in H⊕N which is ξ at the coordinate n0 and zero elsewhere.
Construct a unitary isomorphism U : H → H⊕N such that for all ξ in the finite-dimensional
subspace span(ρ(F ∪ {e})Ω) we have (Uξ)(n) = ξ if n = n0 and (Uξ)(n) = 0 otherwise.
Then for all ξ ∈ Ω and s ∈ K we have ‖Uρ(s′)ξ − V π(s′)V −1Uξ‖ = ‖ρ(s′)ξ − πn0(s

′)ξ‖ <
δ/3 and hence

‖ρ(s)ξ − (V −1U)−1π(s)V −1Uξ‖ ≤ ‖ρ(s)ξ − ρ(s′)ξ‖+ ‖Uρ(s′)ξ − V π(s′)V −1Uξ‖
+ ‖π(s′)V −1Uξ − π(s)V −1Uξ‖

<
δ

3
+

δ

3
+

δ

3
= δ.

This shows that π has dense U(H)-orbit.
Now for every ρ ∈ Rep(G, H), finite set Ω ⊆ H, compact set K ⊆ G, and δ > 0, write

W (ρ,Ω,K, δ) for the set of all γ ∈ Rep(G, H) such that there exists a unitary operator U
on H for which ‖ρ(s)ξ − Uγ(s)U−1ξ‖ < δ for all ξ ∈ Ω and s ∈ K. Then W (ρ,Ω, F, δ)
is open, and it is also dense by the above paragraph. Now choose an increasing sequence
Ω1 ⊆ Ω2 ⊆ . . . of finite subsets of the unit ball of H whose linear span is dense in H

and an increasing sequence K1 ⊆ K2 ⊆ . . . of compact subsets of G whose union is G.
Then

⋂∞
n=1

⋂∞
m=1 W (πn,Ωm,Km, 1/m) is a dense Gδ and its elements are precisely the

representations in Rep(G, H) with dense U(H)-orbit. �

Remark 2.4. A variation on the above local absorption argument can be used to show
that whenever P is a property of unitary representations of G which is closed under
unitary equivalence and taking superrepresentations and holds for some representation
on a separable Hilbert space, the set of representations in Rep(G, H) with property P is
dense. In particular, the set of representations in Rep(G, H) which have almost invariant
vectors is always a dense Gδ.

Theorem 2.5. If the pair (G, H) does not have property T then the set of weakly H-
mixing representations in Rep(G, H) is a dense Gδ, while if (G, H) has property T then
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the set of H-ergodic representations in Rep(G, H) is nowhere dense. Moreover, if G itself
has property T then in Rep(G, H) the set of ergodic representations and the set of weakly
mixing representations are both closed.

Proof. Suppose first that the pair (G, H) does not have property T. By Lemma 2.1 it
suffices to prove that the set of weakly H-mixing representations in Rep(G, H) is dense.
Let π be an element of Rep(G, H), K a compact subset of G, Ω a nonempty finite subset
of the unit sphere of H, and ε > 0, and let us demonstrate the existence of a weakly H-
mixing representation in the open neighbourhood V (π,K,Ω, ε) of π. By Lemma 2.2 there
exists a weakly H-mixing representation ρ of G on a Hilbert space K and a unit vector
ζ ∈ K such that ‖ρ(s)ζ − ζ‖ < ε/3 for every s ∈ K. We may assume K to be separable
by restricting to the closed G-invariant subspace generated by ζ. By the continuity of π,
we can find a finite set F ⊆ K such that for every s ∈ K there is an s′ ∈ F for which
maxξ∈Ω ‖π(s)ξ − π(s′)ξ‖ < ε/3. Construct a unitary isomorphism U : H → K ⊗H such
that Uξ = ζ ⊗ ξ for every ξ in the finite-dimensional subspace span(π(F ∪ {e})Ω). Then
for each ξ ∈ Ω and s ∈ K we have

‖(ρ⊗ π)(s)Uξ − Uπ(s′)ξ‖ = ‖ρ(s)ζ ⊗ π(s)ξ − ζ ⊗ π(s′)ξ‖
≤ ‖ρ(s)ζ ⊗ (π(s)ξ − π(s′)ξ)‖+ ‖(ρ(s)ζ − ζ)⊗ π(s′)ξ‖

<
2ε

3
and hence

‖U−1(ρ⊗ π)(s)Uξ − π(s)ξ‖ ≤ ‖(ρ⊗ π)(s)Uξ − Uπ(s′)ξ‖+ ‖U(π(s′)ξ − π(s)ξ)‖

<
2ε

3
+

ε

3
= ε.

This shows that the representation γ given by s 7→ U−1(π ⊗ ρ)(s)U is contained in
V (π,K,Ω, ε). Now since ρ is weakly H-mixing π ⊗ ρ is weakly H-mixing and thus γ
is weakly H-mixing, yielding the desired density.

Suppose now that the pair (G, H) has property T. Then there exists a nonempty com-
pact set K ⊆ G and an ε such that every representation π ∈ Rep(G, H) possessing a
(K, ε)-invariant vector has a nonzero H-invariant vector. Thus if ρ is a representation
in Rep(G, H) which has a G-invariant unit vector ξ ∈ H then every representation in
the neighbourhood V (ρ,K, {ξ}, ε) fails to be H-ergodic. Since such ρ evidently exist and
by Lemma 2.3 there exist representations in Rep(G, H) with dense U(H)-orbit, we infer
that the set of H-ergodic representations in Rep(G, H) is nowhere dense. In the case that
G itself has property T, we furthermore deduce that the set of ergodic representations
in Rep(G, H) is closed, which implies that the set of weakly mixing representations in
Rep(G, H) is also closed in view of the continuity of the map π 7→ π ⊗ π̄ from Rep(G, H)
to Rep(G, H ⊗H). �

3. Actions on the hyperfinite II1 factor

We write R for the hyperfinite II1 factor and τ for the unique normal tracial state
on R. The ∗-automorphism group of R will be denoted by Aut(R). With the aim of
establishing our main result in this section concerning actions on R, we will first examine
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the relationship of asymptotic Abelianness to weak mixing and construct a certain type
of Bogoliubov action on the CAR algebra in the non-property T case.

Associated to a state σ on a unital C∗-algebra A is the seminorm ‖a‖σ = σ(a∗a)1/2,
which we will refer to as the σ-seminorm, or σ-norm if σ is faithful. Let G be a second
countable locally compact group and H a closed subgroup. The following is a strong ver-
sion of the weak type of asymptotic Abelianness that has arisen in the operator-algebraic
approach to quantum statistical mechanics (see Section 4 of [6]). It is closely related to
the notion of asymptotic Abelianness for a von Neumann algebra [28].

Definition 3.1. Let A be a unital C∗-algebra, σ a state on A, and α a σ-preserving action
of G on A which is continuous for the σ-seminorm, i.e., the map s 7→ αs(a) is σ-seminorm
continuous for every a ∈ A. We say that α is (H,σ)-Abelian if for every finite set Ω ⊆ M
and ε > 0 there exists an s ∈ H such that ‖[αs(a), b]‖σ < ε for all a, b ∈ Ω.

If A is separable with respect to the σ-seminorm then the action α is (H,σ)-Abelian if
and only if there is a sequence {sn}∞n=1 in H such that limn→∞ ‖[αsn(a), b]‖σ = 0 for all
a, b ∈ A. This follows by observing that if α is (H,σ)-Abelian then taking an increasing
sequence Ω1 ⊆ Ω2 ⊆ . . . of finite subsets of A whose union is dense in A for the σ-seminorm
we can choose for each n ∈ N an sn ∈ H such that ‖[αsn(a), b]‖σ < 1/n for all a, b ∈ Ωn, in
which case limn→∞ ‖[αsn(a), b]‖σ = 0 for all a, b ∈ M . Notice also that if σ is faithful and
A is not commutative then the sequence {sn}∞n=1 must tend to infinity, as the existence of
a limit point for the sequence implies that A is commutative.

It is shown in Example 4.3.24 in [6] that, for actions on a C∗-algebra, asymptotic
Abelianness conditions with respect to the operator norm imply mixing properties for
a given factor state σ. In fact the argument there still applies if the operator norm in
the asymptotic Abelianness hypothesis is replaced with the σ-norm, and consequently we
have:

Proposition 3.2. Let A be a unital C∗-algebra with factorial state σ and α a σ-preserving
action of G on A. Suppose that α is (G, σ)-Abelian. Then α is weakly mixing.

The converse of the above proposition is false. In fact the examples in Example 9.11 in
[24] also work here:

Example 3.3. Let H be a separable infinite-dimensional Hilbert space. The CAR algebra
A(H) is defined as the unique, up to ∗-isomorphism, unital C∗-algebra generated by the
image of an antilinear map ξ 7→ a(ξ) from H to A(H) such that the anticommutation
relations

a(ξ)a(ζ)∗ + a(ζ)∗a(ξ) = 〈ξ, ζ〉1A(H),

a(ξ)a(ζ) + a(ζ)a(ξ) = 0,

hold for all ξ, ζ ∈ H (see [7]). Given a unitary operator U on H we write αU for the
corresponding Bogoliubov automorphism of A(H) determined by αU (a(ξ)) = a(Uξ) for
ξ ∈ H. The C∗-algebra A(H) has a unique tracial state σ which is given on products of
the form a(ζn)∗ · · · a(ζ1)∗a(ξ1) · · · a(ξm) by

σ(a(ζn)∗ · · · a(ζ1)∗a(ξ1) · · · a(ξm)) = δnm det[〈1
2ξi, ζj〉].
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Now if U is a unitary operator on H with the property that lim|n|→∞〈Unξ, ζ〉 = 0 for all
ξ, ζ ∈ H then αU is mixing for σ (see Example 5.2.21 in [7]) but for every ξ ∈ H we have

‖[a(Unξ), a(ξ)]‖σ = 2‖a(Unξ)a(ξ)‖σ = 2|σ(a(ξ)∗a(Unξ)∗a(Unξ)a(ξ))|1/2

=
√
‖ξ‖4 − |〈Unξ, ξ〉|2,

which converges to ‖ξ‖2 as |n| → ∞, showing that αU is not (Z, σ)-Abelian.

Continuing in the framework described in Example 3.3, the even CAR algebra is defined
as the unital C∗-subalgebra of the CAR algebra A(H) consisting of those elements which
are fixed by the Bogoliubov automorphism associated to scalar multiplication by −1 on H,
and it is generated by even products of operators of the form a(ξ) and a(ξ)∗ for ξ ∈ H. Both
the CAR algebra and the even CAR algebra are ∗-isomorphic to the type 2∞ UHF algebra
[7, 30]. A unitary representation π : G → B(H) gives rise via Bogoliubov automorphisms
to continuous actions of G on the CAR algebra and the even CAR algebra (by restriction).
Like the Gaussian construction in commutative dynamics as used in [11, 16], Bogoliubov
actions provide a means for transporting representation-theoretic phenomena into the
dynamical realm (compare for example [2]). In our application of the following lemma in
the proof of Theorem 3.7 we will use the fact that every continuous action of G on the
CAR algebra extends to a continuous action on the weak operator closure in the tracial
GNS representation, which is ∗-isomorphic to R.

Lemma 3.4. Suppose the pair (G, H) does not have property T. Let A be the CAR algebra
with its unique tracial state σ. Let K be a compact subset of G, ε > 0, and n ∈ N. Then
there exist a continuous action β of G on A with the property

(∗) for every finite set Ω ⊆ A and δ > 0 the set of all t ∈ H such that |σ(b∗βt(a)) −
σ(b∗)σ(a)| < δ and ‖[βt(a), b]‖ < δ for all a, b ∈ Ω is thickly syndetic in H

and a 2n-element partition of unity P in A such that σ(e) = 2−n and ‖βs(e)− e‖ < ε for
all e ∈ P and s ∈ K.

Proof. By Lemma 2.2 there is a weakly H-mixing representation π of G on a separable
infinite-dimensional Hilbert space H which has almost invariant vectors. Corresponding to
the n-fold direct sum representation π⊕{1,...,n} we have a Bogoliubov action β on the even
CAR algebra over H⊕{1,...,n}, which we can identify with A according to the comments
preceding the lemma. Suppose that we are given a finite set Ω ⊆ A and a δ > 0. Since π is
weakly H-mixing so is π⊕{1,...,n}, in which case a straightforward relativization to pairs of
Theorem 10.4 of [24] shows that the set of all t ∈ H such that |σ(b∗βt(a))−σ(b∗)σ(a)| < δ
for all a, b ∈ Ω and the set of all t ∈ H such that ‖[βt(a), b]‖ < δ for all a, b ∈ Ω are
both thickly syndetic in H (note that, as illustrated by Example 3.3 above, Theorem 10.4
of [24] is false for Bogoliubov actions on the CAR algebra itself, necessitating our use of
the even CAR algebra here). Since the intersection of two thickly syndetic sets is thickly
syndetic, we have verified that β satisfies property (∗).

Now take a unit vector ξ ∈ H such that ‖π(s)ξ − ξ‖ < ε/(2n) for all s ∈ K. For
each k = 1, . . . , n write ξk for the vector (0, . . . , 0, ξ, 0, . . . , 0) in H⊕{1,...,n} supported
on the kth summand and ek,0 and ek,1 for the projections a(ξk)∗a(ξk) and a(ξk)a(ξk)∗,
respectively, in A. For each κ ∈ {0, 1}{1,...,n} set eκ = e1,κ(1)e2,κ(2) · · · en,κ(n) ∈ A. Then
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{eκ : κ ∈ {0, 1}{1,...,n}} is a 2n-element partition of unity in A, and for each κ ∈ {0, 1}{1,...,n}

we have σ(eκ) = 2−n and, for all s ∈ K,

‖βs(eκ)− eκ‖ ≤
n∑

k=1

‖βs(ek,κ(k))− ek,κ(k)‖ ≤
n∑

k=1

2‖a(π⊕{1,...,n}(s)ξk)− a(ξk)‖

= 2n‖π(s)ξ − ξ‖ < ε,

as desired. �

We denote by AR,G the set of continuous actions of G on R by ∗-automorphisms equipped
with the topology which has as a basis the sets

V (α, K, Ω, ε) = {β ∈ AR,G : ‖βs(a)− αs(a)‖τ < ε for all s ∈ K and a ∈ Ω}
where α ∈ AR,G, K is a compact subset of G, Ω is a finite subset of R, and ε > 0.
For G = Z this topology coincides with the u-topology on Aut(R) (canonically identified
with AR,Z) defined via point-norm convergence on the predual [17]. To each action in
AR,G is canonically associated a representation in the space Rep(G, L2(M, τ)) as defined
in Section 2, and this map is evidently continuous. It is also readily checked that the
image of this map is closed in Rep(G, L2(M, τ)), from which we deduce that AR,G is a
Polish space.

The following type of Rokhlin property for the action of Aut(R) on AR,G by conjugation
is a dynamical version of Lemma 2.3. In parallel with the commutative analogue [15], for
G = Z it can be deduced from the fact that every aperiodic automorphism of R has
dense conjugacy class, as follows from the work of Connes on outer conjugacy, in which a
noncommutative Rokhlin tower theorem plays a key role [10].

Lemma 3.5. The subset of elements in AR,G with dense Aut(R)-orbit is a dense Gδ.

Proof. Take a dense sequence {βn}∞n=1 in AR,G and a ∗-isomorphism Ψ : R → (R, τ)⊗N

and define the action β of G on R by s 7→ Ψ−1 ◦
( ⊗∞

n=1 βn,s

)
◦ Ψ. To show that β has

dense Aut(R)-orbit in AR,G, suppose we are given an action α ∈ AR,G, a finite set Ω in
the unit ball of R, a compact set K ⊆ G, and a δ > 0. Then we can find an n0 such that
‖αs(a) − βn0,s(a)‖τ < δ/5 for all a ∈ Ω and s ∈ K. Take a finite-dimensional subfactor
N ⊆ R such that for each a ∈

⋃
s∈K∪{e} αs(Ω) there is an E(a) in the unit ball of N

for which ‖a − E(a)‖τ < δ/5. Define an injective ∗-homomorphism ϕ : N → (R, τ)⊗N

by ϕ(a) =
⊗∞

n=1 an where an = a if n = n0 and an = 1 otherwise, and extend ϕ to a
∗-isomorphism Φ : R → (R, τ)⊗N. Then, denoting by τ ′ the product tracial state τ⊗N on
(R, τ)⊗N, for a ∈ Ω and s ∈ K we have

‖Φ(E(αs(a)))− (Ψ ◦ βs ◦Ψ−1)(Φ(E(a)))‖τ ′ = ‖E(αs(a))− βn0,s(E(a))‖τ

≤ ‖E(αs(a))− αs(a)‖τ + ‖αs(a)− βn0,s(a)‖τ + ‖βn0,s(a)− βn0,s(E(a))‖τ

<
3δ

5
and so

‖αs(a)− ((Ψ−1 ◦ Φ)−1 ◦ βs ◦ (Ψ−1 ◦ Φ))(a)‖τ

≤ ‖αs(a)− E(αs(a))‖τ + ‖Φ(E(αs(a)))− (Ψ ◦ βs ◦Ψ−1)(Φ(E(a)))‖τ ′
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+ ‖(Ψ ◦ βs ◦Ψ−1)(Φ(E(a)− a))‖τ

<
δ

5
+

3δ

5
+

δ

5
= δ.

Thus β has dense Aut(R)-orbit in AR,G.
Now for every α ∈ AR,G, finite set Ω ⊆ R, compact set K ⊆ G, and δ > 0 write

W (α, Ω,K, δ) for the set of all γ ∈ AR,G such that there exists a ∗-automorphism Φ of R
for which ‖αs(a)− (Φ ◦ γs ◦ Φ−1)(a)‖ < δ for all a ∈ Ω and s ∈ K. Then W (α, Ω, F, δ) is
open, and it is dense by the first paragraph. Take an increasing sequence Ω1 ⊆ Ω2 ⊆ . . .
of finite subsets of the unit ball of R whose linear span is dense in R with respect to
the τ -norm, as well as an increasing sequence K1 ⊆ K2 ⊆ . . . of compact subsets of G
whose union is G. Then the set of actions in AR,G with dense Aut(R)-orbit is equal to⋂∞

n=1

⋂∞
m=1 W (βn,Ωm,Km, 1/m), which is a dense Gδ. �

Lemma 3.6. Suppose that the pair (G, H) has property T. Then the set of H-ergodic
actions in AR,G is nowhere dense. Moreover, if G itself has property T then in AR,G the
set of ergodic actions and the set of weakly mixing actions are both closed.

Proof. By property T there exist a nonempty compact set K ⊆ G and an ε > 0 such
that every representation π ∈ Rep(G, H) possessing (K, ε)-invariant vectors has a nonzero
H-invariant vector. Let α be an action in AR,G which fails to be G-ergodic. Then there
is a nonscalar a ∈ R which is fixed by α. Then for all β in a small enough neighbourhood
of α we will have sups∈K ‖βs(a) − a‖τ < ε‖a‖τ which implies that β is not H-ergodic.
It then follows by Lemma 3.5 that the set of H-ergodic actions is nowhere dense. In the
case H = G, we also deduce that the set of ergodic actions is closed, from which it follows
using the continuity of the map α 7→ α ⊗ α from AR,G to AR⊗R,G that the set of weakly
mixing actions is also closed. �

Theorem 3.7. If the pair (G, H) does not have property T then the set of (H, τ)-Abelian
actions in AR,G is a dense Gδ, while if (G, H) has property T then the set of (H, τ)-Abelian
actions in AR,G is nowhere dense.

Proof. If (G, H) has property T then the nowhere density of the set of (H, τ)-Abelian
actions follows by Proposition 3.2, Lemma 3.6, and the fact that weak mixing implies
ergodicity. Suppose then that (G, H) does not have property T. Let Ω be a nonempty
finite set of unitaries in R and let ε > 0. Denote by W (Ω, ε) the set of all actions α in
AR,G such that there exists a t ∈ H for which ‖[αt(u), v]‖2

τ < ε for all u, v ∈ Ω. Evidently
W (Ω, ε) is open in AR,G. We will show that it is also dense.

Suppose we are given an α ∈ AR,G, a nonempty finite set Ω′ of unitaries in R, a
compact set K ⊆ G, and a δ > 0, and let us show that there exists an α̃ ∈ W (Ω, ε) such
that ‖α̃s(u)− αs(u)‖τ < δ for every u ∈ Ω′ and s ∈ K. Since W (Ω, ε) ⊇ W (Ω′ ∪ Ω, ε) we
may assume for simplicity that Ω = Ω′.

Let n be a positive integer power of 2 such that n > 48/ε. Applying Lemma 3.4 and
extending the action it yields to the weak operator closure under the tracial representation,
we can produce a continuous action β of G on R such that (i) for every finite set Θ ⊆ M
and η > 0 there exists a t ∈ H for which |τ(b∗βt(a))− τ(b)τ(a)| < η and ‖[βt(a), b]‖τ < η
for all a, b ∈ Θ and (ii) there exists an n-element partition of unity P = {e1, . . . , en} in R
τ(ei) = n−1 and ‖βs(ei)− ei‖τ < δ(6n)−1 for every i = 1, . . . , n and s ∈ K.
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Take a finite-dimensional subfactor N ⊆ R such that for each u ∈ Ω∪Ω∗ ∪
⋃

s∈K αs(Ω)
there is an element E(u) in the unit ball of N for which ‖u−E(u)‖τ < min(δ/(12n), ε/32).
For a ∈ R and i = 1, . . . , n we write a[i] to denote the elementary tensor in R⊗{1,...,n} with
a in the ith factor and 1 everywhere else. Define a map ϕ : N → R⊗R⊗{1,...,n} by ϕ(a) =∑n

i=1 ei ⊗ a[i] for all a ∈ N . Then ϕ is an injective ∗-homomorphism. Since R⊗R⊗{1,...,n}

is ∗-isomorphic to R and any two type Im subfactors of R are unitarily equivalent, we can
extend ϕ to a ∗-isomorphism Φ : R → R⊗R⊗{1,...,n}. Set θ = β ⊗ α⊗{1,...,n} and define the
action α̃ ∈ AR,G by α̃s = Φ−1 ◦ θs ◦ Φ for all s ∈ G.

Write τ ′ for the unique normal tracial state τ ⊗ τ⊗{1,...,n} on R⊗R⊗{1,...,n}, and note
that τ ′ ◦ Φ = τ . For u ∈ Ω and s ∈ K we have

‖αs(E(u))− E(αs(u))‖τ ≤ ‖αs(E(u)− u)‖τ + ‖αs(u)− E(αs(u))‖τ

<
δ

12n
+

δ

12n
=

δ

6n

so that

‖α̃s(E(u))− E(αs(u))‖τ = ‖θs(Φ(E(u)))− Φ(E(αs(u)))‖τ ′

≤
n∑

i=1

‖βs(ei)⊗ αs(E(u))[i] − ei ⊗ E(αs(u))[i]‖τ ′

≤
n∑

i=1

(
‖βs(ei)− ei‖τ + ‖αs(E(u))− E(αs(u))‖τ

)
< n

(
δ

6n
+

δ

6n

)
=

δ

3

and hence

‖α̃s(u)− αs(u)‖τ ≤ ‖α̃s(u− E(u))‖τ + ‖α̃s(E(u))− E(αs(u))‖τ + ‖E(αs(u))− αs(u)‖τ

<
δ

3
+

δ

3
+

δ

3
= δ.

Let us show now that α̃ ∈ W (Ω, ε). By our choice of β there exists a t ∈ H such that
‖[βt(ej), ek]‖τ < ε/(12n3) for all j, k = 1, . . . , n and τ(ejβt(ej)) < 2τ(ej)2 = 2/n2 for all
j = 1, . . . , n. Observe that, given any a, b, c, d in the unit ball of N , for j, k = 1, . . . , n
with j 6= k we have∣∣τ ′(θt ◦ Φ(a)

[
βt(ej)⊗ αt(b)[j], ek ⊗ c[k]

]
Φ(d)

)∣∣
≤ ‖[βt(ej)⊗ αt(b)[j], ek ⊗ c[k]]‖τ ′ = ‖[βt(ej), ek]⊗ αt(b)[j]c[k]‖τ ′

≤ ‖[βt(ej), ek]‖τ <
ε

12n2

while for j = 1, . . . , n we have∣∣τ ′(θt ◦ Φ(a)
[
βt(ej)⊗ αt(b)[j], ej ⊗ c[j]

]
Φ(d)

)∣∣
≤

∑
1≤i,l≤n

∣∣τ ′(βt(ei)⊗ αt(a)[i]
[
βt(ej)⊗ αt(b)[j], ej ⊗ c[j]

]
el ⊗ d[l]

)∣∣
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≤ |τ(βt(ej)ej)|+
∑

1≤i,l≤n

|τ(βt(ei)ejβt(ej)el)|

≤ 2|τ(βt(ej)ej)|+ n2‖[βt(ej), ej ]‖τ

<
4
n2

+
ε

12n
<

ε

6n
.

It follows that for u, v ∈ Ω we have∣∣τ(
α̃t(E(u∗))[α̃t(E(u)), E(v∗)]E(v)

)∣∣
=

∣∣τ ′(θt ◦ Φ(E(u∗))
[
θt ◦ Φ(E(u)),Φ(E(v∗))

]
Φ(E(v))

)∣∣
≤

∑
1≤j,k≤n

j 6=k

∣∣τ ′(θt ◦ Φ(E(u∗))
[
βt(ej)⊗ αt(E(u))[j], ek ⊗ E(v∗)[k]

]
Φ(E(v))

)∣∣
+

∑
1≤j≤n

∣∣τ ′(θt ◦ Φ(E(u∗))
[
βt(ej)⊗ αt(E(u))[j], ej ⊗ E(v∗)[j]

]
Φ(E(v))

)∣∣
<

ε

12
+

ε

6
=

ε

4
and hence

‖[α̃t(u), v]‖2
τ = 2Reτ(α̃t(u∗)[α̃t(u), v∗]v)

≤ 2
∣∣τ(

α̃t(E(u∗))[α̃t(E(u)), E(v∗)]E(v)
)∣∣

+ 4(‖u− E(u)‖τ + ‖u∗ − E(u∗)‖τ + ‖u− E(u)‖τ + ‖v∗ − E(v∗)‖τ )

<
ε

2
+

ε

2
= ε.

Therefore α̃ ∈ W (Ω, ε), and since R is spanned by unitaries we conclude that W (Ω, ε) is
dense in AR,G.

Now take an increasing sequence Ω1 ⊆ Ω2 ⊆ . . . of nonempty finite sets of unitaries in
R whose union has dense linear span in R with respect to the τ -norm. Then the set of
(H, τ)-Abelian actions in AR,G is equal to

⋂∞
j=1 W (Ωj , 1/j), which is a dense Gδ. �

Theorem 3.8. If the pair (G, H) does not have property T then the set of weakly H-mixing
actions in AR,G is a dense Gδ, while if (G, H) has property T then the set of H-ergodic
actions in AR,G is nowhere dense. Moreover, if G itself has property T then in AR,G the
set of ergodic actions and the set of weakly mixing actions are both closed.

Proof. In the case that (G, H) does not have property T, the desired conclusion follows by
combining Theorem 3.7 and Proposition 3.2. The rest of the theorem is Lemma 3.6. �

The statement of Theorem 3.8 remains valid if we replace AR,G by the set AA,G of G-
actions on the CAR algebra A with the topology described at the beginning of Section 6
and understand weak mixing and ergodicity to be relative to the unique tracial state. We
leave the details to the reader (compare the proof of Theorem 4.2).

4. Actions on a nonatomic standard probability space

Fix a nonatomic standard probability space (X, µ). As before G will be a second
countable locally compact group and H a closed subgroup. We write AX,G for the set of
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continuous measure-preserving actions of G on (X, µ) equipped with the topology which
has as a basis the sets

V (α, K, Ω, ε) = {β ∈ AX,G : |µ(βs(A)∆αs(A))| < ε for all s ∈ K and A ∈ Ω}
where α ∈ AX,G, K is a compact subset of G, Ω is a finite collection of measurable subsets
of X, and ε > 0. As is well known, the space AX,G is Polish, since the canonical embedding
into the unitary representation space Rep(G, L2(X, µ)) has closed image.

The following is a multiset variation on the Connes-Weiss-type result which appears in
[16].

Lemma 4.1. Suppose that the pair (G, H) does not have property T. Let K be a compact
subset of G, ε > 0, and n ∈ N. Then there is a weakly H-mixing action β ∈ AX,G for
which there exists a measurable partition P of X into 2n sets such that µ(A) = 2−n and
µ(βs(A)∆A) < ε for all A ∈ P and s ∈ K.

Proof. Choose a δ > 0 such that (1
2 + δ)n < (1

2 − δ)n + ε. A straightforward relativization
to pairs of the Gaussian construction in [16] using Lemma 2.2 produces a weakly H-mixing
action α ∈ AX,G and a set A ⊆ X of µ-measure 1/2 such that µ(αs(A)∆A) < δ for all
s ∈ K. Set A0 = A and A1 = X \A.

Let β be the action of G on (Xn, µn) given by the product of n copies of α. Since α is
weakly H-mixing so is β. For each κ ∈ {0, 1}{1,...,n} set Aκ = Aκ(1)×Aκ(2)× · · · ×Aκ(n) ∈
Xn. Then {Aκ : κ ∈ {0, 1}{1,...,n}} is a measurable partition of Xn into 2n sets of equal µn-
measure. Now suppose we are given s ∈ F and κ ∈ {0, 1}{1,...,n}. For each i = 1, . . . , n we
have µ(αs(Aκ(i))∩Aκ(i)) > 1

2−δ and µ(αs(Aκ(i))∪Aκ(i)) < 1
2+δ and so the complement C of

(αs(Aκ(1))∩Aκ(1))×· · ·×(αs(Aκ(n))∩Aκ(n)) in (αs(Aκ(1))∪Aκ(1))×· · ·×(αs(Aκ(n))∪Aκ(n))
has µn-measure less than (1

2+δ)n−(1
2−δ)n, which in turn is less than ε. Since βs(Aκ)∆Aκ is

contained in C it follows that µn(βs(Aκ)∆Aκ) < ε. Since (Xn, µn) is isomorphic to (X, µ)
this completes the proof. �

Theorem 4.2. If the pair (G, H) does not have property T then the set of weakly H-mixing
actions in AX,G is a dense Gδ, while if (G, H) has property T then the set of H-ergodic
actions in AX,G is nowhere dense. Moreover, if G itself has property T then in AX,G the
set of ergodic actions and the set of weakly mixing actions are both closed.

Proof. The nowhere density of H-ergodic actions when (G, H) has property T and the
closedness of the set of ergodic actions and the set of weakly mixing actions when G has
property T follow by an argument parallel to that of Lemma 3.6 using the weak Rokhlin
property established in [15] (the proof given there also works in the nondiscrete case).

Suppose then that (G, H) does not have property T. Let P be a finite measurable
partition of X and let ε > 0. Denote by W (P, ε) the set of all actions α ∈ AX,G such that
there exists a t ∈ G for which |µ(αt(A) ∩ B) − µ(A)µ(B)| < ε for all A,B ∈ P. This is
clearly an open subset of AX,G. We will argue that it is also dense.

Suppose we are given an α ∈ AX,G, a finite measurable partition P′ of X, a compact
set K ⊆ G, and a δ > 0, and let us show that there exists an α̃ ∈ W (P, ε) such that
µ(α̃s(A)∆αs(A)) < δ for every A ∈ P′ and s ∈ K. We may assume by refining the
partitions if necessary that P = P′. Let n ∈ N be a positive integer power of 2 such that
n > 6/ε. By Lemma 4.1 there is a weakly H-mixing action β ∈ AX,G for which there
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exists a measurable partition {D1, . . . , Dn} of X with µ(Di) = 1/n and µ(βs(Di)∆Di) <
δ/(4n) for every i = 1, . . . , n and s ∈ K. By the continuity of α we can find a finite set
F ⊆ G such that for every set B of the form αs(A) for s ∈ K and A ∈ P there is a set
E(B) ∈

∨
s∈F αs(P) for which µ(E(B)∆B) < δ/(4n).

For each A ∈ P define the subset A\ of X ×Xn by

A\ = (D1 ×A×X × · · · ×X) ∪ (D2 ×X ×A×X × · · · ×X) ∪
· · · ∪ (Dn ×X × · · · ×X ×A)

where in the kth component of this disjoint union the jth factor in Xn is A if j = k
and X otherwise. Defining ω as the product measure µ × µn on X × Xn we have
ω(A\) = µ(A) for all measurable A ⊆ X. We can then construct a measure space iso-
morphism ϕ : (X, µ) → (X ×Xn, ω) which at the algebra level induces the bijective map∨

s∈F∪{e} αs(P) →
∨

s∈F∪{e}(id× α(n))s(P\) given by αs(A) 7→ (id× α(n))s(A\) = αs(A)\,
where P\ is the partition {A\ : A ∈ P} of X × Xn and α(n) denotes the n-fold product
α× α× · · · × α. Set θ = β × α(n) and define the action α̃ ∈ AX,G by α̃s = ϕ−1 ◦ θs ◦ ϕ for
all s ∈ G.

For A ∈ P and s ∈ K we have

µ(α̃s(A)∆E(αs(A))) = ω(θs(A\)∆E(αs(A))\)

≤
n∑

i=1

(
µ(βs(Di)∆Di) + µ(αs(A)∆E(αs(A)))

)
< n

(
δ

4n
+

δ

4n

)
=

δ

2

and hence

µ(α̃s(A)∆αs(A)) ≤ µ(α̃s(A)∆E(αs(A))) + µ(E(αs(A))∆αs(A)) <
δ

2
+

δ

2
= δ

so that α̃ ∈ V (α, K, Ω, δ).
Let us show now that α̃ ∈ W (Ω, ε). Since β is weakly H-mixing there exists a t ∈ H

such that ∣∣µ(βt(Di) ∩Dj)− n−2
∣∣ ≤ ε

3n2

for all i, j = 1, . . . , n. For A,B ∈ P we then have

|µ(α̃t(A) ∩B)− µ(A)µ(B)| = |ω(θt(A\) ∩B\)− µ(A)µ(B)|

≤
∑

1≤i,j≤n
i6=j

∣∣µ(βt(Di) ∩Dj)µ(A)µ(B)− n−2µ(A)µ(B)
∣∣

+
∑

1≤i≤n

∣∣µ(βt(Di) ∩Di)µ(αt(A) ∩B)− n−2µ(A)µ(B)
∣∣

≤ (n2 − n)
ε

3n2
+ n

(
ε

3n2
+

1
n2

+
1
n2

)
< ε.

Therefore α̃ ∈ W (P, ε), and so we conclude that W (P, ε) is dense in AX,G.
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Taking now an increasing sequence P1 ≤ P2 ≤ . . . of finite measurable partitions of X
whose union generates a dense subalgebra of the measure algebra, we can express the set
of weakly H-mixing actions in AX,G as

⋂∞
j=1 W (Pj , 1/j), which is a dense Gδ. �

Remark 4.3. In [9] Chou gave examples of nondiscrete noncompact solvable G which
have the property that every weakly mixing unitary representation is mixing (see the
remark on page 77 of [5]). In this case a generic action in AX,G is mixing by Theorem 4.2.
Therefore Rokhlin’s theorem that mixing fails generically in AX,Z [26] does not extend to
amenable G. It seems to be unknown however whether there exist infinite discrete G for
which every weakly mixing unitary representation is mixing (see [29]).

5. Bernoulli shifts

In [16] Glasner and Weiss showed for countable discrete G that the space of G-invariant
states (i.e., Borel probability measures) for the Bernoulli shift on {0, 1}G is a Bauer sim-
plex or the Poulsen simplex depending on whether or not G has property T (they also
established the same dichotomy for a suitable Bernoulli-type action in the nondiscrete
case). In the Poulsen simplex the extreme points (which are the ergodic states in this
case) form a dense Gδ set. In a Bauer simplex the set of extreme points is closed. So the
set of ergodic G-invariant states on {0, 1}G is closed or a dense Gδ depending in whether
or not G has property T. We establish here a weak mixing version of this fact, relativized
to pairs as usual. We will also work in a general noncommutative framework.

Given an action of a group G on a unital C∗-algebra A, we write SG(A) for the set
of G-invariant states on A equipped with the relative weak∗ topology. Ergodicity implies
extremality in SG(A), but the converse need not hold if A is not commutative. However, if
the action is asymptotically Abelian in a certain weak sense then extremality is equivalent
to ergodicity (see Section 4 of [6]). This is the case for the Bernoulli shifts considered in
the theorem below.

The symbol ⊗ can be interpreted below as either the minimal or maximal C∗-tensor
product, and so we will fix its meaning to be one or the other for the remainder of the
section. For a unital C∗-algebra A we write A⊗I for the tensor product of copies of A
indexed over the set I, which for I infinite is defined as the direct limit of the C∗-algebras
A⊗J over finite sets J ⊆ I with respect to the canonical unital embeddings A⊗J ↪→ A⊗J ′

for J ⊆ J ′ under which A⊗J is identified with A⊗J ⊗ 1 ⊆ A⊗J ⊗A⊗J ′\J = A⊗J ′ .

Theorem 5.1. Let G be a countable discrete group and H a subgroup. Let A be a separable
unital C∗-algebra not equal to the complex numbers and let α be the shift action of G on
A⊗G. If the pair (G, H) does not have property T then the set of weakly H-mixing states
in SG(A⊗G) is a dense Gδ, while if (G, H) has property T then the set of H-ergodic states
in SG(A⊗G) is nowhere dense. Moreover, if G itself has property T then in SG(A⊗G) the
set of G-ergodic states and the set of weakly G-mixing states are both closed.

Proof. Suppose first that (G, H) does not have property T. Let E = {s1, . . . , sk} be a
nonempty finite subset of G and let Ω be a nonempty finite set of elementary tensors in
the unit ball of A⊗E . Let ε > 0. Denote by W (Ω, ε) the set of all ω ∈ SG(A⊗G) such that
there exists a t ∈ H for which |ω(b∗αt(a))− ω(b∗)ω(a)| < ε for all a, b ∈ Ω. Then W (Ω, ε)
is evidently open in SG(A⊗G), and we will show that it is also dense.
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Let σ be a state in SG(A⊗G), Ω′ a finite set of elementary tensors in the unit ball of
A⊗E′

for some finite set E′ ⊆ G, and ε′ > 0. Since the set of such Ω′ is total in A⊗G,
the density of W (Ω, ε) will follow once we show the existence of a σ′ ∈ W (Ω, ε) such that
|σ′(a) − σ(a)| < ε′ for all a ∈ Ω′. Since W (Ω, ε) ⊇ W (Ω′ ∪ Ω,min(ε, ε′)) we may assume
for simplicity that Ω′ = Ω and ε′ = ε.

Let n ∈ N be a power of 2 such that n > 16/ε. By Lemma 4.1 there is a nonatomic
standard probability space (X, µ) and a weakly H-mixing measure-preserving action β of
G on L∞(X, µ) for which there exists an n-element partition of unity P = {e1, . . . , en} in
L∞(X, µ) with µ(ei) = 1/n and ‖βsj (ei) − ei‖µ < ε(32knk)−1 for every i = 1, . . . , n and
j = 1, . . . , k.

We construct a ∗-homomorphism Φ : A⊗G → L∞(X, µ) ⊗ (A⊗G)⊗{1,...,n} as follows.
Let F = {t1, . . . , tr} be a nonempty finite subset of G and let a = a1 ⊗ · · · ⊗ ar be an
elementary tensor in A⊗F . For a set I ⊆ {1, . . . , r} we write aI to denote the elementary
tensor ā1 ⊗ · · · ⊗ ār ∈ A⊗F where āi = ai if i ∈ I and āi = 1 if i /∈ I. We then define
ΦF (a) to be∑

κ∈{1,...,n}{1,...,r}

βt1(eκ(1))βt2(eκ(2)) · · ·βtr(eκ(r))⊗ aκ−1(1) ⊗ aκ−1(2) ⊗ · · · ⊗ aκ−1(n).

Since in each of the above pairwise orthogonal summands we have simply redistributed
the factors of the elementary tensor a according to a fixed scheme, we obtain an isometric
map on the algebraic tensor product (whether we are using the minimal or maximal C∗-
tensor norm) and hence a ∗-homomorphism ΦF : A⊗F → L∞(X, µ)⊗ (A⊗G)⊗{1,...,n}. The
∗-homomorphisms so defined are compatible in the sense that for any finite sets F1, F2 ⊆ G
the restrictions of ΦF1 and ΦF2 to A⊗(F1∩F2) agree. We then define Φ to be the resulting
direct limit ∗-homomorphism. Setting θ = β⊗α⊗{1,...,n}, it is readily seen that Φ◦α = θ◦Φ.

Write ω for the state µ⊗ σ⊗{1,...,n} on L∞(X, µ)⊗ (A⊗G)⊗{1,...,n}. Define σ′ to be ω ◦Φ
and let us show that this element of SG(A⊗G) has the desired properties.

Set Σ = {1, . . . , n}{1,...,k} and denote by Σc the set of constant functions in Σ. Let
a ∈ Ω. For κ ∈ Σ set

âκ = βs1(eκ(1))βs2(eκ(2)) · · ·βsk
(eκ(k))⊗ aκ−1(1) ⊗ aκ−1(2) ⊗ · · · ⊗ aκ−1(n).

For i = 1, . . . , n set

âi = ei ⊗ 1⊗ 1⊗ · · · ⊗ 1⊗ a⊗ 1⊗ · · · ⊗ 1

where a appears in the ith tensor product factor of (A⊗G)⊗{1,...,n}. Put â =
∑n

i=1 âi. We
will show that ‖Φ(a) − â‖ω < ε/8. Given a κ ∈ Σ \ Σc we have κ(i) 6= κ(j) for some
i, j ∈ {1, . . . , k} in which case

‖âκ‖ω ≤ ‖βsi(eκ(i))βsj (eκ(j))‖µ

= |µ(βsi(eκ(i))βsj (eκ(j)))|1/2

≤ |µ((βsi(eκ(i))− eκ(i))βsj (eκ(j)))|1/2 + |µ(eκ(i)(βsj (eκ(j))− eκ(j)))|1/2

≤ ‖βsi(eκ(i))− eκ(i)‖µ‖eκ(j)‖+ ‖eκ(i)‖‖βsj (eκ(j))− eκ(j)‖µ

<
ε

16nk
.
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For κ ∈ Σc we have

‖âκ − âκ(1)‖ω = ‖βs1(eκ(1))βs2(eκ(1)) · · ·βsk
(eκ(1))− eκ(1)‖µ‖a‖σ

≤
k∑

i=1

‖βsi(eκ(1))− eκ(1)‖µ <
ε

16n
.

Since Φ(a) =
∑

κ∈Σ âκ it follows that

‖Φ(a)− â‖ω ≤
∑
κ∈Σc

‖âκ − âκ(1)‖ω +
∑

κ∈Σ\Σc

‖âκ‖ω < n
ε

16n
+ (nk − n)

ε

16nk
<

ε

8
.

Because |ω(Φ(a) − â)| ≤ ‖Φ(a) − â‖ω and ω(â) = σ(a) this shows in particular that
|σ′(a)− σ(a)| < ε/8 < ε.

Now since β is weakly H-mixing there exists a t ∈ H such that |µ(ejβt(ei)) − n−2| ≤
ε(4n)−2 for all i, j = 1, . . . , n. Let a, b ∈ Ω. Then for i = 1, . . . , n we have

ω(b̂∗i θt(âi)) = µ(eiβt(ei))σ(b∗αt(a)) ≈ε(4n)−2

1
n2

σ(b∗αt(a))

while for i, j = 1, . . . , n with i 6= j we have

ω(b̂∗jθt(âi)) = µ(ejβt(ei))σ(b∗)σ(a) ≈ε(4n)−2

1
n2

σ(b∗)σ(a).

Therefore

ω(b̂∗θt(â)) =
∑

1≤i≤n

ω(b̂∗i θt(âi)) +
∑

1≤i,j≤n
i6=j

ω(b̂∗jθt(âi))

≈ε/8 n
1
n2

σ(b∗αt(a)) + (n2 − n)
1
n2

σ(b∗)σ(a)

=
1
n

σ(b∗αt(a)) +
n− 1

n
σ(b∗)σ(a)

so that |ω(b̂∗θt(â))− σ(b∗)σ(a)| ≤ ε/8 + 2/n < ε/4. Thus since

|ω(Φ(b)∗θt(Φ(a)))− ω(b̂∗θt(â))| ≤ |ω(Φ(b)∗θt(Φ(a)− â))|+ |ω((Φ(b)− b̂)∗θt(â))|

≤ ‖b‖‖Φ(a)− â‖ω + ‖Φ(b)− b̂‖ω‖â‖

<
ε

8
+

ε

8
=

ε

4
and σ′(b∗αt(a)) = ω(Φ(b)∗Φ(αt(a))) = ω(Φ(b)∗θt(Φ(a))) we obtain

|σ′(b∗αt(a))− σ′(b∗)σ′(a)| ≤ |ω(Φ(b)∗θt(Φ(a)))− ω(b̂∗θt(â))|+ |ω(b̂∗θt(â))− σ(b∗)σ(a)|
+ |(σ(b∗)− σ′(b∗))σ(a)|+ |σ′(b∗)(σ(a)− σ′(a))|

<
ε

4
+

ε

4
+

ε

4
+

ε

4
= ε.

Consequently σ′ ∈ W (Ω, ε), and we conclude that W (Ω, ε) is dense in SG(A⊗G).
Let Ω1 ⊆ Ω2 ⊆ . . . be an increasing sequence of nonempty finite subsets of A⊗G such

that for each j ≥ 1 the elements of Ωj are elementary tensors in the unit ball of A⊗E for
some finite set E ⊆ G and

⋃∞
j=1 Ωj is total in A⊗G. Then the set of a weakly mixing
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states in SG(A⊗G) is equal to
⋂∞

j=1 W (Ωj , 1/j), which is a dense Gδ in view of what we
proved above.

Now suppose that (G, H) has property T. Then there exists a nonempty finite set
F ⊆ G and an ε > 0 such that every unitary representation of G possessing an (F, ε)-
invariant vector has a nonzero H-invariant vector. Let σ be an element of SG(A⊗G)
which is not G-ergodic. Then the representation πσ,0 admits a nonzero invariant vector,
and so given a δ > 0 we can find an a ∈ A such that |σ(a)| < δ, σ(a∗a) > 1 − δ, and
σ((αs(a) − a)∗(αs(a) − a)) < δ for all s ∈ F . These inequalities also clearly hold with σ
replaced by any state in some neighbourhood N of σ in SG(A⊗G). It follows that if δ is
small enough then for each ω ∈ N the orthogonal projection of the vector πω(a)ξω ∈ Hω

onto Hω,0 is (F, ε)-invariant (where (πω,Hω, ξω) is the GNS triple for ω and Hω,0 is the
orthogonal complement of Cξω in Hω), which yields the existence of a nonzero H-invariant
vector in Hω,0, so that ω is not H-ergodic. Since A 6= C the set SG(A⊗G) contains more
than one product state and thus has cardinality greater than one, and so the states in
SG(A⊗G) that fail to be G-ergodic, being precisely those that fail to be extremal ([6],
Theorem 4.3.17), form a dense subset, from which we conclude that the set of H-ergodic
states is nowhere dense. We also see that if G itself has property T then the set of G-
ergodic states in SG(A⊗G) is closed. In this case the weak∗ continuity of the map σ 7→ σ⊗σ
from SG(A⊗G) to SG(A⊗G ⊗A⊗G) (with G acting as α⊗α on A⊗G ⊗A⊗G ∼= (A⊗A)⊗G)
shows that the set of weakly G-mixing states in SG(A⊗G) is also closed. �

6. Actions on the CAR algebra

Let A be the CAR algebra, i.e., the UHF algebra M⊗N
2 . Let G be a second countable

locally compact group. We write AA,G for the Polish space of continuous actions of G on
A whose topology has as a basis the sets

V (α, K, Ω, ε) = {β ∈ AA,G : ‖βs(a)− αs(a)‖ < ε for all s ∈ K and a ∈ Ω}

where α ∈ AA,G, K is a compact subset of G, Ω is a finite subset of A, and ε > 0.
The following is the topological analogue of Definition 3.1.

Definition 6.1. Let B be a C∗-algebra and α an action of G on B. We say that α is G-
Abelian if for every finite set Ω ⊆ A and ε > 0 there is an s ∈ G such that ‖[αs(a), b]‖ < ε
for all a, b ∈ Ω.

By Proposition 9.2 of [24], α is G-Abelian if and only if there is a net {sγ}γ in G (which
can be taken to be a sequence if B is separable) such that limγ ‖[αsγ (a), b]‖ = 0 for all
a, b ∈ B. This is the type of norm asymptotic Abelianness that is discussed on pages
401–403 of [6]. In the unital case it implies that the set of invariant states is a simplex
([6], Corollary 4.3.11). Theorem 9.6 of [24] shows that if B is a simple nuclear C∗-algebra
(e.g., the CAR algebra) then G-Abelianness is equivalent to an asymptotic tensor product
independence property.

Lemma 6.2. Suppose that G is discrete and admits a nontorsion Abelian quotient. Let F
be a finite subset of G and let ε > 0. Then there is an action β : G → Aut(M2), a minimal
projection p ∈ M2, and a t ∈ G such that ‖βs(p)− p‖ < ε for all s ∈ F and ‖pβt(p)‖ < ε.
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Proof. We may assume that G itself is Abelian and contains a nontorsion element t. By
enlarging F we may assume that it contains t. Since a character on a subgroup of G can
be extended to a character on the whole group, we can find a character γ ∈ Ĝ such that
γ(t) is of infinite order in T. By Kronecker’s theorem we can find an n ∈ N such that
|γ(s)n − 1| < ε/2 for all s ∈ F and then an m ∈ N such that |γ(t)nm + 1| < ε. Let
π : G → U(M2) be the homomorphism given by π(s) = diag(γ(s)n, 1) for all s ∈ G and
define the action β : G → Aut(M2) by βs = Adπ(s) for all s ∈ G. Letting p be the
minimal projection 1

2

[
1 1
1 1

]
in M2 we have ‖βs(p) − p‖ ≤ 2‖π(s) − 1‖ < ε for all s ∈ F

while

‖pβtm(p)‖ =
∥∥p

(
βtm(p)− 2−1

[
1 −1
−1 1

])∥∥ = 2−1
∥∥∥[

0 γ(t)mn+1

γ(t)−mn+1 0

]∥∥∥ < ε,

as desired. �

Theorem 6.3. Suppose that G is discrete and admits a nontorsion Abelian quotient. Then
the set of G-Abelian actions in AA,G is a dense Gδ.

Proof. Let Ω be a nonempty finite subset of the unit ball of A and let ε > 0. Denote
by W (Ω, ε) the set of all actions α in AA,G such that there exists a t ∈ G for which
‖[αt(a), b]‖ < ε for all a, b ∈ Ω. Then W (Ω, ε) is clearly open in AA,G. To show that
it is also dense, suppose we are given an α ∈ AA,G, a nonempty finite subset Ω′ of the
unit ball of A, a finite set F ⊆ G, and an δ > 0, and let us demonstrate that there
exists an α̃ ∈ W (Ω, ε) such that ‖α̃s(a) − αs(a)‖ < δ for every a ∈ Ω′ and s ∈ F . Since
W (Ω, ε) ⊇ W (Ω′ ∪ Ω, ε) we may assume for simplicity that Ω = Ω′. By Lemma 6.2 we
can find an action β : G → Aut(M2), a minimal projection p ∈ M2, and a t ∈ G such that
‖βs(p)− p‖ < δ/12 for all s ∈ F and ‖pβt(p)‖ < ε/24. Set p1 = p and p2 = 1− p.

Take a simple finite-dimensional unital C∗-subalgebra N ⊆ A such that for each a ∈⋃
s∈F∪{e} αs(Ω) there is an element E(a) in the unit ball of N for which ‖a−E(a)‖ < δ/24.

Define a map ϕ from N to the (in this case unique) C∗-tensor product M2 ⊗ A ⊗ A by
ϕ(a) = p1 ⊗ a ⊗ 1 + p2 ⊗ 1 ⊗ a for all a ∈ N . Then ϕ is an injective ∗-homomorphism.
Since M2 ⊗A⊗A is ∗-isomorphic to A and any two simple unital C∗-subalgebras of A of
the same finite dimension are unitarily equivalent by classification theory (see for example
Chapter 1 of [27]), we can extend ϕ to a ∗-isomorphism Φ : A → M2 ⊗ A ⊗ A. Set
θ = β ⊗ α⊗ α and define the action α̃ ∈ AA,G by α̃s = Φ−1 ◦ θs ◦ Φ for all s ∈ G.

Using the fact that ‖βs(pi)−pi‖ < δ/12 for all s ∈ F and i = 1, 2, we estimate as in the
proof of Theorem 3.7 to obtain ‖α̃s(a) − αs(a)‖ < δ for all a ∈ Ω and s ∈ F . Moreover,
noting that

‖[βt(p2), p1]‖ = ‖[βt(p1), p2]‖ = ‖[βt(p1), p1]‖ ≤ 2‖p1βt(p1)‖ <
ε

12
,

for all a, b ∈ Ω we have

‖[α̃t(E(a)), E(b)]‖ = ‖[βt ⊗ α⊗ α(Φ(E(a))),Φ(E(b))]‖
≤ ‖[βt(p1), p2]⊗ αt(E(a))⊗ E(b)‖+ ‖[βt(p2), p1]⊗ E(b)⊗ αt(E(a))‖

+ ‖[βt(p1)⊗ αt(E(a))⊗ 1, p1 ⊗ E(b)⊗ 1]‖
+ ‖[βt(p2)⊗ 1⊗ αt(E(a)), p2 ⊗ 1⊗ E(b)]‖

<
ε

12
+

ε

12
+ 2‖p1β(p1)‖+ 2‖p2β(p2)‖ <

ε

3
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and hence

‖[α̃t(a), b]‖ ≤ ‖[α̃t(E(a)), E(b)]‖+ 2‖b− E(b)‖+ 2‖a− E(a)‖ <
ε

3
+

ε

3
+

ε

3
= ε.

Thus α̃ ∈ W (Ω, ε), and so we conclude that W (Ω, ε) is dense in AA,G.
Now take an increasing sequence Ω1 ⊆ Ω2 ⊆ . . . of nonempty finite subsets of A whose

union has dense linear span in A. Then the set of G-Abelian actions in AA,G is equal to⋂∞
j=1 W (Ωj , 1/j), which is a dense Gδ. �

Theorem 6.3 for G = Z was established in [24] using some facts about the Rokhlin
property. In addition to enlarging the class of groups, we have given here a more elementary
argument.

We remark finally that an argument similar to that for Lemma 3.5 shows that, for
every second countable locally compact G, the elements of AA,G with dense orbit under
the conjugation action of the ∗-automorphism group Aut(A) form a dense Gδ subset.

References

[1] O. Ageev. The homogeneous spectrum problem in ergodic theory. Invent. Math. 160 (2005), 417–446.
[2] H. Araki and M. Choda. Property T and actions on the hyperfinite II1-factor. Math. Japonica 28

(1983), 205–209.
[3] B. Bekka. Property (T) for C∗-algebras. Bull. London Math. Soc. 38 (2006), 857–867.
[4] M. E. B. Bekka and A. Valette. Kazhdan’s property (T) and amenable representations. Math. Z. 212

(1993), 293–299.
[5] V. Bergelson and J. Rosenblatt. Mixing actions of groups. Ill. J. Math. 32 (1988), 65–80.
[6] O. Bratteli and D. W. Robinson. Operator Algebras and Quantum Statistical Mechanics 1. Second

edition. Springer-Verlag, New York, 1987.
[7] O. Bratteli and D. W. Robinson. Operator Algebras and Quantum Statistical Mechanics 2. Second

edition. Springer-Verlag, Berlin, 1997.
[8] P.-A. Cherix, M. Cowling, P. Jolissaint, P. Julg, and A. Valette. Groups with the Haagerup Property.

Gromov’s A-T-menability. Progress in Mathematics, 197. Birkhäuser Verlag, Basel, 2001.
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