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Abstract. We show that the Voiculescu-Brown entropy of a noncommutative toral

automorphism arising from a matrix S ∈ GL(d,Z) is at least half the value of the topo-

logical entropy of the corresponding classical toral automorphism. We also obtain some

information concerning the positivity of local Voiculescu-Brown entropy with respect to

single unitaries. In particular we show that if S has no roots of unity as eigenvalues then

the local Voiculescu-Brown entropy with respect to every product of canonical unitaries

is positive, and also that in the presence of completely positive CNT entropy the unital

version of local Voiculescu-Brown entropy with respect to every non-scalar unitary is

positive.

1. Introduction

Let Θ = (θjk)1≤j,k≤d be a real skew-symmetric d × d matrix. The noncommutative

d-torus AΘ is defined as the universal C∗-algebra generated by unitaries u1, . . . , ud subject

to the relations

ujuk = e2πiθjkukuj

for all 1 ≤ j, k ≤ d (see [26] for a reference). For any matrix S = (sjk)1≤j,k≤d in GL(d,Z)

there is an isomorphism α : AStΘS → AΘ determined by

αΘ(uj) = u
s1j
1 u

s2j
2 · · ·u

sdj
d

for each j = 1, . . . , d. Thus when StΘS ≡ Θ (mod Md(Z)) we obtain an automorphism

of AΘ, which we denote by αS,Θ and refer to as a noncommutative toral automorphism.

Note that whenever αS,Θ exists so does αS,−Θ. These noncommutative analogues of toral

automorphisms were initially introduced in [33] and [3] for d = 2, in which case for

any given S ∈ SL(2,Z) the automorphism αS,Θ is defined for all Θ. An indication of

their significance from a noncommutative geometry perspective is the fact that, for d =
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2, if θ12 is an irrational number satisfying a generic Diophantine property, then every

diffeomorphism of AΘ equipped with the canonical differential structure is a composition

of an inner automorphism by a smooth unitary in the connected component of the unit,

a noncommutative toral automorphism, and an automorphism arising from the canonical

action of T2 [9]. In an arbitrary dimension d, if Θ is rational (i.e., the entries of Θ are all

rational) then the C∗-algebraAΘ is homogeneous (see [22]) and when αS,Θ exists we recover

the corresponding classical toral automorphism at the level of the pure state space upon

restricting αS,Θ to the center of AΘ, so that from the noncommutative point of view it is

the case of nonrational Θ that is of primary interest. Unlike classical toral automorphisms,

which for hyperbolic S ∈ SL(d,Z) have served as prototypes for such important dynamical

phenomena as hyperbolicity and structural stability (see [7, 11]), noncommutative toral

automorphisms as a class have remained somewhat mysterious, although in many cases

much has been ascertained from a measure-theoretic viewpoint [1, 16, 18, 17, 21].

In [31, Sect. 5] it was shown that the Voiculescu-Brown entropy of αS,Θ is bounded

above by the topological entropy of the corresponding classical toral automorphism, i.e.,

by
∑
|λi|>1 log |λi|, where λ1, . . . , λd are the eigenvalues of S counted with multiplicity

(see, e.g., [7, Sect. 24] for a calculation of the topological entropy of toral automorphisms).

Except in the case that the eigenvalues of S all lie on the unit circle, this does not resolve

the basic question of whether the entropy is positive or zero, i.e., of whether the system

is “chaotic” or “deterministic”. When Θ is rational the Voiculescu-Brown entropy can be

seen to be
∑
|λi|>1 log |λi| by restricting αS,Θ to the centre of AΘ and applying monotonicity

and Proposition 4.8 of [31]. In [21] Neshveyev showed that if S has no roots of unity then

the entropic K-property (and in particular positive CNT entropy and hence also positive

Voiculescu-Brown entropy by [31, Prop. 4.6]) follows from a summability condition with

respect to a 2-cocycle Zd × Zd → T in terms of which AΘ can be described. In the case

d = 2, when we are dealing with a rotation C∗-algebra Aθ (= AΘ for Θ = (θjk)j,k=1,2 with

θ12 = θ), if S has an eigenvalue λ with |λ| > 1 then the set of θ for which the CNT entropy

with respect to the canonical tracial state is positive has zero Lebesgue measure [18] and

it contains Z + 2Zλ2 as a consequence of the above-mentioned result of Neshveyev (see

[16, 21]).

The first aim of this article, which we carry out in Section 2, is to show that, in an

arbitrary dimension d, if the eigenvalues λ1, . . . , λd do not all lie on the unit circle, then
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the Voiculescu-Brown entropy of αS,Θ is at least 1
2

∑
|λi|>1 log |λi|. (This was effectively

claimed in [18] for d = 2 but the tensor product argument given there is not correct.) In

Section 3 we apply a result from [14] to obtain some information concerning the positiv-

ity of the local Voiculescu-Brown entropy of αS,Θ with respect to products of canonical

unitaries. We prove in particular that if S has no roots of unity as eigenvalues then the

local Voiculescu-Brown entropy of αS,Θ with respect to any product of canonical unitaries

is positive. Finally, in Section 4 we show in the general unital setting that completely

positive CNT entropy of the von Neumann algebraic dynamical system arising from a

faithful invariant state implies positivity of the unital version of local Voiculescu-Brown

entropy with respect to every non-scalar unitary, and also that in the unital case this latter

condition is equivalent to a noncommutative extension of the topological-dynamical no-

tion of completely positive entropy which we call “completely positive Voiculescu-Brown

entropy”. We then apply these results to the above-mentioned noncommutative toral

automorphisms treated by Neshveyev in [21].
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2. Positive Voiculescu-Brown entropy

We begin by recalling the definition of Voiculescu-Brown entropy [4], which is based on

completely positive approximation (see [24] for a reference on completely positive maps).

Let A be an exact (equivalently, nuclearly embeddable [15]) C∗-algebra and α an au-

tomorphism of A. Let π : A → B(H) be a faithful ∗-representation. For a finite set

Ω ⊆ A and δ > 0 we denote by CPA(π,Ω, δ) the collection of triples (ϕ,ψ,B) where B

is a finite-dimensional C∗-algebra and ϕ : A → B and ψ : B → B(H) are contractive

completely positive maps such that ‖(ψ ◦ ϕ)(a) − π(a)‖ < δ for all a ∈ Ω. This collec-

tion is nonempty by nuclear embeddability, and we define rcp(Ω, δ) to be the infimum of
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rankB over all (ϕ,ψ,B) ∈ CPA(π,Ω, δ), with rank referring to the dimension of a max-

imal Abelian C∗-subalgebra. As the notation indicates, rcp(Ω, δ) is independent of the

faithful ∗-representation π, as shown in the proof of Proposition 1.3 in [4]. We then set

ht(α,Ω, δ) = lim sup
n→∞

1
n

log rcp(Ω ∪ αΩ ∪ · · · ∪ αn−1Ω, δ),

ht(α,Ω) = sup
δ>0

ht(α,Ω, δ),

ht(α) = sup
Ω
ht(α,Ω)

where the last supremum is taken over all finite sets Ω ⊆ A. The quantity ht(α) is a

C∗-dynamical invariant which we call the Voiculescu-Brown entropy of α. We note that

exactness passes to C∗-subalgebras and that Voiculescu-Brown entropy is nonincreasing

when passing to dynamically invariant C∗-subalgebras (monotonicity).

We will also have occasion to use the unital version of ht(α,Ω) in Section 4, which we

will denote by htu(α,Ω). This is defined in the case of unital A by using unital completely

positive maps instead of general contractive completely positive maps as above, and when

A is nuclear it agrees with the corresponding quantity in Voiculescu’s original definition

[31, Sect. 4], as can be seen from an argument in the proof of Proposition 1.4 in [4] involving

Arveson’s extension theorem. When 1 6∈ Ω we may have ht(α,Ω) 6= htu(α,Ω), but these

quantities do agree when 1 ∈ Ω as the proof of Proposition 1.4 in [4] shows, so that ht(α)

may be alternatively obtained in the unital case by taking the supremum of htu(α,Ω) over

all finite sets Ω ⊆ A.

Notation 2.1. For a C∗-algebra A we denote by Aop the opposite algebra (i.e., the C∗-

algebra obtained from A by reversing the multiplication), and for each a ∈ A we denote

by ã the corresponding element in Aop.

We would like to thank George Elliott for suggesting the proof we give of the following

lemma, which simplifies our original proof.

Lemma 2.2. Let A and B be C∗-algebras and ϕ : A → B an n-positive map. Let

ϕop : Aop → Bop be the induced linear map given by ϕop(ã) = ϕ̃(a) for all a ∈ A. Then

ϕop is also n-positive. In particular, if ϕ is completely positive then so is ϕop.

Proof. Suppose that ϕ is n-positive, i.e., the map ϕ ⊗ id : A ⊗Mn(C) → B ⊗Mn(C) is

positive. Since for every C∗-algebra D the map D → Dop given by a 7→ ã for all a ∈ D is
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an order isomorphism, it follows that the map (ϕ⊗id)op : (A⊗Mn(C))op → (B⊗Mn(C))op

is positive. But this is just the map ϕop⊗idop : Aop⊗(Mn(C))op → Bop⊗(Mn(C))op. Take

an isomorphism β : (Mn(C))op →Mn(C). Then (idBop⊗β)◦ (ϕop⊗ idop)◦ (idAop⊗β)−1 =

ϕop ⊗ (β ◦ idop ◦ β−1) = ϕop ⊗ id : Aop ⊗Mn(C) → Bop ⊗Mn(C) is positive, i.e., ϕop is

n-positive. �

Proposition 2.3. Let α be an automorphism of an exact C∗-algebra A and let αop be

the induced automorphism of Aop. Then ht(α) = ht(αop).

Proof. Given a faithful ∗-representation π : A → B(H) consider the induced injective
∗-homomorphism πop : Aop → B(H)op. Let H̃ = {x̃ : x ∈ H} be the Hilbert space

conjugate to H with scalar multiplication λ̄x̃ = λ̃x and inner product 〈x̃, ỹ〉 = 〈y, x〉.
Then we have a natural identification of B(H)op with B(H̃) under which we can consider

πop as a ∗-representation. It follows then by Lemma 2.2 that for any finite set Ω ⊆ A

and δ > 0 we have rcp(Ω̃, δ) = rcp(Ω, δ) where Ω̃ = {ã : a ∈ Ω}, and so we conclude that

ht(α) = ht(αop). �

Lemma 2.4. Let d ≥ 2 and let Θ be a real skew-symmetric d × d matrix. Let β be the

canonical action of Td on the noncommutative torus AΘ, and let α be an automorphism

of AΘ such that αβ(Tn)α−1 = β(Tn) in Aut(AΘ). Then ht(βxα) = ht(αβx) = ht(α) for

all x ∈ Tn.

Proof. It suffices to show ht(βxα) ≤ ht(α). Let π : AΘ → B(H) be a faithful ∗-

representation of AΘ. We can choose, for each p ∈ Zd, a unitary up in AΘ in such a way

that span{up : p ∈ Zd} is dense in AΘ and βx(up) = 〈p, x〉up, where 〈·, ·〉 : Zd ×Td → T is

the canonical pairing. For every ω ⊆ Zd we set Uω = {up : p ∈ ω}. Since UZd is total in

AΘ, by Proposition 2.6 of [4] ht(α) and ht(βxα) are equal to the supremum of ht(α,Uω)

and ht(βxα,Uω) over all finite sets ω ⊆ Zd respectively. Thus it suffices to show that

ht(α,Uω) ≤ ht(βxα,Uω) for every finite set ω ⊆ Zd, and this will follow once we show that

rcp(Uω ∪ (βxα)(Uω) ∪ · · · ∪ (βxα)m−1(Uω), δ)

≤ rcp(Uω ∪ α(Uω) ∪ · · · ∪ αm−1(Uω), δ)

for any given finite set ω ⊆ Zd, m ∈ N, and δ > 0. Suppose then that (ϕ,ψ,B) is a triple

in CPA(π, Uω ∪ α(Uω) ∪ · · · ∪ αm−1(Uω), δ) such that rank(B) = rcp(Uω ∪ α(Uω) ∪ · · · ∪
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αm−1(Uω), δ). For each j ∈ Z≥0 there exists some x(j) ∈ Td such that (βxα)j = αjβx(j).

Then (βxα)j(up) = 〈p, x(j)〉αj(up) for every p ∈ Zd, and so

‖(ψ ◦ ϕ)((βxα)j(up))− π((βxα)j(up))‖ = ‖(ψ ◦ ϕ)(αj(up))− π(αj(up))‖ < δ

for all j = 0, . . . ,m−1 and p ∈ ω. Thus the triple (ϕ,ψ,B) is also contained in CPA(π, Uω∪
(βxα)(Uω) ∪ · · · ∪ (βxα)m−1(Uω), δ), finishing the proof. �

Remark 2.5. (1) Let A be any exact C∗-algebra with a sequence of finite dimensional

subspaces V1 ⊆ V2 ⊆ · · · such that
⋃
j∈N Vj is dense in A, and let G be a subgroup of

Aut(A) preserving every Vj . If α ∈ Aut(A) satisfies αGα−1 = G then ht(βα) = ht(αβ) =

ht(α) for every β ∈ G. The proof of Lemma 2.4 applies with minor modifications.

(2) It is easy to show that an automorphism α of AΘ satisfies the hypothesis of

Lemma 2.4 if and only if it is of the form αS,Θβx for some noncommutative toral au-

tomorphism αS,Θ and x ∈ Td.

Lemma 2.6. Let αS,Θ be any noncommutative toral automorphism. Then

ht(αS,Θ) + ht(αS,−Θ) ≥
∑
|λi|>1

log |λi|

where λ1, . . . , λd are the eigenvalues of S counted with multiplicity.

Proof. Since the Voiculescu-Brown entropy of an automorphism of a separable commuta-

tive C∗-algebra agrees with the topological entropy of the induced homeomorphism on the

pure state space by [31, Prop. 4.8], in the case Θ = 0 we have ht(αS,0) =
∑
|λi|>1 log |λi|.

Consider now the tensor product AΘ ⊗ A−Θ. Denoting by u1, . . . , ud and v1, . . . , vd the

canonical unitaries of AΘ and A−Θ, respectively, we have that the unitaries uj ⊗ vj for

j = 1, . . . , d form canonical generators for a copy C of C(Td). This can been seen from the

fact that they operate as shifts in different coordinate directions on the Hilbert subspace

span{π+(uk11 · · ·u
kd
d )ξ+ ⊗ π−(vk11 · · · v

kd
d )ξ− : (k1, . . . , kd) ∈ Zd}

(identified with `2(Zd)) with respect to the tensor product of the canonical tracial state

GNS representations π± of A±Θ with canonical cyclic vectors ξ±. We furthermore see that

this identification of the αS,Θ ⊗ αS,−Θ-invariant C∗-subalgebra C with C(Td) establishes

a conjugacy between αS,Θ ⊗ αS,−Θ

∣∣
C and αS,0. The monotonicity and tensor product
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subadditivity of Voiculescu-Brown entropy then yields∑
|λi|>1

log |λi| = ht(αS,0) = ht(αS,Θ ⊗ αS,−Θ

∣∣
C) ≤ ht(αS,Θ) + ht(αS,−Θ).

�

Theorem 2.7. Let αS,Θ be any noncommutative toral automorphism. Then

ht(αS,Θ) = ht(αS,−Θ) ≥ 1
2

∑
|λi|>1

log |λi|

where λ1, . . . , λd are the eigenvalues of S counted with multiplicity.

Proof. Denoting by u1, . . . , ud and v1, . . . , vd the canonical unitaries of AΘ and A−Θ, re-

spectively, we have an isomorphism AΘ → Aop
−Θ given by uj 7→ ṽj . Identify AΘ and Aop

−Θ

via this isomorphism. By computing αop
S,−Θ ∈ Aut(AΘ) on the canonical unitaries we see

that it has the form αS,Θβx for some x ∈ Td, where β is the canonical action of Td on

AΘ. Proposition 2.3 and Lemma 2.4 then yield ht(αS,−Θ) = ht(αop
S,−Θ) = ht(αS,Θ). By

Lemma 2.6 we also have ht(αS,Θ) + ht(αS,−Θ) ≥
∑
|λi|>1 log |λi|. The assertion of the

theorem now follows. �

3. Positive local Voiculescu-Brown entropy with respect to products of

canonical unitaries

Our goal in this section is to obtain some information concerning positivity of local

Voiculescu-Brown entropy with respect to products of canonical unitaries. We will proceed

by first relating a noncommutative toral automorphism to the corresponding classical toral

automorphism as in the proof of Lemma 2.6 but at a local level, and then appealing

to a result from [14] involving local Voiculescu-Brown entropy in the separable unital

commutative setting. Throughout this section we will denote the canonical unitaries of

the commutative d-torus A0
∼= C(Td) by f1, . . . , fd. We will continue to denote the

canonical unitaries of a general noncommutative d-torus by u1, . . . , ud.

Lemma 3.1. Let αS,Θ be a noncommutative toral automorphism, k1, . . . , kd ∈ Z, and

λ ∈ C. Then
1
2
ht(αS,0, {λfk11 · · · f

kd
d }) ≤ ht(αS,Θ, {λu

k1
1 · · ·u

kd
d }).
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Proof. We may assume that λ = 1. Let C be the αS,Θ ⊗ αS,−Θ-invariant commutative

C∗-algebra of AΘ⊗A−Θ identified in the proof of Lemma 2.6. Denoting by v1, · · · , vd the

canonical unitaries of A−Θ, we have

ht(αS,0, {fk11 · · · f
kd
1 }) = ht(αS,Θ ⊗ αS,−Θ

∣∣
C , {uk11 · · ·u

kd
d ⊗ v

k1
1 · · · v

kd
d })

≤ ht(αS,Θ, {uk11 · · ·u
kd
d }) + ht(αS,−Θ, {vk11 · · · v

kd
d }),

(1)

where the last inequality follows from an argument similar to that in the proof of Proposi-

tion 3.10 in [31]. As in the proof of Theorem 2.7 we identify AΘ with Aop
−Θ via uj 7→ ṽj and

observe that αop
−Θ ∈ Aut(AΘ) has the form αS,Θβx for some x ∈ Td, where β is the canon-

ical action of Td on AΘ. Following Notation 2.1, we then have ˜
vk11 · · · v

kd
d = ηṽk11 · · · ṽ

kd
d for

some η ∈ C of unit modulus, and so

ht(αS,−Θ, {vk11 · · · v
kd
d }) = ht(αop

S,−Θ, {
˜

vk11 · · · v
kd
d }) = ht(αS,Θ, {uk11 · · ·u

kd
d })(2)

in view of the proofs of Proposition 2.3 and Lemma 2.4. The assertion of the lemma now

follows from (1) and (2). �

Theorem 3.2. Let αS,Θ be a noncommutative toral automorphism and suppose that S

has no roots of unity as eigenvalues. Then

ht(αS,Θ, {λuk11 · · ·u
kd
d }) > 0

for any non-zero (k1, . . . , kd) ∈ Zd and non-zero λ ∈ C.

Proof. Since the measure-theoretic toral automorphism associated to S via Lebesgue mea-

sure is ergodic (see [32]) and hence has completely positive (Kolmogorov-Sinai) entropy

[27], the topological toral automorphism associated to S (i.e., the case Θ = 0 at the level

of the pure state space) has completely positive (topological) entropy, i.e., each of its non-

trivial factors has positive topological entropy (see [2]). Thus ht(αS,0, {x}) > 0 for every

non-scalar x ∈ A0
∼= C(Td) by Corollary 4.4 of [14]. Lemma 3.1 then yields the result. �

For a general noncommutative toral automorphism αS,Θ it follows from Lemma 3.1 that

to conclude that ht(αS,Θ, {λuk11 · · ·u
kd
d }) > 0 we need only show that ht(αS,0, {λfk11 · · · f

kd
d }) >

0. If we are simply dealing with a canonical unitary uj then this occurs, for example, if

the jth coordinate axis in Rd is not orthogonal to some one-dimensional subspace of a

eigenspace in Rd corresponding to a real eigenvalue of S not equal to ±1. To see this,

suppose L is such a one-dimensional subspace and let λ be the associated real eigenvalue.
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We may assume |λ| > 1 since ht(α−1
S,Θ, {uj}) = ht(αS,Θ, {uj}) (see the proof of Proposition

2.5 in [4]) and α−1
S,Θ = αS−1,Θβx for some x ∈ Td, where β is the canonical action of Td on

AΘ. Define the pseudo-metric dj on Td by

dj(x, y) = |fj(x)− fj(y)|

for all x, y ∈ T, with the unitary fj being considered here in the canonical way as a function

on the pure state space Td. Since the jth coordinate subspace of Rd is not orthogonal to L

there exists a δ > 0 such that, for any x = (x1, . . . , xd) and y = (y1, . . . , yd) in L, the jth

coordinate distance |xj − yj | is at least δ times the Euclidean distance between x and y.

Now since the action of T on L is simply multiplication by λ it can be seen via a covering

space argument (see the proof of Theorem 24.5 in [7]) that there exists a C > 0 and an

ε > 0 such that for every n ∈ N the image of L under the quotient map onto Td ∼= Rd/Zd

contains an (n, ε)-separated set of cardinality at least C|λ|n, from which it follows that

the entropy hdj (S̄) is strictly positive, where S̄ is the automorphism of Td corresponding

to S. Here we are using standard notation and terminology from topological dynamics

(see [7]) except that we are allowing the metric in the definition of entropy to be merely

a pseudo-metric. Now by Theorem 4.3 of [14] we conclude that ht(αS,0, {uj}) > 0, as

desired.

By a similar argument which allows for the possibility of non-trivial Jordan cells we

have the following more general statement.

Theorem 3.3. Let αS,Θ be a noncommutative toral automorphism. Let j ∈ {1, . . . , d}
and suppose that the jth coordinate axis in Rd is not orthogonal to the span of the

generalized eigenspaces associated to the set of real eigenvalues of S not equal to ±1.

Then ht(αS,Θ, {uj}) > 0.

We could evidently further generalize this theorem to handle products of canonical

unitaries, and also formulate a similar result involving pairs of canonical unitaries and

complex eigenvalues not on the unit circle.

4. Completely positive Voiculescu-Brown entropy

In [21] Neshveyev showed that, for the von Neumann algebraic dynamical system arising

from a noncommutative toral automorphism αS,Θ via the canonical tracial state on AΘ, the

property of being an entropic K-system (and in particular of having completely positive
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CNT entropy), in the case of S having no roots of unity as eigenvalues (which occurs if

and only if S is aperiodic (see [25] or [32])), is a consequence of a summability condition

which for d = 2 is satisfied for a certain countable set of rotation parameters. We will show

in the general unital setting that completely positive CNT entropy of the von Neumann

algebraic dynamical system arising from a faithful invariant state implies “completely

positive Voiculescu-Brown entropy” (i.e., every restriction of the automorphism to a non-

trivial invariant C∗-subalgebra has positive Voiculescu-Brown entropy), and that in the

unital case the latter property is equivalent to the positivity of the unital version of local

Voiculescu-Brown entropy with respect to every non-scalar unitary.

We will use the standard notation for CNT (Connes-Narnhofer-Thirring) entropy [6].

Let α be an automorphism of a unital C∗-algebra A and ω a faithful α-invariant state

on A. Denoting by πω the GNS representation corresponding to ω, we obtain exten-

sions ᾱ and ω̄ of α and ω, respectively, to πω(A)′′. By definition the automorphism ᾱ

has completely positive CNT entropy if hω̄,ᾱ(N) > 0 for all unital finite-dimensional ∗-

subalgebras N of πω(A)′′ which are different from the scalars. We recall that hω̄,ᾱ(N) =

limn→∞ n
−1Hω̄(N, ᾱN, . . . , ᾱn−1N), where for unital finite-dimensional C∗-subalgebras

N1, . . . , Nm ⊆ πω(A)′′ the quantity Hω̄(N1, . . . , Nm) refers to the supremum of the en-

tropies of the Abelian models for (πω(A)′′, ω̄, {N1, . . . , Nm}) (see Section III of [6], and

note that we are using the convention that a unital finite-dimensional ∗-subalgebra N of

πω(A)′′ stands for the (completely positive) inclusion N ↪→ πω(A)′′). Entropic K-systems

have completely positive CNT entropy, and the two notions coincide in the commutative

case. For definitions and discussions see [19, 10]. Note that in [10] what we are referring

to for clarity as “completely positive CNT entropy” is simply called “completely positive

entropy”.

Definition 4.1. Let α be an automorphism of a non-trivial exact C∗-algebra A. We say

that α has completely positive Voiculescu-Brown entropy if ht(α
∣∣
B) > 0 for every non-zero

α-invariant C∗-subalgebra B ⊆ A which, if A is unital, is not equal to the scalars.

Remark 4.2. If A is unital then in the above definition we may take the C∗-subalgebras

B to be unital, for if B ⊆ A is an α-invariant C∗-subalgebra not containing the unit of A

then the Voiculescu-Brown entropies of the restrictions α
∣∣
B and α

∣∣
B+C1 agree by Lemma
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1.7 of [4]. Thus in the separable unital commutative situation we recover the topological-

dynamical notion of completely positive entropy, which refers to the absence of non-trivial

factors with zero topological entropy [2].

Proposition 4.3. Let α be an automorphism of a unital exact C∗-algebra A and ω a faith-

ful α-invariant state on A, and suppose that the extension ᾱ of α to πω(A)′′ has completely

positive CNT entropy. Then α has completely positive Voiculescu-Brown entropy.

Proof. Let B ⊆ A be a unital α-invariant C∗-subalgebra different from the scalars. Since

u.c.p. maps Md → πω(B)′′ can be approximated by u.c.p. maps Md → πω(B) in the

strong topology (see the proof of Lemma 2.2 in [20], which we thank Sergey Neshveyev for

pointing out) we have hω|B (α
∣∣
B) = hω̄|πω(B)′′(ᾱ

∣∣
πω(B)′′) by Corollary VI.4 of [6]. Since B

is different from the scalars, πω(B)′′ contains finite-dimensional C∗-subalgebras different

from the scalars (e.g., span{p, 1 − p} where p is a projection in πω(B)′′ different from 0

and 1). Applying Proposition 9 of [8] we thus have

ht(α
∣∣
B) ≥ hω|B (α

∣∣
B) = hω̄|πω(B)′′(ᾱ

∣∣
πω(B)′′) ≥ sup

N
hω̄,ᾱ(N) > 0,

where the supremum is taken over all finite-dimensional C∗-subalgebras N ⊆ πω(B)′′. We

remark that the second last inequality, which follows from the definition of CNT entropy,

is in fact an equality when πω(B)′′ is hyperfinite [6, Thm. VII.4] (this is automatic if A

is separable and nuclear and πω(A)′′ is finite, or more generally if πω(A)′′ is finite and

injective and has separable predual, for in this case every von Neumann subalgebra of

πω(A)′′ is injective [30, Prop. V.2.36] and hence hyperfinite [5]). �

Recall from the beginning of Section 4 that htu(α,Ω) denotes the unital version of the

local Voiculescu-Brown entropy ht(α,Ω). We will next show that, in the unital case, com-

pletely positive Voiculescu-Brown entropy is equivalent to positivity of the unital version

of local Voiculescu-Brown entropy with respect to every non-scalar unitary. For this we

will need the following Kolmogorov-Sinai-type property, which is similar to that of Lemma

A.2 in [23].

Lemma 4.4. Let α be an automorphism of a unital exact C∗-algebra A. If Ω1 ⊆ Ω2 ⊆
Ω3 ⊆ · · · is a nested sequence of finite sets of unitaries in A such that

⋃
k∈N,n∈Z α

nΩk
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generates A as a C∗-algebra, then

ht(α) = sup
k∈N

htu(α,Ωk).

Proof. Given a unital completely positive map ϕ from A into any unital C∗-algebra B,

Lemma 3.1 of [12] yields

‖ϕ(x∗y)− ϕ(x)∗ϕ(y)‖ ≤ ‖ϕ(x∗x)− ϕ(x)∗ϕ(x)‖1/2‖ϕ(y∗y)− ϕ(y)∗ϕ(y)‖1/2

for all x, y ∈ A, and so in particular for any unitaries u, v ∈ A we have

‖ϕ(uv)− ϕ(u)ϕ(v)‖ ≤ ‖1− ϕ(u)∗ϕ(u)‖1/2‖1− ϕ(v)∗ϕ(v)‖1/2

≤ (‖u∗u− ϕ(u)∗u‖+ ‖ϕ(u)∗u− ϕ(u)∗ϕ(u)‖)1/2

× (‖v∗v − ϕ(v)∗v‖+ ‖ϕ(v)∗v − ϕ(v)∗ϕ(v)‖)1/2

≤ 2‖ϕ(u)− u‖1/2‖ϕ(v)− v‖1/2

whence

‖ϕ(uv)− uv‖ ≤ ‖ϕ(uv)− ϕ(u)ϕ(v)‖+ ‖ϕ(u)ϕ(v)− uϕ(v)‖+ ‖uϕ(v)− uv‖

≤ (‖ϕ(u)− u‖1/2 + ‖ϕ(v)− v‖1/2)2.

We can now proceed along the lines of the proofs of Propositions 1.4 and 3.4 of [31] to

obtain the result. �

Proposition 4.5. Let α be an automorphism of a unital exact C∗-algebra A. Then α

has completely positive Voiculescu-Brown entropy if and only if htu(α, {u}) > 0 for every

non-scalar unitary u ∈ A.

Proof. For the “only if” direction, we can consider for any non-scalar unitary u ∈ A the

unital α-invariant C∗-subalgebra it generates and appeal to Lemma 4.4. For the “if”

direction, we need simply observe that every unital C∗-algebra different from the scalars

contains a non-scalar unitary, as can be obtained by applying the functional calculus to

the real part (or imaginary part if the real part is a scalar) of any non-scalar element. �

For a real skew-symmetric d× d matrix Θ the noncommutative d-torus AΘ may alter-

natively be described as the universal unital C∗-algebra generated by unitaries {ug}g∈Zd

subject to the relations

uguh = β(g, h)ug+h,
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where β : Zd × Zd → T is a bicharacter satisfying

β(g, h)β(h, g)−1 = e2πig·Θh.

Theorem 4.6. Let αS,Θ be a noncommutative toral automorphism, and suppose that S

is β-preserving and has no roots of unity as eigenvalues, and that

∑
n∈Z
|1− β(g, Snh)| <∞

for all g, h ∈ Zd. Then αS,Θ has completely positive Voiculescu-Brown entropy and

htu(αS,Θ, {u}) > 0 for every non-scalar unitary u ∈ A.

Proof. By Theorem 2 of [21] the hypotheses of the theorem statement imply that the von

Neumann algebraic system obtained from αS,Θ via the canonical tracial state on AΘ is an

entropic K-system, and hence has completely positive CNT entropy. Propositions 4.3 and

4.5 then yield the desired conclusion. �

Theorem 4.6 applies in particular in the case d = 2 when the matrix S has eigenvalues

off the unit circle and the rotation parameter θ of the rotation C∗-algebra Aθ (= AΘ for

Θ = (θjk)j,k=1,2 with θ12 = θ) lies in Z + 2Zλ2 where λ is the (necessarily real) eigenvalue

of S of largest absolute value (see [21]).

Finally, we would like to point out that the argument in [21] is not quite complete.

Indeed in the proof of the lemma in [21] it is incorrectly taken to be the case that a

matrix T ∈ GL(n,Z) is aperiodic if and only if it has no eigenvalues on the unit circle.

(Aperiodicity is defined as the non-existence of non-trivial finite orbits of T acting on

Zn and is equivalent to T having no roots of unity as eigenvalues and also equivalent to

the ergodicity of the measure-theoretic automorphism of Tn associated to T via Lebesgue

measure (see [25] or [32], and also Section 24 of [7]).) However, if we let Rn = V1 ⊕ V2 be

the decomposition of Rn corresponding to the eigenvalues of T of modulus at least one and

strictly less than one, respectively, and denote by P1 and P2 the associated projections,

then the proof of the lemma in [21] demonstrates that, for large n, if y1 + Tny2 + · · · +
Tn(k−1)yk = 0 then P2(y1) = · · · = P2(yk) = 0. The argument in the first paragraph of p.

191 of [13] then shows that P2 is injective on Zn, whence y1 = · · · = yk = 0, as desired.
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