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Abstract. We show that, for countable sofic groups, a Bernoulli action with infinite
entropy base has infinite entropy with respect to every sofic approximation sequence.
This builds on the work of Lewis Bowen in the case of finite entropy base and completes
the computation of measure entropy for Bernoulli actions over countable sofic groups.
One consequence is that such a Bernoulli action fails to have a generating countable
partition with finite entropy if the base has infinite entropy, which in the amenable case
is well known and in the case that the acting group contains the free group on two
generators was established by Bowen.

1. Introduction

In [2] Lewis Bowen introduced a notion of entropy for measure-preserving actions of
countable sofic groups admitting a generating partition with finite entropy. This measure
entropy is defined relative to a given sofic approximation sequence for the group and thus
yields a collection of numerical invariants in general. For a Bernoulli action with finite
base entropy, Bowen showed that the sofic measure entropy is equal to the base entropy for
every choice of sofic approximation sequence. As a consequence he was able to extend the
entropy classification of Bernoulli actions in the amenable setting, due to Ornstein for Z
and to Ornstein and Weiss more generally, to the class of all countable sofic groups having
the property that any two Bernoulli actions with the same base entropy are conjugate,
which includes all countable sofic groups containing an element of infinite order. Moreover,
Bowen demonstrated that Bernoulli actions with nontrivial bases over a given countable
sofic group containing the free group F2 are all weakly isomorphic [1], which enabled
him to conclude in [2] that Bernoulli actions with infinite entropy base over a countable
sofic group containing F2 do not admit a generating partition with finite entropy, thereby
answering a question of Weiss.

In [4] the present authors extended Lewis Bowen’s sofic measure entropy to general
measure-preserving actions of a countable sofic group on a standard probability space by
recasting the definition in operator-algebraic terms, much in the spirit of Rufus Bowen’s
approach to topological entropy for Z-actions, which replaces the analysis of set intersec-
tions with the counting of ε-separated partial orbits. The main goal of [4] was to introduce
a topological version of sofic measure entropy and establish a variational principle relat-
ing the two. In this note we respond to a question that Bowen posed to the authors by
showing that, for countable sofic groups, a Bernoulli action with infinite entropy base has
infinite entropy with respect to every sofic approximation sequence. The argument makes
use of Bowen’s finite entropy lower bound and is carried out by representing the dynamics
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in a topological way. It follows that the entropy of any Bernoulli action of a countable
sofic group over a standard base is equal to the base entropy, independently of the sofic
approximation sequence (Theorem 2.3). As a consequence, conjugate Bernoulli actions of
a countable sofic group over standard bases have the same base entropy (Theorem 2.4), a
fact that Bowen proved under the assumption that the bases have finite entropy or that
the group is Ornstein, i.e., has the property that any two Bernoulli actions with the same
base entropy are conjugate. Another consequence is that a Bernoulli action of a countable
sofic group with an infinite entropy standard base does not admit a generating measurable
partition with finite entropy (Theorem 2.6), which is well known for countable amenable
groups and, as mentioned above, was established by Bowen for countable sofic groups
containing F2 using a different argument based on the weak isomorphism of Bernoulli
actions. Note that there exist countable sofic groups which are not amenable and do not
contain F2. Indeed Ershov showed the existence of a countable nonamenable residually
finite torsion group [3, Cor. 8.5] (see also [6]).

We now recall some terminology and notation pertaining to sofic measure entropy. We
refer the reader to [4] for more details. Let G be a countable sofic group. Let Σ = {σi :
G → Sym(di)}∞i=1 be a sofic approximation sequence for G, i.e., {di}∞i=1 is a sequence of
positive integers satisfying limi→∞ di = ∞ and the maps σi into the permutation groups
Sym(di) are asymptotically multiplicative and free in the sense that

lim
i→∞

1
di

∣∣{k ∈ {1, . . . , di} : σi,st(k) = σi,sσi,t(k)}
∣∣ = 1

for all s, t ∈ G and

lim
i→∞

1
di

∣∣{k ∈ {1, . . . , di} : σi,s(k) 6= σi,t(k)}
∣∣ = 1

for all distinct s, t ∈ G. The sofic measure entropy hΣ,µ(X,G) of a measure-preserving
action of G on a standard probability space (X,µ) with respect to Σ is defined, roughly
speaking, by measuring the exponential growth as i → ∞ of the maximal cardinality of
ε-separated sets of approximately equivariant, approximately multiplicative, and approx-
imately measure-preserving maps from L∞(X,µ) into Cdi , where the latter is equipped
with the uniform probability measure. Instead of recalling the precise definition, which
can be found as Definition 2.2 in [4], we will give here an equivalent formulation more
suited to our purpose, which requires us to endow our measure-theoretic framework with
topological structure in order to facilitate certain approximations. We thus suppose that
X is a compact metrizable space, µ is a Borel probability measure on X, and α is a con-
tinuous measure-preserving action of G on X. The notation α will actually be reserved
for the induced action on C(X), so that αg(f) for f ∈ C(X) and g ∈ G will mean the
function x 7→ f(g−1x), with concatenation being used for the action on X. Let P be a
finite partition of unity in C(X) and let d ∈ N. On the set of unital homomorphisms from
C(X) to Cd we define the pseudometric

ρP,∞(ϕ,ψ) = max
p∈P
‖ϕ(p)− ψ(p)‖∞.

Let σ be a map from G to the permutation group Sym(d) of the set {1, . . . , d}. We also
use σ to denote the induced action on Cd ∼= C({1, . . . , d}), i.e., for f ∈ Cd and s ∈ G we
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write σs(f) to mean f ◦σ−1
s . We write ζ for the uniform probability measure on {1, . . . , d},

and ‖ · ‖2 for the norm f 7→ ζ(|f |2)1/2 on Cd. Let F be a nonempty finite subset of G,
m ∈ N and δ > 0. Define HomX

µ (P, F,m, δ, σ) to be the set of all unital homomorphisms
ϕ : C(X)→ Cd such that

(i) |ζ ◦ ϕ(f)− µ(f)| < δ for all f ∈ PF,m,
(ii) ‖ϕ ◦ αs(f)− σs ◦ ϕ(f)‖2 < δ for all f ∈ P and s ∈ F ,

where PF,m denotes the set of all products of the form αs1(p1) · · ·αsj (pj) where 1 ≤ j ≤ m,
p1, . . . pj ∈ P, and s1, . . . , sj ∈ F . The measure-preserving version of Proposition 4.11 in
[4] (which can be established using the same argument) and the discussion in Section 5 of
[4] together show that if P is dynamically generating in the sense that there is no proper
G-invariant unital C∗-subalgebra of C(X) containing P, then

hΣ,µ(X,G) = sup
ε>0

inf
F

inf
m∈N

inf
δ>0

lim sup
i→∞

1
di

logNε(HomX
µ (P, F,m, δ, σi), ρP,∞)

where Nε(·, ρP,∞) denotes the maximal cardinality of an ε-separated subset with respect
to the pseudometric ρP,∞ and F ranges over all nonempty finite subsets of G.
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2. Results

Let G be a countable sofic group and (X,µ) a standard probability space. Taking
the product Borel structure on XG and the product measure µG, we obtain a standard
probability space (XG, µG) on which G acts by the shifts g · (xh)h∈G = (xg−1h)h∈G, and
we refer to this as a Bernoulli action.

The following lemma is a direct consequence of (and is easily seen to be equivalent to)
the lower bound for the sofic entropy of a Bernoulli action with finite entropy base that
is part of Theorem 8.1 in [2]. Recall that the entropy of a measurable partition Q of a
probability space (X,µ) is defined by

Hµ(Q) = −
∑
Q∈Q

µ(Q) logµ(Q).

Lemma 2.1. Let G be a countable sofic group. Let Σ = {σi : G→ Sym(di)}∞i=1 be a sofic
approximation sequence for G. Let (X,µ) be a standard probability space. Let R be a finite
measurable partition of X. Then for every nonempty finite set F ⊆ G and δ > 0 one has

lim sup
i→∞

1
di

log
∣∣∣∣{β ∈ R{1,...,di} :∑

ϕ∈RF

∣∣∣∣ ∏
g∈F

µ(ϕ(g))− ζ
( ⋂
g∈F

σi(g)β−1(ϕ(g))
)∣∣∣∣ ≤ δ}∣∣∣∣ ≥ Hµ(R).

Lemma 2.2. Let G be a countable sofic group. Let Σ = {σi : G→ Sym(di)}∞i=1 be a sofic
approximation sequence for G. Let (X,µ) be a standard probability space. Let Q be a finite
measurable partition of X. Then hΣ,µG(XG, G) ≥ Hµ(Q).
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Proof. We can identify X with a Borel subset of [0, 1] such that the closures of the atoms
of Q are pairwise disjoint. Then µ extends to a Borel probability measure ν on X̄ such
that µ(A) = ν(A) for every measurable subset A of X. It follows that the Bernoulli
actions (G,XG, µG) and (G,XG

, νG) are measurably isomorphic. Thus hΣ,µG(XG, G) =
hΣ,νG(X̄G, G). Denote by Q the partition of X consisting of Q for Q ∈ Q. Then Hµ(Q) =
Hν(Q̄). Thus we may replace X and Q by X and Q respectively. Therefore we will assume
that X is a closed subset of [0, 1] and Q is a closed and open partition of X. Equipped
with the product topology, XG is a compact metrizable space. The shift action of G on
XG is continuous, and µG is a Borel probability measure on XG. We write α for this
action as applied to C(XG), following the notational convention from the introduction.

Denote by p the coordinate function on X, i.e. p(x) = x for x ∈ X. Then P := {p, 1−p}
is a partition of unity in C(X) generating C(X) as a unital C∗-algebra. Denote by e the
identity element of G. Via the coordinate map XG → X sending (xg)g∈G to xe, we will
also think of P as a partition of unity in C(XG). Then P dynamically generates C(XG),
and so according to the introduction we have

hΣ,µG(XG, G) = sup
ε>0

inf
F

inf
m∈N

inf
δ>0

lim sup
i→∞

1
di

logNε(HomXG

µG (P, F,m, δ, σi), ρP,∞),

where F ranges over all nonempty finite subsets of G and the pseudometric ρP,∞ on the
set of unital homomorphisms C(XG)→ Cdi is given by

ρP,∞(ϕ,ψ) = max
f∈P
‖ϕ(f)− ψ(f)‖∞.

Take an ε > 0 which is smaller than the minimum over all distinct Q,Q′ ∈ Q of the
quantities minx∈Q,y∈Q′ |x− y|. Then it suffices to show

inf
F

inf
m∈N

inf
δ>0

lim sup
i→∞

1
di

logNε(HomXG

µG (P, F,m, δ, σi), ρP,∞) ≥ Hµ(Q)− κ

for every κ > 0.
So let κ > 0. Let F be a nonempty finite subset of G, m ∈ N, and δ > 0. Note that,

for each f ∈ PF,m, the value of x ∈ XG under f depends only on the coordinates of x at
g for g ∈ F . Thus we can find an η > 0 such that whenever the coordinates of two points
x, y ∈ XG at g are within η of each other for each g ∈ F , one has |f(x)− f(y)| < δ/3 for
all f ∈ PF,m.

Take a finite measurable partition R of X finer than Q such that each atom of R ha
diameter less than η. For each R ∈ R take a point xR in R. Let σ be a map from G to
Sym(d) for some d ∈ N. For each β ∈ R{1,...,d} take a map Θβ : {1, . . . , d} → XG such
that for each a ∈ {1, . . . , d} and g ∈ F , the coordinate of Θβ(a) at g is xβ(σ(g)−1a). Then
we have a unital homomorphism Γ(β) : C(XG) → Cd sending f to f ◦ Θβ. Denote by
Z the set of a in {1, . . . , d} such that σ(e)−1σ(g)−1a = σ(g)−1a for all g ∈ F . For every
β ∈ R{1,...,d}, f ∈ P and a ∈ Z, we have

(Γ(β)(αg(f)))(a) = αg(f)(Θβ(a)) = f(g−1Θβ(a)) = f((Θβ(a))g) = f(xβ(σ(g)−1a)),

and

(σ(g)Γ(β)(f))(a) = (Γ(β)(f))(σ(g)−1a) = f(Θβ(σ(g)−1a)) = f((Θβ(σ(g)−1a))e)
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= f(xβ(σ(e)−1σ(g)−1a)) = f(xβ(σ(g)−1a)),

and hence
(Γ(β)(αg(f)))(a) = (σ(g)Γ(β)(f))(a).

When σ is a good enough sofic approximation of G, one has 1− |Z|/d < δ2, and hence

‖Γ(β)(αg(f))− σ(g)Γ(β)(f)‖2 < δ

for all β ∈ R{1,...,d} and f ∈ P.
For each ϕ ∈ RF , denote by Yϕ the set of x in XG whose coordinate at g is in ϕ(g) for

every g ∈ F . Then {Yϕ : ϕ ∈ RF } is a Borel partition of XG. For each ϕ ∈ RF pick a
yϕ ∈ Yϕ such that the coordinate of yϕ at g is xϕ(g) for each g ∈ F . By our choice of η
and R, we have

sup
x∈Yϕ

sup
f∈PF,m

|f(x)− f(yϕ)| ≤ δ/3

for every ϕ ∈ RF . For every β ∈ R{1,...,d} and a ∈ {1, . . . , d}, define ψβ,a ∈ RF by
ψβ,a(g) = β(σ(g)−1a). Note that the coordinates of Θβ(a) and yψβ,a at g are the same for
each g ∈ F . For every β ∈ R{1,...,d} and ϕ ∈ RF , one has{

a ∈ {1, . . . , d} : ψβ,a = ϕ
}

=
⋂
g∈F

{
a ∈ {1, . . . , d} : ψβ,a(g) = ϕ(g)

}
=
⋂
g∈F

{
a ∈ {1, . . . , d} : β(σ(g)−1a) = ϕ(g)

}
=
⋂
g∈F

σ(g)β−1(ϕ(g)).

Thus for every β ∈ R{1,...,d} and f ∈ PF,m one has

ζ(Γ(β)(f)) =
1
d

d∑
a=1

Γ(β)(f)(a) =
1
d

d∑
a=1

f(Θβ(a)) =
1
d

d∑
a=1

f(yψβ,a)

=
∑
ϕ∈RF

f(yϕ)ζ
({
a ∈ {1, . . . , d} : ψβ,a = ϕ

})
=
∑
ϕ∈RF

f(yϕ)ζ
( ⋂
g∈F

σ(g)β−1(ϕ(g))
)
.

Let τ be a strictly positive number satisfying τ < δ/3 to be further specified in a
moment. Set

W =
{
β ∈ R{1,...,d} :

∑
ϕ∈RF

∣∣∣∣ ∏
g∈F

µ(ϕ(g))− ζ
( ⋂
g∈F

σ(g)β−1(ϕ(g))
)∣∣∣∣ ≤ τ}.

For every β ∈W and f ∈ PF,m one has, since 0 ≤ f ≤ 1,

µG(f) =
∑
ϕ∈RF

∫
Yϕ

f dµG ≈δ/3
∑
ϕ∈RF

µG(Yϕ)f(yϕ) =
∑
ϕ∈RF

f(yϕ)
∏
g∈F

µ(ϕ(g))
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≈δ/3
∑
ϕ∈RF

f(yϕ)ζ
( ⋂
g∈F

σ(g)β−1(ϕ(g))
)

= ζ(Γ(β)(f)).

Therefore, when σ is a good enough sofic approximation of G, the homomorphism Γ(β)
belongs to HomXG

µG (P, F,m, δ) for every β ∈W .
Let β ∈ W , and let us estimate the number of γ ∈ W satisfying ρP,∞(Γ(β),Γ(γ)) < ε.

Note that

ρP,∞(Γ(β),Γ(γ)) = max
a∈{1,...,d}

|p(Θβ(a))− p(Θγ(a))|

= max
a∈{1,...,d}

|xβ(σ(e)−1a) − xγ(σ(e)−1a)|

= max
a∈{1,...,d}

|xβ(a) − xγ(a)|.

Thus β(a) and γ(a) must be contained in the same atom of Q for each a ∈ {1, . . . , d}.
For Q ∈ Q denote by RQ the set of atoms of R contained in Q. Thinking of β as a

partition of {1, . . . , d} indexed by R, we see that {
⋂
g∈F σ(g)β−1(ϕ(g)) : ϕ ∈ RF } is a

partition of {1, . . . , d}. Let Q ∈ Q, R ∈ R, and g1 ∈ F . Then

σ(g1)β−1(R) =
⋃

ϕ∈RF ,ϕ(g1)=R

⋂
g∈F

σ(g)β−1(ϕ(g)),

and hence

ζ(β−1(R)) = ζ(σ(g1)β−1(R)) ≈τ
∑

ϕ∈RF ,ϕ(g1)=R

∏
g∈F

µ(ϕ(g)) = µ(R),

and

ζ(β−1(RQ)) = ζ

( ⋃
R∈RQ

σ(g1)β−1(R)
)
≈τ

∑
ϕ∈RF ,ϕ(g1)∈RQ

∏
g∈F

µ(ϕ(g))

= µ(∪RQ) = µ(Q).

Similarly, we have ζ(γ−1(R)) ≈τ µ(R) for every R ∈ R. The conclusion in the last
paragraph can be restated as saying that β−1(RQ) = γ−1(RQ) for every Q ∈ Q. Hence the
number of possibilities for γ is bounded above by

∏
Q∈QMβ,Q, where listing the atoms of

RQ as R1, . . . , Rn we have

Mβ,Q :=
∑

j1,...,jn

(
|β−1(RQ)|

j1

)(
|β−1(RQ)| − j1

j2

)
. . .

(
|β−1(RQ)| −

∑n−1
k=1 jk

jn

)

=
∑

j1,...,jn

|β−1(RQ)|!
j1!j2! · · · jn!

,

where the sum ranges over all nonnegative integers j1, . . . , jn such that |jk/d−µ(Rk)| ≤ τ
for all 1 ≤ k ≤ n and

∑n
k=1 jk = |β−1(RQ)|. Setting ξ(t) = −t log t for 0 ≤ t ≤ 1, for such

j1, . . . , jn we have, by Stirling’s approximation,

|β−1(RQ)|!
j1!j2! · · · jn!

≤ Cd exp
(( n∑

k=1

ξ(jk/d)− ξ(|β−1(RQ)|/d)
)
d

)
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for some constant C > 0 independent of |β−1(RQ)| and j1, . . . , jn. Since the function ξ is
uniformly continuous, when τ is small enough one has

n∑
k=1

ξ(jk/d)− ξ(|β−1(RQ)|/d) <
∑
R∈RQ

ξ(µ(R))− ξ(µ(Q)) + κ/|Q|

for all j1, . . . , jn as above. Therefore

Mβ,Q ≤ Cd(2τd)|RQ| exp
(( ∑

R∈RQ

ξ(µ(R))− ξ(µ(Q)) + κ/|Q|
)
d

)
for every Q ∈ Q, and hence∏

Q∈Q

Mβ,Q ≤ C |Q|d|Q|(2τd)|R| exp
((

Hµ(R)−Hµ(Q) + κ

)
d

)
.

Now we have

Nε(HomXG

µG (P, F,m, δ, σ), ρP,∞)

≥ |W |/max
β∈W

∏
Q∈Q

Mβ,Q

≥ |W |C−|Q|d−|Q|(2τd)−|R| exp
((
−Hµ(R) +Hµ(Q)− κ

)
d

)
.

Using Lemma 2.1 we thus obtain

lim sup
i→∞

1
di

logNε(HomXG

µG (P, F,m, δ, σi), ρP,∞)

≥ −Hµ(R) +Hµ(Q)− κ+ lim sup
i→∞

1
di

log
∣∣∣∣{β ∈ R{1,...,di} :∑

ϕ∈RF

∣∣∣∣ ∏
g∈F

µ(ϕ(g))− ζ
( ⋂
g∈F

σi(g)β−1(ϕ(g))
)∣∣∣∣ ≤ τ}∣∣∣∣

≥ Hµ(Q)− κ,
as desired. �

For a standard probability space (X,µ), the entropy H(µ) is defined as the supremum
of Hµ(Q) over all finite measurable partitions Q of X. In the case H(µ) < +∞, the
following theorem is Theorem 8.1 of [2] in conjunction with Theorem 3.6 of [4]. The case
H(µ) = +∞ is a consequence of Lemma 2.2. When G is amenable we recover a standard
computation of classical measure entropy, in view of [5].

Theorem 2.3. Let G be a countable sofic group. Let Σ be a sofic approximation sequence
for G. Let (X,µ) be a standard probability space. Then hΣ,µG(XG, G) = H(µ).

As a consequence of Theorem 2.3 we obtain the following result, which was proved by
Bowen in the case that H(µ) + H(ν) < +∞ or G is a countable sofic Ornstein group [2,
Thm. 1.1 and Cor. 1.2]. We note that it is not known whether there are countably infinite
groups that are not Ornstein.
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Theorem 2.4. Let G be a countable sofic group. Let (X,µ) and (Y, ν) be standard prob-
ability spaces. If (G,XG, µG) and (G, Y G, νG) are isomorphic, then H(µ) = H(ν).

The next lemma follows from Proposition 5.3 of [2] (taking β there to be the trivial
partition) and Theorem 3.6 of [4].

Lemma 2.5. Let G be a countable sofic group. Let Σ be a sofic approximation sequence for
G. Let G act on a standard probability space (X,µ) by measure-preserving transformations.
Let Q be a generating countable measurable partition of X. Then hΣ,µ(X,G) ≤ Hµ(Q).

The following theorem is a consequence of Theorem 2.3 and Lemma 2.5. In the case
that G is amenable it is a well-known consequence of classical entropy theory, and in the
case that G contains the free group F2 it was proved by Bowen in [2, Thm. 1.4]. As
mentioned in the introduction, there exist countable sofic groups that lie outside of these
two classes [3, 6].

Theorem 2.6. Let G be a countable sofic group. Let (X,µ) be a standard probability space
with H(µ) = +∞. Then there is no generating countable measurable partition Q of XG

such that HµG(Q) < +∞.

References

[1] L. Bowen. Weak isomorphisms between Bernoulli shifts. To appear in Israel J. of Math.
[2] L. Bowen. Measure conjugacy invariants for actions of countable sofic groups. J. Amer. Math. Soc.

23 (2010), 217-245.
[3] M. Ershov. Golod-Shafarevich groups with property (T) and Kac-Moody groups. Duke Math. J. 145

(2008), 309–339.
[4] D. Kerr and H. Li. Topological entropy and the variational principle for actions of sofic groups.

arXiv:1005.0399.
[5] D. Kerr and H. Li. Soficity, amenability, and dynamical entropy. Preprint, 2010.
[6] D. Osin. Rank gradient and torsion groups. arXiv:0905.1322.

David Kerr, Department of Mathematics, Texas A&M University, College Station TX 77843-
3368, U.S.A.

E-mail address: kerr@math.tamu.edu

Hanfeng Li, Department of Mathematics, SUNY at Buffalo, Buffalo NY 14260-2900, U.S.A.
E-mail address: hfli@math.buffalo.edu


