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Abstract. We give a generator-free formulation of sofic measure entropy using finite partitions
and establish a Kolmogorov-Sinai theorem. We also show how to compute the values for general
Bernoulli actions in a concise way using the arguments of Bowen in the finite base case.

1. Introduction

Kolmogorov introduced the notion of entropy for a measure-preserving transformation of a
probability space by first defining it locally on partitions as a limit of averages of the Shannon
entropy under iteration and then showing that all generating partitions with finite Shannon
entropy yield the same value. To handle the case in which there is no such generating partition,
Sinai proposed taking the supremum over all finite partitions, thereby furnishing what is now
the standard definition. The Kolmogorov-Sinai theorem asserts that this supremum coincides
with Kolmogorov’s entropy in the presence of a generator. Ultimately it was realized that this
set-up works most generally for measure-preserving actions of amenable groups, and in the case
of a countably infinite amenable group Ornstein and Weiss showed that entropy is a complete
invariant for Bernoulli actions [7].

Recently Lewis Bowen greatly extended the scope of this classical theory to measure-preserving
actions of countable sofic groups by replacing the internal information-theoretic approach of Kol-
mogorov with the statistical-mechanical idea of counting external finite models [1, 3]. Bowen
first defined the dynamical entropy of a finite partition by measuring the exponential growth of
the number of models with respect to a fixed sofic approximation sequence for the group, and
then he showed that any two generating finite partitions produce the same value. By a limiting
process he also extended this analysis to partitions with finite Shannon entropy. Bowen was
thereby able to extend the Ornstein-Weiss entropy classification of Bernoulli actions to a wide
class of nonamenable acting groups, including all nontorsion countably infinite sofic groups.

For various reasons, including the possibility of formulating a variational principle, one would
like to remove the generator assumption in Bowen’s definition. Sinai’s solution of taking a
supremum over finite partitions does not work in this case, as illustrated by the fact that any
two nontrivial Bernoulli actions of a countable group containing the free group F2 factor onto
one another [2]. To circumvent this problem, Hanfeng Li and the author developed an operator
algebra approach using approximate homomorphisms that allows one to broaden the meaning
of generator to bounded sequences of functions in L∞. This leads to a completely general
notion of sofic measure entropy, as well as a topological counterpart and a variational principle
relating the two [5]. As in Bowen’s setting, when the acting group is amenable one recovers the
Kolmogorov-Sinai entropy [6].
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The question still remained, however, whether there exists a generator-free definition that uses
only finite partitions, in the spirit of Sinai. The aim of this note is to provide such a definition
and to establish a Kolmogorov-Sinai theorem for it, which we do in Section 2. We continue
to use the homomorphism perspective of [5], although we avoid linearizing and work only with
algebras of sets. The novelty here is to define the entropy locally with respect to two partitions
playing different roles. The sofic modeling of the dynamics is expressed with respect to one
partition, as in Lewis Bowen’s original approach, while the second partition is used to express
the observational scale at which we are able to distinguish different models, in analogy with
Rufus Bowen’s (n, ε)-separated set definition of topological entropy for homeomorphisms. We
take an infimum over all partitions playing the first role while holding the second one fixed, and
then take a supremum over all partitions playing the second role. We then prove a Kolmogorov-
Sinai theorem (Theorem 2.6) which says that to compute the entropy it suffices that all of
these partitions range within a given generating σ-algebra. This provides for a relatively concise
computation of the entropy of general Bernoulli actions of sofic groups (cf. [1, 4]) which builds on
arguments from [1]. We provide complete details of this computation in Section 4. In Section 3
we show that our definition of sofic measure entropy is equivalent to the one from [5] and hence
also, in the presence of a generating partition with finite Shannon entropy, to Lewis Bowen’s
definition.

Acknowledgements. This work was partially supported by NSF grant DMS-0900938. I thank
Lewis Bowen and Hanfeng Li for corrections and Benjy Weiss for helpful comments.

2. Definitions and a Kolmogorov-Sinai theorem

Let G be a countable sofic group. We denote its identity element by e. Soficity means that
there are a sequence {di}∞i=1 of positive integers and a sequence {σi : G→ Sym(di)}∞i=1 which is
asymptotically multiplicative and free in the sense that

lim
i→∞

1

di

∣∣{k ∈ {1, . . . , di} : σi,st(k) = σi,sσi,t(k)}
∣∣ = 1

for all s, t ∈ G and

lim
i→∞

1

di

∣∣{k ∈ {1, . . . , di} : σi,s(k) 6= σi,t(k)}
∣∣ = 1

for all distinct s, t ∈ G. Throughout the paper Σ = {σi : G→ Sym(di)}∞i=1 will be a fixed such
sofic approximation sequence for which di → ∞. The condition di → ∞ permits us to avoid
certain pathologies (cf. [5, 6]) and is automatic if G is infinite.

Let (X,B, µ) be a probability space and G y X a measure-preserving action, which we fix
for the purposes of this section and the next.

Write Pd for the power set of {1, . . . , d}, which we view as an algebra. The uniform probability
measure on {1, . . . , d} will always be written ζ. For a family Ω of subsets of a set X we write
A(Ω) for the algebra generated by Ω. For a measurable partition α and a finite set F ⊆ G we
write αF for the partition {

⋂
s∈F sAs : A ∈ αF } where As denotes the value of A at s.

We write Nε(·, ρ) for the maximal cardinality of an (ε, ρ)-separated subset, i.e., a subset which
is ε-separated with respect to ρ.
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Definition 2.1. Let α be a finite measurable partition of X, F a finite subset of G, and δ > 0.
Let σ be a map from G to Sym(d) for some d ∈ N. Define Homµ(α, F, δ, σ) to be the set of all
homomorphisms ϕ : A(αF )→ Pd such that

(i)
∑

A∈α |σsϕ(A)∆ϕ(sA)|/d < δ for all s ∈ F , and
(ii)

∑
A∈αF |ζ(ϕ(A))− µ(A)| < δ.

For a partition ξ ≤ α, write |Homµ(α, F, δ, σ)|ξ for the cardinality of the set of restric-
tions of elements of Homµ(α, F, δ, σ) to ξ. Using sums in (i) and (ii) of Definition 2.1 ensures
the convenient monotonicity property that Homµ(α, F, δ, σ) ⊇ Homµ(α′, F ′, δ′, σ) and hence
|Homµ(α, F, δ, σ)|ξ ≥ |Homµ(α′, F ′, δ′, σ)|ξ′ whenever α ≤ α′, F ⊆ F ′, δ ≥ δ′, and ξ ≥ ξ′.

Definition 2.2. Let S be a subalgebra of B. Let ξ and α be finite measurable partitions of X
with α ≥ ξ. Let F be a nonempty finite subset of G and δ > 0. We define

hξΣ,µ(α, F, δ) = lim sup
i→∞

1

di
log |Homµ(α, F, δ, σi)|ξ,

hξΣ,µ(α, F ) = inf
δ>0

hξΣ,µ(α, F, δ),

hξΣ,µ(α) = inf
F
hξΣ,µ(α, F ),

hξΣ,µ(S) = inf
α
hξΣ,µ(α),

hΣ,µ(S) = sup
ξ
hξΣ,µ(S)

where the infimum in the third line is over all nonempty finite subsets of G, the infimum in the
fourth line is over all finite partitions α ⊆ S which refine ξ, and the supremum in the last line
is over all finite partitions in S. If Homµ(α, F, δ, σi) is empty for all sufficiently large i, we set

hξΣ,µ(α, F, δ) = −∞.

Definition 2.3. The measure entropy hΣ,µ(X,G) of the action with respect to Σ is defined as
hΣ,µ(B).

We now aim to establish in Theorem 2.6 the analogue of the Kolmogorov-Sinai theorem in
our context.

Lemma 2.4. Let α be a finite measurable partition of X and let ε > 0. Then there is a
δ > 0 such that for every subalgebra S of B with maxA∈α infB∈S µ(A∆B) < δ there exists a
homomorphism θ : A(α)→ S satisfying µ(θ(A)∆A) < ε for all A ∈ A(α).

Proof. Let δ > 0, and let S be a subalgebra of B such that maxA∈α infB∈S µ(A∆B) < δ. Let
A1, . . . , An be an enumeration of the elements of α. For i = 1, . . . , n − 1 we recursively define
θ(Ai) to be an element of S contained in the complement of θ(A1) ∪ · · · ∪ θ(Ai−1) such that
µ(θ(Ai)∆Ai) is within δ of the infimum of its possible values. Then define θ(An) to be the
complement of θ(A1) ∪ · · · ∪ θ(An−1), which gives us a homomorphism θ : A(α)→ S. It is then
readily seen that if δ is small enough as a function of ε and α we will have µ(θ(A)∆A) < ε for
all A ∈ A(α). �
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Define on the set of all homomorphisms from some subalgebra of B containing ξ to Pd the
pseudometric

ρξ(ϕ,ψ) = max
A∈ξ

1

d
|ϕ(A)∆ψ(A)|.

For ε > 0 set

hξ,εΣ,µ(α, F, δ) = lim sup
i→∞

1

di
logNε(Homµ(α, F, δ, σi), ρξ),

hξ,εΣ,µ(α, F ) = inf
δ>0

hξ,εΣ,µ(α, F, δ),

hξ,εΣ,µ(α) = inf
F
hξ,εΣ,µ(α, F )

where the last infimum is over the nonempty finite subsets of G.

Lemma 2.5. Let γ be a finite measurable partition and let κ > 0. Then there is an ε > 0 such
that hγΣ,µ(β) ≤ hγ,εΣ,µ(β) + κ for all finite measurable partitions β refining γ.

Proof. This follows from the fact that, given ε > 0, A ⊆ {1, . . . , d}, and d ∈ N, the set of

all B ⊆ {1, . . . , d} such that ζ(B∆A) < ε has cardinality at most
(
d
bεdc
)
, which by Stirling’s

approximation is less than eκd for some κ > 0 depending on ε but not on d with κ → 0 as
ε→ 0. �

Theorem 2.6. Let S be a generating subalgebra of B. Then hΣ,µ(X,G) = hΣ,µ(S).

Proof. By symmetry it suffices to show that if T is another generating subalgebra of B then
hΣ,µ(T) ≤ hΣ,µ(S).

Let γ be a finite partition in T. Let κ > 0. By Lemma 2.5 there is a ε > 0 such that
hγΣ,µ(β) ≤ hγ,εΣ,µ(β) + κ for all finite partitions β ⊆ T which refine γ.

Since S is generating there are a finite partition ξ ⊆ S and a nonempty finite set K ⊆ G such
that for every B ∈ γ there is an ΥB ⊆ ξK for which the set B′ =

⋃
Y ∈ΥB

⋂
s∈K sYs satisfies

µ(B∆B′) < ε/16.
Take a finite partition α ⊆ S with α ≥ ξ, a finite set F ⊆ G containing K ∪ {e}, and a δ > 0

such that

lim sup
i→∞

1

di
log |Homµ(α, F, δ, σi)|ξ ≤ hξΣ,µ(S) + κ.

By shrinking δ if necessary we may assume that it is less than ε/(8|ξK ||K|). Since T is gen-
erating, there are a finite partition β ⊆ T refining γ and a finite set E ⊆ G containing e such
that for every A ∈ αF there is a ΛA ⊆ βE for which the set A′ =

⋃
Y ∈ΛA

⋂
s∈E sYs satisfies

µ(A∆A′) < δ/(12|αF |). Applying Lemma 2.4 and using the fact that e ∈ F so that βFE ≥ βE ,
we may assume that the quantities µ(A∆A′) for A ∈ αF are small enough so that there is a
homomorphism θ : A(αF ) → A(βFE) such that µ(θ(A)∆A) is less than both δ/(12|αF |) and
ε/(16|ξK |) for all A ∈ αF .

Take a δ′ > 0 which is smaller than δ/(9|αF ||βE ||E|) and also small enough so that every
ϕ ∈ Homµ(β, FE, δ′, σ) satisfies ζ(ϕ(B)) ≤ 2µ(B) for all B ∈ A(βFE).

Let σ be a map from G to Sym(d) for some d ∈ N which we assume to be a good enough sofic
approximation to obtain an estimate below. Let ϕ ∈ Homµ(β, FE, δ′, σ). Set ϕ\ = ϕ ◦ θ. We

will show that ϕ\ ∈ Homµ(α, F, δ, σ).
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Let t ∈ F . Then for every A ∈ α we have, assuming that σ is a good enough sofic approxi-
mation,

1

d
|ϕ(tA′)∆σtϕ(A′)| ≤

∑
Y ∈ΛA

∑
s∈E

1

d
|ϕ(tsYs)∆σtϕ(sYs)|

≤
∑
Y ∈ΛA

∑
s∈E

1

d

(
|ϕ(tsYs)∆σtsϕ(Ys)|+ |σtsϕ(Ys)∆σtσsϕ(Ys)|

+ |σt(σsϕ(Ys)∆ϕ(sYs)|
)

< 3|βE ||E|δ′ < δ

3|α|

and µ(θ(tA)∆tA′) ≤ µ(θ(tA)∆tA) + µ(A∆A′) < δ/(6|α|), whence∑
A∈α

1

d
|ϕ\(tA)∆σtϕ

\(A)| ≤
∑
A∈α

1

d

(
|ϕ(θ(tA)∆tA′))|+ |ϕ(tA′)∆σtϕ(A′)|

+ |σtϕ(A′∆θ(A))|
)

< 2|α|µ(θ(tA)∆tA′) +
δ

3
+ 2|α|µ(A′∆θ(A)) < δ.

Also, for every A ∈ αF we have |ζ(ϕ(A′)) − µ(A′)| < δ′ < δ/(3|αF |) and µ(θ(A)∆A′) ≤
µ(θ(A)∆A) + µ(A∆A′) < δ/(6|αF |) and so∑

A∈αF

|ζ(ϕ\(A))− µ(A)| ≤
∑
A∈αF

(
ζ(ϕ(θ(A)∆A′)) + |ζ(ϕ(A′))− µ(A′)|

+ µ(A′∆A)
)

≤
∑
A∈αF

(
2µ(θ(A)∆A′) + 2 · δ

3|αF |

)
< δ.

Thus ϕ\ ∈ Homµ(α, F, δ, σ).

Let Γ : Homµ(β, FE, δ′, σ)→ Homµ(α, F, δ, σ) be the map ϕ 7→ ϕ\. Take an ε′ > 0 such that

ε′ < ε/(8|ξK ||K|). Let ϕ and ψ be elements of Homµ(β, FE, δ′, σ) with ρξ(ϕ
\, ψ\) < 2ε′. For

every B ∈ γ we have

1

d
|ϕ\(B′)∆ψ\(B′)| ≤

∑
Y ∈ΥB

∑
s∈K

1

d
|ϕ\(sYs)∆ψ\(sYs)|

≤
∑
Y ∈ΥB

∑
s∈K

1

d

(
|ϕ\(sYs)∆σsϕ\(Ys)|+ |σs(ϕ\(Ys)∆ψ\(Ys))|

+ |σsψ\(Ys)∆ψ\(sYs)|
)

< |ξK ||K|(δ + 2ε′ + δ) <
ε

2

and

µ(B∆θ(B′)) ≤ µ(B∆B′) + µ(B′∆θ(B′))
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<
ε

16
+
∑
Y ∈ΥB

µ
((⋂

s∈K sYs
)
∆θ
(⋂

s∈K sYs
))

<
ε

16
+ |ΥB| ·

ε

16|ξK |
≤ ε

8

and hence

ργ(ϕ,ψ) = max
B∈γ

1

d
|ϕ(B)∆ψ(B)|

≤ max
B∈γ

1

d

(
|ϕ(B∆θ(B′))|+ |ϕ\(B′)∆ψ\(B′)|+ |ψ(θ(B′)∆B)|

)
≤ 4 max

B∈γ
µ(B∆θ(B′)) +

ε

2
< ε.

It follows that for every (ε, ργ)-separated set Q ⊆ Homµ(β, FE, δ′, σ) the image Γ(Q) is (ε′, ρξ)-
separated, and so

Nε(Homµ(β, FE, δ′, σ), ργ) ≤ Nε′(Homµ(α, F, δ, σ), ρξ) ≤ |Homµ(α, F, δ, σ)|ξ.

Consequently,

hγΣ,µ(T) ≤ hγΣ,µ(β) ≤ hγ,εΣ,µ(β) + κ

≤ lim sup
i→∞

1

di
logNε(Homµ(β, FE, δ′, σi), ργ) + κ

≤ lim sup
i→∞

1

di
log |Homµ(α, F, δ, σi)|ξ + κ

≤ hξΣ,µ(S) + 2κ ≤ hΣ,µ(S) + 2κ.

Since γ was an arbitrary finite partition in T and κ an arbitrary positive number, we conclude
that hΣ,µ(T) ≤ hΣ,µ(S), as desired. �

3. Comparison with prior definitions

In this section we continue the notational conventions of the previous section, with the addi-
tional assumption that the probability space X is standard. Our aim is to prove that hΣ,µ(X,G)
agrees with the entropy defined in Section 2 of [5]. By Section 3 of [6], this will also show that
hΣ,µ(X,G) agrees with Bowen’s entropy in the presence of a generating partition with finite
Shannon entropy.

Write h′Σ,µ(X,G) for the sofic measure entropy as defined in Section 2 of [5]. We will use the

following equivalent formulation of h′Σ,µ(X,G) in terms of topological models (see Section 3 of

[6]). Suppose that X is a compact metrizable space, the action of G on X is by homeomorphisms,
and ρ is a compatible metric on X. For a given d ∈ N, we define on the set of all maps from
{1, . . . , d} to X the pseudometrics

ρ2(ϕ,ψ) =

(
1

d

d∑
k=1

ρ(ϕ(k), ψ(k))2

)1/2

,

ρ∞(ϕ,ψ) = max
k=1,...,d

ρ(ϕ(k), ψ(k)).
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Let F be a nonempty finite subset of G, L a finite subset of C(X), and δ > 0. Let σ be a
map from G to Sym(d) for some d ∈ N. We write Mapµ(ρ, F, L, δ, σ) for the set of all maps
ϕ : {1, . . . , d} → X such that, writing ι for the action of G on X,

(i) ρ2(ϕ ◦ σs, ιs ◦ ϕ) < δ for all s ∈ F , and
(ii)

∣∣(ϕ∗ζ)(f)− µ(f)
∣∣ < δ for all f ∈ L.

For ε > 0 we define

hεΣ,µ(ρ, F, L, δ) = lim sup
i→∞

1

di
logNε(Mapµ(ρ, F, L, δ, σi), ρ∞),

hεΣ,µ(ρ) = inf
F

inf
L

inf
δ>0

hεΣ,µ(ρ, F, L, δ),

hΣ,µ(ρ) = sup
ε>0

hεΣ,µ(ρ),

where in the second line L ranges over the finite subsets of C(X) and F ranges over the nonempty
finite subsets of G. By Proposition 3.4 of [6] we have h′Σ,µ(X,G) = hΣ,µ(ρ), a fact which will be
used tacitly in the proof below.

Theorem 3.1. hΣ,µ(X,G) = h′Σ,µ(X,G).

Proof. We begin by showing that hΣ,µ(X,G) ≤ h′Σ,µ(X,G). Suppose first that we are in the

case hΣ,µ(X,G) <∞. Then given a κ > 0 we can find a finite measurable partition ξ of X such

that hΣ,µ(X,G) ≤ hξΣ,µ(B) + κ. By replacing X with the spectrum of some separable unital

G-invariant C∗-subalgebra of L∞(X,µ) containing the characteristic functions of the atoms of
ξ, we may assume that X is a compact metrizable space with compatible metric ρ, the action
of G is by homeomorphisms, and ξ is a clopen partition of X.

Let ε > 0 be smaller than the minimum of the Hausdorff distances between B and B′ over all
distinct B,B′ ∈ ξ. Let F be a finite symmetric subset of G containing e and L a finite subset
of C(X). Let δ > 0, to be further specified. Let δ′ > 0, to be further specified as a function of
δ, n, |αF |, and L. Let σ : G → Sym(d) be a good enough sofic approximation for a purpose to
be described shortly.

Let α = {A1, . . . , An} be a finite measurable partition of X refining ξ such that each Ai has
diameter less than δ. Given a ϕ ∈ Homµ(α, F, δ′, σ), we construct a map ϕ̂ : {1, . . . , d} → X by
considering for each k ∈ {1, . . . , d} the element f ∈ {1, . . . , n}F such that k ∈ ϕ(

⋂
t∈F tAf(t))

and defining ϕ̂(k) to be any point in
⋂
t∈F tAf(t). Given an s ∈ F , set

Cs =
n⋃
i=1

(
σ−1
s ϕ(Ai) ∩ ϕ(s−1Ai)

)
.

Assuming σ is a good enough sofic approximation so that the restrictions of σ−1
s and σs−1 agree

on a subset of proportional size sufficiently close to one, we will have |Cs|/d ≥ 1 − 2nδ′. Now
for k ∈ Cs and i = 1, . . . , n we have, writing Υe,i for the set of all f ∈ {1, . . . , n}F such that
f(e) = i and Υs−1,i for the set of all f ∈ {1, . . . , n}F such that f(s−1) = i,

ϕ̂(σs(k)) ∈ Ai =
⋃

f∈Υe,i

⋂
t∈F

tAf(t) ⇔ σs(k) ∈
⋃

f∈Υe,i

ϕ

( ⋂
t∈F

tAf(t)

)
= ϕ(Ai)

⇔ k ∈ σ−1
s ϕ(Ai)
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⇔ k ∈ ϕ(s−1Ai) =
⋃

f∈Υs−1,i

ϕ

( ⋂
t∈F

tAf(t)

)
⇔ ϕ̂(k) ∈

⋃
f∈Υs−1,i

⋂
t∈F

tAf(t) = s−1Ai

⇔ sϕ̂(k) ∈ Ai.
Since the diameter of Ai is less than δ′ this shows that ρ(ϕ̂(σs(k)), sϕ̂(k)) < δ′ and hence, if δ′

is small enough as a function of δ and n, that ρ2(ϕ̂ ◦ σs, ιs ◦ ϕ̂) < δ for all s ∈ F where ι denotes
the action of G on X. Also, for A ∈ αF we have ϕ̂∗ζ(1A) = ζ(ϕ̂−1(A)) = ζ(ϕ(A)), and thus, for
f ∈ L if we find scalars cf,A such that ‖f −

∑
A∈αF cf,A1A‖∞ < δ/3 and take δ′ small enough so

that
∑

A∈αF |cf,A||ζ(ϕ(A))− µ(A)| < δ/3 we will have

|(ϕ̂∗ζ)(f)− µ(f)| ≤
∣∣∣∣(ϕ̂∗ζ)

(
f −

∑
A∈αF

cf,A1A

)∣∣∣∣+
∑
A∈αF

|cf,A||ζ(ϕ(A))− µ(A)|

+

∣∣∣∣µ( ∑
A∈αF

cf,A1A − f
)∣∣∣∣ < δ.

Consequently ϕ̂ ∈ Mapµ(ρ, F, L, δ, σ). Moreover, if ϕ and ψ are elements of Homµ(α, F, δ′, σ)

whose restrictions to ξ differ, then ρ∞(ϕ̂, ψ̂) > ε by our choice of ε, and so |Homµ(α, F, δ′, σ)|ξ ≤
Nε(Mapµ(ρ, F, L, δ, σ), ρ∞). Hence hξΣ,µ(α, F, δ′) ≤ hεΣ,µ(ρ, F, L, δ) and so

hΣ,µ(X,G)− κ ≤ hξΣ,µ(B) ≤ hεΣ,µ(ρ) ≤ hΣ,µ(ρ) = h′Σ,µ(X,G).

Since κ was an arbitrary positive number we thus obtain hΣ,µ(X,G) ≤ h′Σ,µ(X,G). In the case

hΣ,µ(X,G) =∞ we can argue in the same way only starting with the fact that for every M > 0

there is a finite measurable partition ξ of X satisfying hξΣ,µ(B) ≥M .
We now establish the reverse inequality. By replacing X with the spectrum of the unital G-

invariant C∗-subalgebra of L∞(X,µ) generated by the characteristic functions of some countable
generating collection of measurable sets, we may assume that X is a zero-dimensional compact
metrizable space with compatible metric ρ and that the action of G is by homeomorphisms.
Suppose that we are in the case hΣ,µ(ρ) < ∞. Then given a κ > 0 there exists an ε > 0 such
that hΣ,µ(ρ) ≤ hεΣ,µ(ρ) + κ. Pick a clopen partition ξ of X such that the diameter of each of

its atoms is less than ε. Take a finite measurable partition α = {A1, . . . , An} of X refining ξ, a

finite symmetric subset F of G containing e, and a δ > 0 such that hξΣ,µ(α, F, δ) ≤ hξΣ,µ(B) + κ.

Now suppose that β = {B1, . . . , Bn} is an ordered measurable partition of X refining ξ such
that maxi=1,...,n µ(Ai∆Bi) is smaller than some prescribed λ > 0 and for each i = 1, . . . , n the
sets Ai and Bi are contained in the same atom of ξ. Given a map σ : G → Sym(d), define a
map θ : A(αF ) → A(βF ) by setting θ(

⋂
t∈F tAf(t)) =

⋂
t∈F tBf(t) for all f ∈ {1, . . . , n}F for

which
⋂
t∈F tAf(t) 6= ∅. We would like θ to be a homomorphism which restricts to the identity

on ξ, and we can modify it so as to have this property by taking for each C ∈ ξ an fC ∈
{1, . . . , n}F such that

⋂
t∈F tAfC(t) is a nonempty subset of C and redefining θ(

⋂
t∈F tAfC(t))

so that θ(C) = C. Then if σ is a sufficiently good sofic approximation and λ is small enough,
composing an element of Homµ(β, F, δ/2, σ) with θ will yield an element of Homµ(α, F, δ, σ), in
which case |Homµ(β, F, δ/2, σ)|ξ ≤ |Homµ(α, F, δ, σ)|ξ since θ is the identity on ξ. By a standard
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approximation argument one can find such a β consisting of clopen sets, and so we may assume
that α itself is a clopen partition of X.

Let δ′ > 0 be smaller than the Hausdorff distance between Ai and Aj for all distinct i, j =
1, . . . , n. Write L for the set of characteristic functions of the atoms of αF . Let σ be a map from
G to Sym(d) for some d ∈ N. Let δ′′ be a positive number smaller than |αF |−1δ, to be further
specified. Given a ϕ ∈ Mapµ(ρ, F, L, δ′′, σ), we construct a homomorphism ϕ̂ : A(αF ) → Pd

by declaring ϕ̂(
⋂
t∈F tAf(t)) for an f ∈ {1, . . . , n}F to be the set of all k ∈ {1, . . . , d} such

that ϕ(k) ∈
⋂
t∈F tAf(t). For s ∈ F write Ds for the set of all k ∈ {1, . . . , d} such that

ρ(ϕ(σ−1
s (k)), s−1ϕ(k)) < δ′. Assuming that δ′′ is sufficiently small and that σ is a good enough

sofic approximation so that the restrictions of σ−1
s and σs−1 agree on a subset of proportional

size sufficiently close to one, we have |Ds|/d ≥ 1 − δ/n. Also, for k ∈ Ds and i = 1, . . . , n we
have, writing Υe,i for the set of all f ∈ {1, . . . , n}F such that f(e) = i and Υs,i for the set of all
f ∈ {1, . . . , n}F such that f(s) = i,

k ∈ σsϕ̂(Ai)⇔ σ−1
s (k) ∈ ϕ̂(Ai) =

⋃
f∈Υe,i

ϕ̂

( ⋂
t∈F

tAf(t)

)
⇔ ϕ(σ−1

s (k)) ∈
⋃

f∈Υe,i

⋂
t∈F

tAf(t) = Ai

⇔ ϕ(k) ∈ sAi =
⋃

f∈Υs,i

⋂
t∈F

tAf(t) (by our choice of δ′)

⇔ k ∈
⋃

f∈Υs,i

ϕ̂

( ⋂
t∈F

tAf(t)

)
= ϕ̂(sAi).

Consequently
∑n

i=1 |σsϕ̂(Ai)∆ϕ̂(sAi)| < δ for all s ∈ F . Since ζ(ϕ̂(A)) = (ϕ∗ζ)(1A) for every
A ∈ αF so that

∑
A∈αF |ζ(ϕ̂(A))− µ(A)| < |αF |δ′′ < δ, it follows that ϕ̂ ∈ Homµ(α, F, δ, σ).

Now since the atoms of ξ all have diameter less than ε, we have ϕ̂|ξ 6= ψ̂|ξ for all ϕ,ψ ∈
Mapµ(ρ, F, L, δ, σ) satisfying ρ∞(ϕ,ψ) > ε. Therefore

Nε(Mapµ(ρ, F, L, δ′′, σ), ρ∞) ≤ |Homµ(α, F, δ, σ)|ξ

and hence hεΣ,µ(ρ, F, L, δ′′) ≤ hξΣ,µ(α, F, δ). We thus deduce that

hΣ,µ(ρ)− κ ≤ hεΣ,µ(ρ) ≤ hξΣ,µ(α) ≤ hΣ,µ(X,G) + κ.

Since κ was an arbitrary positive number we conclude that h′Σ,µ(X,G) ≤ hΣ,µ(X,G). In the

case hΣ,µ(ρ) = ∞ we can apply the same argument only starting from the fact that for every
M > 0 there is an ε > 0 for which hεΣ,µ(ρ) ≥M . �

4. Bernoulli actions

Here we show how to compute the sofic entropy of Bernoulli actions according to Definition 2.2.
This only depends on the asymptotic freeness of the sofic approximation sequence, in contrast
to Definition 2.2 and Theorem 2.6, which do not depend on it at all. The following lemma will
permit us to reduce the computation to Bowen’s arguments in the finite base case [1].
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Lemma 4.1. Let (X,B, µ) be a probability space and Gy X a measure-preserving action. Let
ξ, η, and α be finite measurable partitions of X such that α refines ξ and η. Then

(i) hξΣ,µ(α) ≤ Hµ(ξ),

(ii) hξΣ,µ(α) ≥ hηΣ,µ(α)−Hµ(η|ξ).

Proof. First we prove (i). Write ξ = {B1, . . . , Bn}. Let ε > 0. By the continuity properties of
H(·), there is a δ > 0 such that, for all d ∈ N, if γ = {C1, . . . , Cn} is an ordered partition of
{1, . . . , d} with

∑n
i=1

∣∣µ(Bi)− ζ(Ci)
∣∣ < δ then |Hµ(ξ)−Hζ(γ)| < ε.

Fix a d ∈ N. Write T for the set of tuples (c1, . . . , cn) ∈ {1/d, 2/d . . . , 1}n such that
∑n

i=1 ci =
1 and

∑n
i=1

∣∣µ(Bi) − ci
∣∣ < δ. For each c = (c1, . . . , cn) ∈ T write Wc for the set of all ordered

partitions γ = {C1, . . . , Cn} of {1, . . . , d} such that |Ci|/d = ci for every i = 1, . . . , n. By our
choice of δ and Stirling’s approximation, we have, assuming d is sufficiently large,

|Wc| =
d!

(c1d)! · · · (cnd)!
≤

n∏
i=1

c
−cid(1+ε)
i ≤ ed(1+ε)(Hµ(ξ)+ε)

for every c ∈ T . Note also that |T | ≤ (2δd)n since there are at most 2δd choices for the value of
each ci among the elements of T . The total number of homomorphisms ϕ : A(ξ)→ Pd satisfying∑n

i=1 |ζ(ϕ(Bi))−µ(Bi)| < δ is equal to |
⋃
c∈T Wc|, and from what we have just observed this is

bounded above by (2δd)ned(1+ε)(Hµ(ξ)+ε). Hence

hξΣ,µ(α) ≤ hξΣ,µ(α, {e}, δ) ≤ hξΣ,µ(ξ, {e}, δ) ≤ (1 + ε)(Hµ(ξ) + ε).

Since ε was an arbitrary positive number we obtain (i).
Now let us prove (ii). Let ε > 0. Write ξ = {B1, . . . , Bm}. For each i = 1, . . . ,m write ηi =

{Ci,1, . . . , Ci,ni} for the partition of Bi consisting of the intersections of the members of η with
Bi. By the continuity properties of H(·) there is a δ > 0 such that, for all d ∈ N, if ψ : A(α)→ Pd
is a homomorphism satisfying

∑
A∈α

∣∣ζ(ψ(A)) − µ(A)
∣∣ < δ then |Hµi(ηi) −Hζi(ψ(ηi))| < ε for

every i = 1, . . . ,m, where µi is µ(Bi)
−1 times the restriction of µ to Bi and ζi is ζ(ψ(Bi))

−1

times the restriction of ζ to ψ(Bi), unless ζ(ψ(Bi)) = 0 in which case we interpret Hζi(ψ(ηi)) to
mean zero.

Let δ′ > 0 be such that δ′(
∑m

i=1Hµi(ηi)) ≤ δ. Suppose we are given a homomorphism
ψ : A(α) → Pd satisfying

∑
A∈α

∣∣ζ(ψ(A)) − µ(A)
∣∣ < δ′. Write Qi for the set of all ordered

partitions {D1, . . . , Dni} of ψ(Bi) satisfying
∑ni

j=1

∣∣µ(Ci,j) − ζ(Dj)
∣∣ < δ′. Then the set of all

restrictions to η of homomorphisms ϕ : A(α) → Pd which satisfy
∑

A∈α
∣∣ζ(ϕ(A)) − µ(A)

∣∣ < δ′

and restrict to ψ on ξ has cardinality at most
∏m
i=1 |Qi|. By an estimate as in the second

paragraph using Stirling’s approximation, assuming d is large enough the set Qi has cardinality
at most (2δ′d)niedζ(ψ(Bi))(1+ε)(Hµi (ηi)+ε), and since

m∑
i=1

ζ(ψ(Bi))Hµi(ηi) <

m∑
i=1

(µ(Bi) + δ′)Hµi(ηi)

≤
m∑
i=1

µ(Bi)Hµi(ηi) + δ = Hµ(η|ξ) + δ
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this gives
m∏
i=1

|Qi| ≤ (2δ′d)|ξ|·|η|ed(1+ε)(Hµ(η|ξ)+δ+ε).

It follows that for every nonempty finite set F ⊆ G we have

hξΣ,µ(α, F, δ′) ≥ hηΣ,µ(α, F, δ′)− (1 + ε)(Hµ(η|ξ) + δ + ε)

and hence hξΣ,µ(α) ≥ hηΣ,µ(α) − (1 + ε)(Hµ(η|ξ) + ε) as δ can be taken arbitrarily small and δ′

can always be chosen to be less than δ. Since ε was an arbitrary positive number, this yields
(ii). �

We note in passing that, in the case hΣ,µ(X,G) 6= −∞, Lemma 4.1(ii) shows that, given a
subalgebra S of B, we have

|hξΣ,µ(S)− hηΣ,µ(S)| ≤ max(Hµ(ξ|η), Hµ(η|ξ))
for all finite partitions ξ, η ⊆ S. Indeed, given such ξ and η and an ε > 0, take a finite partition

α ⊆ S such that α ≥ ξ and hξΣ,µ(α) < hξΣ,µ(S) + ε and a finite partition α′ ⊆ S such that α′ ≥ η
and hηΣ,µ(α′) < hηΣ,µ(S) + ε. Using monotonicity we may assume that α and α′ are equal by

replacing them both with α ∨ α′. Lemma 4.1(ii) then yields

hηΣ,µ(S)− hξΣ,µ(S) < hηΣ,µ(α)− hξΣ,µ(α) + ε ≤ Hµ(η|ξ) + ε

and similarly

hξΣ,µ(S)− hηΣ,µ(S) < hξΣ,µ(α)− hηΣ,µ(α) + ε ≤ Hµ(ξ|η) + ε

so that |hηΣ,µ(S)− hξΣ,µ(S)| ≤ max(Hµ(ξ|η), Hµ(η|ξ)) + ε, which gives the desired inequality as ε
was an arbitrary positive number.

For a probability space (Y, ν) we define H(ν) to be the supremum of Hν(α) over all finite
measurable partitions α of Y .

Theorem 4.2. Let (Y, ν) be a probability space and let Gy (Y G, νG) be the associated Bernoulli
action. Then hΣ,νG(Y G, G) = H(ν).

Proof. Let S be the algebra consisting of those measurable subsets of Y G which are cylinder sets
over e. Then S is generating and so it suffices by Theorem 2.6 to show that hΣ,νG(S) = H(ν).
By Lemma 4.1(i) we have hΣ,νG(S) ≤ H(ν), and so we concentrate on the reverse inequality.

Let ξ and α be finite partitions in S with α ≥ ξ. We will show that hξ
Σ,νG

(α) ≥ HνG(ξ), from

which the desired inequality hΣ,νG(S) ≥ H(ν) ensues. By Lemma 4.1(ii) we need only prove that
hα

Σ,νG
(α) ≥ HνG(α). This is essentially contained in Theorem 8.1 in [1], and we will reproduce

the argument from there.
Let δ > 0. Let η > 0 be such that 2η < |α|−|F |δ. Let F be a finite subset of G containing e.

Let d ∈ N and let σ be a map from G to Sym(d) which is a sufficiently good sofic approximation
to satisfy a couple of conditions to be specified below. Write V for the set of all v ∈ {1, . . . , d}
such that σsσt(v) = σst(v) for all s, t ∈ F and σ−1

s (v) 6= σ−1
t (v) for all distinct s, t ∈ F .

Enumerate the elements of α as A1, . . . , An. Write κ for the probability measure on {1, . . . , n}
determined by κ({i}) = νG(Ai). We view {1, . . . , n}d as a probability space with the product
measure κd.
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Fix an f ∈ {1, . . . , n}F . Given a γ ∈ {1, . . . , n}d we can think of it as an ordered par-
tition {γ−1(1), . . . , γ−1(n)} of {1, . . . , d}, and in accord with this viewpoint we set Qγ,f =⋂
s∈F σsγ

−1(f(s)). Write Pf for
⋂
s∈F sAf(s). For every γ ∈ {1, . . . , n}d denote by ϕγ the ho-

momorphism A(αF )→ Pd determined by ϕγ(Pf ) = Qγ,f . Note that for s ∈ F and i = 1, . . . , n

we have, writing Υs,i for the set of f ∈ {1, . . . , n}F such that f(s) = i,

sAi = sAi ∩X = sAi ∩
( ⋂
t∈F\{s}

n⊔
j=1

tAj

)
=

⊔
f∈Υs,i

Pf

and similarly σsγ
−1(i) =

⊔
f∈Υs,i

Qγ,f so that

|ϕγ(sAi)∆σsϕγ(Ai)| ≤ |σs(γ−1(i)∆σeγ
−1(i))|

≤ |{v ∈ {1, . . . , d} : σe(v) 6= v}| < δd

assuming σ is a good enough sofic appproximation. Thus we get that condition (i) in the
definition of HomνG(α, F, δ, σ) is satisfied by ϕγ for all γ. We now aim to get a lower bound
on the number of γ for which ϕγ satisfies condition (ii) in the same definition and hence lies in
HomνG(α, F, δ, σ).

For v ∈ {1, . . . , d} we let Zv = Zv,f be the function (random variable) on {1, . . . , n}d which
at a point γ takes the value 1 if v ∈ V ∩Qγ,f and 0 otherwise.

Write E(·) for the expected value of a function on {1, . . . , n}d, that is, the integral with respect
to κd. For v /∈ V we have E(Zv) = 0. For v ∈ V , since σ−1

s (v) 6= σ−1
t (v) for distinct s, t ∈ V we

have

E(Zv) = κd
({
γ ∈ {1, . . . , n}d : σ−1

s (v) ∈ γ−1(f(s)) for every s ∈ F
})

=
∏
s∈F

κ({f(s)}) =
∏
s∈F

ν(Af(s)) = νG(Pf ).

Set Z =
∑d

v=1 Zv. We will estimate the variance Var(Z). Let v, w ∈ {1, . . . , d}. If one of v and

w is not in V then ZvZw = 0 and so E(ZvZw) = 0. If σ−1
s (v) 6= σ−1

t (w) for all s, t ∈ F then Zv
and Zw are independent, i.e., E(ZvZw) = E(Zv)E(Zw). Thus the number of pairs (v, w) ∈ V ×V
for which Zv and Zw are not independent is at most |V ||F |2, which is bounded above by d|F |2.
Hence

E(Z2) =
d∑

v,w=1

E(ZvZw) ≤
d∑

v,w=1

E(Zv)E(Zw) + d|F |2 = E(Z)2 + d|F |2.

and so Var(Z) = E(Z2)− E(Z)2 ≤ d|F |2. Chebyshev’s inequality then yields, for all t > 0,

P
(
|Z/d− E(Z)/d| > t

)
≤ Var(Z)

d2t2
≤ |F |

2

dt2
.

Assuming that σ is a good enough sofic approximation so that ζ(V ) ≥ 1−η, for every γ we have∣∣ζ(Qγ,f )− νG(Pf )
∣∣ ≤ ∣∣ζ(Qγ,f )− ζ(V ∩Qγ,f )

∣∣+ |(Z/d)(γ)− E(Z)/d|
+
∣∣ζ(V )νG(Pf )− νG(Pf )

∣∣
≤ |(Z/d)(γ)− E(Z)/d|+ 2η
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and thus, for t > 2η,

P
(
|ζ(Qγ,f )− νG(Pf )| > t

)
≤ |F |2

d(t− 2η)2
.

Taking t = n−|F |δ, which is larger than 2η, we get, assuming d is large enough,

P
(∣∣ζ(Qγ,f )− νG(Pf )

∣∣ > δ

n|F |

)
≤ δ

n|F |
.

Thus the probability that a γ ∈ {1, . . . , n}d satisfies |ζ(Qγ,f ) − νG(Pf )| > n−|F |δ for some

f ∈ {1, . . . , n}F is at most δ. If this does not happen for a given γ then∑
f∈{1,...,n}F

∣∣ζ(ϕγ(Pf ))− νG(Pf )
∣∣ =

∑
f∈{1,...,n}F

∣∣ζ(Qγ,f )− νG(Pf )
∣∣ < δ.

Hence the probability that γ satisfies ϕγ ∈ HomνG(α, F, δ, σ) is at least 1− δ. Now we need to
use this to estimate the actual number of γ satisfying ϕγ ∈ HomνG(α, F, δ, σ).

With γ ranging as usual in the probability space {1, . . . , n}d we have, by the law of large
numbers and the independence of the coordinates of γ,

lim
d→∞

P
(∣∣∣− 1

d
log κd({γ})−H(κ)

∣∣∣ > δ
)

= 0.

Thus, assuming d is sufficiently large we can find an L ⊆ {1, . . . , n}d for which κd(L) > 1 − δ
and κd({γ}) ≤ e−d(H(κ)−δ) for all γ ∈ L. Then, writing L0 for the set of all γ ∈ L such that
ϕγ ∈ HomνG(α, F, δ, σ) we have κd(L0) ≥ 1− 2δ and hence

|HomνG(α, F, δ, σ)|α ≥ |L0| ≥ κd(L0)ed(H(κ)−δ) ≥ (1− 2δ)ed(H(κ)−δ).

Since δ can be taken arbitrarily small, it follows that hα
Σ,νG

(α, F ) ≥ H(κ) = HνG(α). Since F

was arbitrary finite subset of G containing e, we conclude that hα
Σ,νG

(α) ≥ HνG(α). �

References

[1] L. Bowen. Measure conjugacy invariants for actions of countable sofic groups. J. Amer. Math. Soc. 23
(2010), 217–245.

[2] L. Bowen. Weak isomorphisms between Bernoulli shifts. Israel J. Math. 183 (2011), 93–102.
[3] L. Bowen. Sofic entropy and amenable groups. Ergodic Theory Dynam. Systems 32 (2012), 427–466.
[4] D. Kerr and H. Li. Bernoulli actions and infinite entropy. Groups Geom. Dyn. 5 (2011), 663–672.
[5] D. Kerr and H. Li. Entropy and the variational principle for actions of sofic groups. Invent. Math. 186

(2011), 501–558.
[6] D. Kerr and H. Li. Soficity, amenability, and dynamical entropy. To appear in Amer. J. Math.
[7] D. S. Ornstein and B. Weiss. Entropy and isomorphism theorems for actions of amenable groups. J. Analyse

Math. 48 (1987), 1–141.

David Kerr, Department of Mathematics, Texas A&M University, College Station TX 77843-3368,
U.S.A.

E-mail address: kerr@math.tamu.edu


