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Abstract. For discrete measured groupoids preserving a probability measure we introduce
a notion of sofic dimension that measures the asymptotic growth of the number of sofic ap-
proximations on larger and larger finite sets. In the case of groups we give a formula for free
products with amalgamation over an amenable subgroup. We also prove a free product formula
for measure-preserving actions.

1. Introduction

For certain kinds of infinite-dimensional structures it is possible to define a notion of volume
or complexity by measuring the asymptotic growth of the number of models in finite or finite-
dimensional spaces of increasing size. This idea occurs prototypically in the statistical mechanics
of infinite lattice systems, where one defines the mean entropy as a limit of weighted averages
over finite-volume configurations. Via the action of lattice translation, this mean entropy can
be recast as a particular instance of dynamical entropy. For continuous actions of amenable
groups on compact Hausdorff spaces, dynamical entropy can be expressed either in information-
theoretic terms using open covers or as a measure of the exponential growth of the number of
partial orbits up to an observational error. Kolmogorov-Sinai entropy for measure-preserving
actions of amenable groups can also be viewed in a similar dual way.

In a recent breakthrough, Lewis Bowen showed how the statistical mechanical idea of counting
finitary models can be used as a means for defining dynamical entropy in the very broad context
of measure-preserving actions of countable sofic groups [2]. A generalization of both amenability
and residual finiteness, soficity is defined by the existence of approximate actions on finite spaces,
and it is these approximate actions which provide the setting for dynamical models. Hanfeng Li
and the second author subsequently applied an operator algebra perspective to develop a more
general approach to sofic entropy that yields both topological and measure-theoretic entropy
invariants [13, 12].

This “microstates” approach to dynamical entropy can be compared with the packing for-
mulation of Voiculescu’s free entropy dimension for tracial von Neumann algebras, for which
the finite modeling takes place in matrix algebras instead of finite sets or commutative finite-
dimensional C∗-algebras. While sofic entropy measures the exponential growth of the number of
dynamical models relative to a fixed background sequence of sofic approximations for the group,
free entropy dimension counts the number of matrix models for a finite set of operators (which
might for instance come from both the group and the space in a crossed product) up to an
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observational error and measures the growth of this quantity within an appropriate superexpo-
nential regime as the dimension of the matrix algebra tends to infinity. A major open problem
concerning free entropy dimension is whether it takes a common value on all finite generating
sets and hence yields an invariant for the von Neumann algebra. This is true in the hyperfinite
case [10] but is unknown for free group factors. In [22] Shlyakhtenko defined a free-entropy-type
quantity using a combination of permutations and general unitaries that yields an invariant for
discrete measured equivalence relations.

In the present paper we define a notion of sofic dimension for groups and measure-preserving
group actions that is based on discrete models in the manner of sofic entropy but counts all
models for the structure in the spirit of free entropy dimension. In fact we set up the theory
of sofic dimension in the more natural and general framework of discrete measured groupoids
(more precisely, what we call probability-measure-preserving (p.m.p.) groupoids), so that it si-
multaneously specializes to groups, measure-preserving group actions, and probability-measure-
preserving equivalence relations. This means in particular that, for free measure-preserving
actions of countable groups, sofic dimension is an orbit equivalence invariant.

The dimension is first defined with respect to several local parameters. One of these param-
eters determines the scale at which the sofic approximations are distinguished, while the others
determine how good the sofic approximation is. We take an infimum over the latter and then
a supremum over the former to produce an invariant. We show that the value of this invariant
can be determined by restricting the parameters to a generating set, which renders it accessible
to computation. Our main result in the group case gives, under certain regularity assumptions,
a formula for the sofic dimension of free products with amalgamation over an amenable group,
in analogy with those for free entropy dimension [3] and cost [8]. This gives in particular a
free probability proof of the fact that soficity for groups is preserved under free products with
amalgamation over an amenable group, which was shown in [4] assuming the amenable group to
be monotileable and in [6, 18] in general. We also establish a free product formula for measure-
preserving actions under similar regularity assumptions. In a separate paper devoted to the
equivalence relation viewpoint [5] we give a formula for the sofic dimension of a free product of
equivalence relations amalgamated over an amenable subrelation, which applies most notably
to free actions of free products of groups amalgamated over an amenable subgroup.

We begin in Section 2 by defining the sofic dimension s(G ) of a p.m.p. groupoid G , as well
as a variant s(G ), the lower sofic dimension, obtained by replacing the limit supremum in the
definition of s(G ) with a limit infimum. We prove in Theorem 2.11 that these invariants can be
computed on any finite generating set. We also show that the lower sofic dimension of a sofic
p.m.p. groupoid with infinite classes is at least 1 (Proposition 2.14). In Section 3 we record a
couple of basic results for countable discrete groups, including the fact that s(G) = 1 − |G|−1

for a finite group G (Proposition 3.5). Section 4 contains the amalgamated free product formula
for groups, Theorem 4.10, which asserts that, under suitable regularity assumptions, if G1 and
G2 are countable discrete groups and H is a common amenable subgroup then

s(G1 ∗H G2) = s(G1) + s(G2)− 1 +
1

|H|
.

As corollaries we deduce that s(Fr) = s(Fr) = r for every r ∈ N ∪ {∞} where Fr is the free
group of rank r, and s(G) = s(G) = 1 − |G|−1 for amenable groups G. In Section 5 we show
how the definition of sofic dimension for a measure-preserving action G y X of a countable
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discrete group on a probability space, for which we use the notation s(G,X) and s(G,X), can
be reformulated so as to conveniently separate the group and space components. We use this
reformulation in Section 6 to establish the free product formula, Theorem 6.4, which asserts
that, under suitable regularity assumptions, if G1 and G2 are countable discrete groups and
G1 ∗G2 y X is a measure-preserving action on a probability space, then

s(G1 ∗G2, X) = s(G1, X) + s(G2, X).

As a corollary, for every r ∈ N we obtain s(Fr, X) = s(Fr, X) = r for every measure-preserving
action of the free group Fr.

While working on this project we learned that Miklós Abért, Lewis Bowen, and Nikolai Nikolov
also defined and studied the same notion of sofic dimension for groups. It is their terminology
that we have adopted. Our paper answers a question of Miklós Abért, who asked whether the
theory can be extended to measure-preserving group actions [1].
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the Erwin Schrödinger Institute in Vienna and he would like to thank the institute and the
organizers of the program on Bialgebras and Free Probability. The second author would like to
thank Yasuyuki Kawahigashi for hosting his January 2010 visit to the University of Tokyo during
which the initial stages of this work were carried out. The third author thanks Narutaka Ozawa
for helpful discussions on the subject. We are especially grateful to Hanfeng Li for extensive
comments and corrections.

2. Probability-measure-preserving groupoids

For a groupoid G we denote the source and range maps by s and r, respectively, and write
G 0 for the set of units of G . For a set A ⊆ G 0 we write GA for the subgroupoid of G consisting
of all x ∈ G such that s(x) ∈ A and r(x) ∈ A, with unit space A.

A discrete measurable groupoid is a groupoid G with the structure of a standard Borel space
such that G 0 is a Borel set, the source, range, multiplication, and inversion maps are all Borel,
and s−1(x) is countable for every x ∈ G 0.

A probability-measure-preserving (p.m.p.) groupoid is a discrete measurable groupoid G paired
with a Borel probability measure µ on G 0 such that∫

G 0

|s−1(x) ∩B| dµ(x) =

∫
G 0

|r−1(x) ∩B| dµ(x)

for every Borel set B ⊆ G . The assignment of this common value to a Borel set B defines a
σ-finite Borel measure on G which restricts to µ on G 0. It will also be denoted by µ. When
speaking about a p.m.p. groupoid (G , µ) we will often simply write G with the measure µ being
understood.

Let (G , µ) and (H , ν) be p.m.p. groupoids. We say that G and H are isomorphic if there
exist Borel sets A ⊆ G 0 and B ⊆ H 0 such that A and B have full measure in G 0 and H 0,
respectively, and a groupoid isomorphism ϕ : GA →HB which is Borel and satisfies ϕ∗µ = ν.

In order to express the notion of a finite approximation to a p.m.p. groupoid (G , µ) that will be
the basis of our definition of sofic dimension, we will think of G in terms of its inverse semigroup
IG of partial isometries, defined as follows. Let B be a Borel subset of G such that the restrictions
of s and r to B are injective. We obtain a partial isometry sB on L2(G , µ) by declaring sBξ(x)
for ξ ∈ L2(G , µ) and x ∈ G to be ξ(y−1) where y is the element of r−1(s(x)) satisfying xy ∈ B,
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or 0 if there is no such y. We then define IG as the collection of partial isometries which arise in
this way. When convenient we will think of elements in IG themselves as characteristic functions
on G which are identified if they agree µ-almost everywhere. The collection IG forms an inverse
semigroup, where the inverse of an element s is its adjoint s∗, and it is closed under taking sums
of finitely many pairwise orthogonal elements. It is a subset of the von Neumann algebra VN(G )
of G , which can be defined as the strong operator closure of the space A of functions η on G
for which the functions x 7→

∑
y∈r−1(x) |η(y)| and x 7→

∑
y∈s−1(x) |η(y)| on G0 are essentially

bounded, with A being represented on L2(G , µ) via the convolution

η ∗ ξ(x) =
∑

y∈r−1(s(x))

η(xy)ξ(y−1).

One can show in fact that IG generates VN(G ) as a von Neumann algebra.

Write τ for the normal trace on VN(G ) associated to µ and ‖·‖2 for the 2-norm a 7→ τ(a∗a)1/2

on VN(G ). For elements a in L1(G , µ), and in particular for a in the linear span of IG , the trace
is given by

τ(a) = 〈a1G 0 , 1G 0〉L2(G ,µ) =

∫
G 0

a ∗ 1G 0 dµ =

∫
G0

a(x)dµ(x).

We will be using the 2-norm to measure distances between elements of IG .
The three basic examples of p.m.p. groupoids are the following:

(1) a countable discrete group G, in which case IG can be identified with G along with the
zero element, and the inverse of the inverse semigroup is the same as the group inverse,

(2) a countable discrete group acting by measure-preserving transformations on a standard
probability space, which reduces to the previous example when the space consists of a
single point, and

(3) a measure-preserving equivalence relation R on a standard probability space, in which
case IR is the collection of partial transformations ϕ with nonnull domain such that
(x, ϕ(x)) ∈ R for all x in the domain of ϕ, with two such partial transformations being
identified if they agree on a subset which has full measure in the domain of each.

We write Id for the inverse semigroup of all partial transformations of {1, . . . , d}. This
is the inverse semigroup associated to the full equivalence relation {1, . . . , d} × {1, . . . , d} on
{1, . . . , d}, which we view as a p.m.p. groupoid with respect to the uniform probability measure
on {1, . . . , d}. We thus view Id both as the set of all partial transformations of {1, . . . , d} and
as the set of all partial permutation matrices in Md, i.e., partial isometries whose entries are all
either 0 or 1. The context will dictate which particular meaning is intended. We write Sd for the
subset of Id consisting of all permutations of {1, . . . , d}, which we also regard as permutation
matrices in Md in accordance with our double interpretation of Id. For a finite set E we write
Sym(E) for the set of all permutations of E. This will occasionally be convenient as a substitute
for Sd when dealing with a d-element set that comes with a description other than {1, . . . , d}.

We write the unique tracial state on Md as tr, or sometimes trd if there are matrix algebras
of different dimensions at play. Note that for s ∈ Id the square ‖s‖22 = tr(s∗s) of the 2-norm is
equal to 1/d times the cardinality of the domain of s as a partial transformation. Also, for any
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s, t ∈ Id we have, writing ξ1, . . . , ξd for the standard basis vectors of Cd and dom for domain,

‖s− t‖22 = τ((s− t)∗(s− t)) =
1

d

d∑
j=1

〈(s− t)ξj , (s− t)ξj〉

≥ 1

d

∣∣{c ∈ {1, . . . , d} : sc 6= tc}
∣∣

=
1

d

∣∣(dom(s)∆dom(t)) ∪ {c ∈ dom(s) ∩ dom(t) : sc 6= tc}
∣∣.

This inequality will be useful for example in the proof of Lemma 2.5. In the case that s, t ∈ Sd
we have

‖s− t‖22 =
1

d

∣∣{c ∈ {1, . . . , d} : sc 6= tc}
∣∣.

Given a p.m.p. groupoid G and a d ∈ N, we wish to count the number of models of IG in Id.
We do this by counting the number of approximately multiplicative maps IG → Id.

For a subset Ω of IG we write Ω∗ for {s∗ : s ∈ Ω}. For n ∈ N we write Ω×n for the n-fold
Cartesian product Ω × · · · × Ω. This is to be distinguished from Ωn, which denotes the set of
all products s1 · · · sn where s1, . . . , sn ∈ Ω. We write Ω≤n for the set

⋃n
k=1 Ωn and [Ω] for the

linear span of Ω in VN(G ).
Given an Ω ⊆ IG we write I(Ω) for the set of all elements in IG which can be written as a

finite sum of elements in Ω. Note that the elements in such a sum must have pairwise orthogonal
source projections, as well as pairwise orthogonal range projections.

Let G and H be p.m.p. groupoids. Let F be a finite subset of IG . For an n ∈ N and a δ > 0,
a linear map ϕ : [IG ]→ [IH ] is said to be (F, n, δ)-approximately multiplicative if

‖ϕ(s1 · · · sk)− ϕ(s1) · · ·ϕ(sk)‖2 < δ

for all k = 1, . . . , n and (s1, . . . , sk) ∈ F×k. For d, n ∈ N and a δ > 0 we define SA(F, n, δ, d) to
be the set of all (F ∪ F ∗, n, δ)-approximately multiplicative linear maps ϕ : [IG ] → [Id] = Md

such that ϕ((F ∪ F ∗)≤n) ⊆ Id and |tr ◦ ϕ(s)− τ(s)| < δ for all s ∈ (F ∪ F ∗)≤n.

Definition 2.1. The p.m.p. groupoid G is said to be sofic if for all finite sets F ⊆ G , n ∈ N,
and δ > 0 the set SA(F, n, δ, d) is nonempty for some d ∈ N.

Given sets E and A with E ⊆ A, a set Z, and a collection Y of maps A → Z, we write
|Y |E for the cardinality of the sets of restrictions ϕ|E where ϕ ∈ Y . Note that SA(F, n, δ, d) ⊇
SA(F ′, n′, δ′, d) and hence |SA(F, n, δ, d)|E ≥ |SA(F ′, n′, δ′, d)|E′ whenever F ⊆ F ′, n ≤ n′,
δ ≥ δ′, and E and E′ are subsets of IG satisfying E ⊇ E′.

Definition 2.2. Let Ω be a subset of IG , E and F finite subsets of IG , n ∈ N, and δ > 0. We
set

sE(F, n, δ) = lim sup
d→∞

1

d log d
log |SA(F, n, δ, d)|E ,

sE(F, n) = inf
δ>0

sE(F, n, δ),

sE(F ) = inf
n∈N

sE(F, n),

sE(Ω) = inf
F
sE(F ),
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s(Ω) = sup
E
sE(Ω)

where F in the second last line and E in the last line both range over the finite subsets of Ω. We
similarly define sE(F, n, δ), sE(F, n), sE(F ), sE(Ω), and s(Ω) by replacing the limit supremum
in the first line with a limit infimum. If SA(F, n, δ, d) is empty for all sufficiently large d we set
sE(F, n, δ) = −∞, and if SA(F, n, δ, d) is empty for arbitrarily large d we set sE(F, n, δ) = −∞.

Note that if Ω is finite in the above definition then the notation sE(Ω) is unambiguous since
sE(F ′) ≤ sE(F ) whenever F and F ′ are finite subsets of IG with F ′ ⊇ F .

Definition 2.3. The sofic dimension s(G ) of G is defined as s(IG ), and the lower sofic dimension
s(G ) as s(IG ).

It is clear that sofic dimension and lower sofic dimension are invariants for isomorphism of
p.m.p. groupoids.

For the remainder of the section (G , µ) will be an arbitrary p.m.p. groupoid.
Given a finite set E ⊆ IG , on the set of all unital linear maps from [IG ] to [Id] = Md we define

the pseudometric

ρE(ϕ,ψ) = max
s∈E
‖ϕ(s)− ψ(s)‖2.

For ε ≥ 0 write Nε(·, ρ) for the maximal cardinality of an ε-separated subset with respect to the
pseudometric ρ. Note that N0(SA(F, n, δ, d), ρE) = |SA(F, n, δ, d)|E .

Definition 2.4. Let E and F be finite subsets of G , n ∈ N, and δ > 0. We set

sE,ε(F, n, δ) = lim sup
d→∞

1

d log d
logNε(SA(F, n, δ, d), ρE),

sE,ε(F, n) = inf
δ>0

sE,ε(F, n, δ).

We similarly define sE,ε(F, n, δ) and sE,ε(F, n) by replacing the limit supremum in the first line
with a limit infimum. If SA(F, n, δ, d) is empty for all sufficiently large d we set sE,ε(F, n, δ) =
−∞, and if SA(F, n, δ, d) is empty for arbitrarily large d we set sE,ε(F, n, δ) = −∞.

Lemma 2.5. For every κ > 0 there is an ε > 0 such that

|{t ∈ Id : ‖t− s‖2 < ε}| ≤ dκd.
for all d ∈ N and s ∈ Id.

Proof. Let ε > 0. Let d ∈ N and s ∈ Id. Given a t ∈ Id we have

‖s− t‖22 ≥
1

d

∣∣{c ∈ {1, . . . , d} : sc 6= tc}
∣∣

and so if t satisfies ‖s − t‖2 < ε then the cardinality of the set of all c ∈ {1, . . . , d} such that
tc 6= sc is at most ε2d. Consequently the set A of all t ∈ Id such that ‖t−s‖2 < ε has cardinality

at most
(

d
bε2dc

)
dbε

2dc, which is less than dκd for some κ > 0 depending on ε but not on d with

κ→ 0 as ε→ 0. �

Lemma 2.6. Let E be a finite subset of IG . Let κ > 0. Then there is an ε > 0 such that
sE(F, n) ≤ sE,ε(F, n) + κ and sE(F, n) ≤ sE,ε(F, n) + κ for all finite sets F ⊆ IG containing E
and all n ∈ N.
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Proof. This is a straightforward consequence of Lemma 2.5. �

Definition 2.7. A set Ω ⊆ IG is said to be generating if I(
⋃∞
n=1(Ω ∪ Ω∗)n) is 2-norm dense in

IG and contains the orthogonal complement of each of its projections.

In the case of a group, the above definition reduces to the usual notion of generating set,
modulo the possible inclusion of the zero element. Also, if Gy (X,µ) is a probability-measure-
preserving action, P is a set of projections in L∞(X,µ) which dynamically generates L∞(X,µ)
(see the beginning of Section 5), and S is a generating set for G, then P ∪ S is a generating set
in the sense of Definition 2.7. The second condition in Definition 2.7 will be important in the
proof of the following lemma.

Lemma 2.8. Let Ω be a subset of IG containing an independent generating set, and let L
be a finite subset of IG . Let n ∈ N and δ > 0. Then there are a finite set F ⊆ Ω, an
m ∈ N, and an (L, n, δ)-approximately multiplicative linear map θ : [IG ] → [IG ] such that
θ(L≤n) ⊆ I((F ∪ F ∗)≤m) and ‖θ(s)− s‖2 < δ for all s ∈ L≤n.

Proof. Set δ′ = δ/(n + 1). By a standard selection theorem [11, Thm. 18.10], there exists a
countable Borel partition Q of G into sets on which the range and source maps are injective. We
can then find a finite set P of characteristic functions of pairwise disjoint measurable subsets
of G 0 such that ‖1 −

∑
p∈P p‖2 < δ′/3 and for all s, s′ ∈ L≤n and p, q ∈ P the subsets of G of

which qsp and qs′p are characteristic functions are either the same subset of some member of Q
or subsets of different members of Q. Set L̃ = {qsp : s ∈ L≤n and p, q ∈ P}, and observe that L̃
is linearly independent.

Let δ′′ > 0 be such that δ′′ ≤ δ′/2, to be further specified. Since Ω is generating, there are
a finite set F ⊆ Ω and a k ∈ N such that for every p ∈ P there is a tp ∈ I((F ∪ F ∗)≤k) such
that ‖p − tp‖2 < δ′′. By requiring ‖p − tp‖2 to be even smaller, replacing tp with its source
projection, and doubling k, we may assume that tp is the characteristic function of a subset of
G 0. In view of the second part of the definition of a generating set above, we may also assume,
by a straightforward perturbation argument that involves cutting down tp for each p ∈ P by the
products of the orthogonal complements of the projections tq for q ∈ P \ {q} (which requires us
to increase k), that the projections tp for p ∈ P are pairwise orthogonal.

Since Ω is generating, by taking F larger if necessary we can find an ` ∈ N such that for every
s ∈ L≤n there is a vs ∈ I((F ∪ F ∗)≤`) with ‖vs − s‖2 < δ′′. For all p, q ∈ P and s ∈ L≤n take a
vs,p,q ∈ {vs′ : s′ ∈ L≤n and qsp = qs′p} so that if qsp = qs′p for p, q ∈ P and s, s′ ∈ L≤n then
vs,p,q = vs′,p,q. For s ∈ L≤n and p, q ∈ P write rs,p,q = tqvs,p,qtp and

ts,p,q = r∗s,p,qrs,p,q

( ∏
(p′,q′)6=(p,q)

(1− r∗s,p′,q′rs,p′,q′)
)

× r∗s,p,q
(
rs,p,qr

∗
s,p,q

∏
(p′,q′)6=(p,q)

(1− rs,p′,q′r∗s,p′,q′)
)
rs,p,q

where (p′, q′) ranges in P × P. Then the elements tqvs,p,qtpts,p,q for p, q ∈ P have pairwise
orthogonal source projections and pairwise orthogonal range projections, and thus setting θ(s) =∑

p,q∈P tqvs,p,qtpts,p,q we obtain a map θ : L≤n → I((F ∪ F ∗)≤m) for a suitably large m. Note

that for all s ∈ L≤n the elements qsp for p, q ∈ P have pairwise orthogonal source projections
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and pairwise orthogonal range projections, and that for all p, q ∈ P we have, taking s′ such that
vs,p,q = vs′ ,

‖tqvs,p,qtp − qsp‖2 = ‖tqvs′tp − qs′p‖2
≤ ‖(tq − q)vs′tp‖2 + ‖q(vs′ − s′)tp‖2 + ‖qs′(tp − p)‖2 < 3δ′′.

We can thus take δ′′ to be small enough to ensure that for every s ∈ L≤n the element tqvs,p,qtpts,p,q
is close enough to qsp for all p, q ∈ P so that ‖θ(s)−

∑
p,q∈P qsp‖2 < δ′/3, in which case, writing

z =
∑

p∈P p,

‖θ(s)− s‖2 ≤ ‖θ(s)− zsz‖2 + ‖(z − 1)sz‖2 + ‖s(z − 1)‖2 < 3 · δ
′

3
= δ′.

Define a map ψ : L̃ → [IG ] by setting ψ(qsp) = tqvs,p,qtpts,p,q for all s ∈ L≤n and p, q ∈ P,
which is well defined since vs′,p,q = vs,p,q and hence also ts′,p,q = ts,p,q whenever qs′p = qsp. Since

L̃ is linearly independent, this extends to a linear map [L̃]→ [IG ], which again will be denoted
by ψ. Now if

∑
i cisi is a linear combination of elements of L≤n which is equal to zero, then∑

i

ciθ(si) =
∑
i

ci
∑
p,q∈P

ψ(qsip) = ψ
(∑

i

ci
∑
p,q∈P

qsip
)

= ψ
((∑

p∈P
p
)(∑

i

cisi

)(∑
p∈P

p
))

= ψ(0) = 0.

It follows that the map θ extends to a linear map [L≤n]→ [IG ], which we then extend arbitrarily
to a linear map [IG ]→ [IG ], again denoted by θ.

Finally, given j ∈ {1, . . . , n} and (s1, . . . , sj) ∈ L×j we have

‖θ(s1 · · · sj)− θ(s1) · · · θ(sj)‖2
≤ ‖θ(s1 · · · sj)− s1 · · · sj‖2

+

j∑
i=1

‖s1 · · · si−1‖∞‖si − θ(si)‖2‖θ(si+1) · · · θ(sj)‖∞

< δ′ + jδ′ ≤ δ,

showing that θ is (L, n, δ)-approximately multiplicative. �

Lemma 2.9. Let δ > 0. Then whenever v and w are elements of IG satisfying ‖vwv − v‖2 < δ
and ‖wvw − w‖2 < δ one has ‖w − v∗‖2 < 4δ.

Proof. When acting on the Hilbert space L2(G , µ), v and w are partial isometries and the
four projections v∗v, vv∗, w∗w and ww∗ commute with each other. Consider the projection
r = (1 − w∗w)vv∗. Then vv∗r = r and wr = 0 so that (v − vwv)(v∗rv) = vv∗rv − vwrv = rv
and hence

(v∗rv)(v − vwv)∗(v − vwv)(v∗rv) = v∗rv.

This yields

τ(r) = τ(vv∗r) = τ(v∗rv)

= τ
(
(v∗rv)(v − vwv)∗(v − vwv)(v∗rv)

)
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≤ τ
(
(v∗rv)(v − vwv)∗(v − vwv)(v∗rv)

)
+ τ
(
(1− (v∗rv))(v − vwv)∗(v − vwv)(1− (v∗rv))

)
= τ

(
(v − vwv)∗(v − vwv)

)
< δ2.

In a similar manner, interchanging v and w, we find that τ(s) < δ2, where s = (1−v∗v)ww∗. We
therefore have vv∗ = x+r and ww∗ = y+s for projections x = (vv∗)(w∗w) and y = (ww∗)(v∗v).
Consequently,

τ(w∗w) ≥ τ(x) ≥ τ(vv∗)− δ2,

τ(v∗v) ≥ τ(y) ≥ τ(ww∗)− δ2,

and |τ(v∗v) − τ(w∗w)| < δ2. This implies that w∗w = x + a and v∗v = y + b for projections

a and b, both of trace less than 2δ2. So ‖vv∗ − w∗w‖2 =
√
τ(r + a) <

√
3δ and, similarly,

‖ww∗ − v∗v‖2 <
√

3δ, and hence

‖v∗ − w‖2 = ‖v∗vv∗ − ww∗ww∗w‖2
≤ ‖v∗(v − vwv)v∗‖2 + ‖(v∗v − ww∗)w(vv∗)‖2 + ‖(ww∗)w(vv∗ − w∗w)‖2
≤ ‖v − vwv‖2 + ‖v∗v − ww∗‖2 + ‖vv∗ − w∗w‖2 < 4δ.

�

Lemma 2.10. Let F be a finite subset of G , n an integer greater than 2, δ > 0, and d ∈ N. Let
ϕ ∈ SA(F, n, δ, d). Then ‖ϕ(s∗)− ϕ(s)∗‖2 < 4δ for every s ∈ F .

Proof. Let s ∈ F . Since n ≥ 3 we have

‖ϕ(s)ϕ(s∗)ϕ(s)− ϕ(s)‖2 = ‖ϕ(s)ϕ(s∗)ϕ(s)− ϕ(ss∗s)‖2 < δ

and similarly ‖ϕ(s∗)ϕ(s)ϕ(s∗)− ϕ(s∗)‖2 < δ, so that ‖ϕ(s∗)− ϕ(s)∗‖2 < 4δ by Lemma 2.9. �

Theorem 2.11. Let Ω be a generating subset of IG . Then s(G ) = s(Ω) and s(G ) = s(Ω).

Proof. The theorem is equivalent to the assertion that if Υ is another generating subset of
IG then s(Ω) = s(Υ) and s(Ω) = s(Υ), and to verify this it suffices by symmetry to show
that s(Ω) ≤ s(Υ) and s(Ω) ≤ s(Υ). We will establish the first of these inequalities, with the
second following by the same argument with the limit supremum replaced everywhere by a limit
infimum. In view of the definitions we may assume that Ω∗ = Ω and Υ∗ = Υ.

Let E be a finite subset of Ω. Let κ > 0. By Lemma 2.6 there is an ε > 0 such that
sE(F, n) ≤ sE,ε(F, n) + κ for all finite sets F ⊆ G and n ∈ N. Since Υ is generating, we can
find a finite set K ⊆ Υ and an integer n > 1 such that for every s ∈ E there are γs,t ∈ {0, 1}
for which the element s̃ =

∑
t∈

⋃n
k=1K

×k γs,tť ∈ I(K≤n) satisfies ‖s− s̃‖2 < ε/16, where ť means

t1 · · · tk for t = (t1, . . . , tk). By increasing n if necessary we can find a finite set L ⊆ Υ satisfying
L∗ = L and K ⊆ L and a δ > 0 such that

lim sup
d→∞

1

d log d
log |SA(L, n, δ, d)|K ≤ sK(Υ) + κ.

Choose a δ′ > 0 such that |K≤n|δ′ < ε/8. Since Ω is generating, by Lemma 2.8 we can find
a finite set F ⊆ Ω with E ⊆ F and F ∗ = F , an m ∈ N, and an (L, n, δ′/4)-approximately
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multiplicative linear map θ : [IG ]→ [IG ] with θ(L≤n) ⊆ I(F≤m) such that ‖t− θ(t)‖2 < δ′/2 for
every t ∈ L≤n. Observe that for every s ∈ E we have, since K≤n ⊆ L≤n,

‖s− θ(s̃)‖2 ≤ ‖s− s̃‖2 + ‖s̃− θ(s̃)‖2 <
ε

16
+

∑
t∈

⋃n
k=1K

×k

|γs,t|‖ť− θ(ť)‖2 <
ε

8
,

an estimate that will be used towards the end of the proof.
Take a δ′′ > 0 such that

(i) |F≤mn|(1 + n)δ′′ ≤ δ′/2, and
(ii) for every linear map ϕ from [F≤mn] to a Hilbert space, if |〈ϕ(s), ϕ(t)〉 − 〈s, t〉| < (4 +

4mn)δ′′ for all s, t ∈ F≤mn then ‖ϕ(f)‖2 ≤ 2‖f‖2 for all f ∈ [F≤mn].

Let ϕ ∈ SA(F, 2mn, δ′′, d). Given k ∈ {1, . . . ,mn} and s, t ∈ F k and writing s = s1 · · · sk and
t = t1 · · · tk where s1, . . . , sk, t1, . . . , tk ∈ F , we have, using Lemma 2.10,

‖ϕ(tk)
∗ · · ·ϕ(t1)∗ − ϕ(t∗k) · · ·ϕ(t∗1)‖2

≤
k∑
i=1

‖ϕ(tk)
∗ · · ·ϕ(ti+1)∗(ϕ(ti)

∗ − ϕ(t∗i ))ϕ(t∗i−1) · · ·ϕ(t∗1)‖2

< 4mnδ′′

so that

‖ϕ(t)∗ϕ(s)− ϕ(t∗s)‖2
≤ ‖ϕ(t1 · · · tk)∗ − (ϕ(t1) · · ·ϕ(tk))

∗‖2‖ϕ(s)‖∞
+ ‖ϕ(tk)

∗ · · ·ϕ(t1)∗ − ϕ(t∗k) · · ·ϕ(t∗1)‖2‖ϕ(s)‖∞
+ ‖ϕ(t∗k) · · ·ϕ(t∗1)‖∞‖ϕ(s1 · · · sk)− ϕ(s1) · · ·ϕ(sk)‖2
+ ‖ϕ(t∗k) · · ·ϕ(t∗1)ϕ(s1) · · ·ϕ(sk)− ϕ(t∗s)‖2

< (3 + 4mn)δ′′

and hence

|〈ϕ(s), ϕ(t)〉 − 〈s, t〉| ≤ |tr(ϕ(t)∗ϕ(s)− ϕ(t∗s))|+ |tr ◦ ϕ(t∗s)− τ(t∗s)|
< ‖ϕ(t)∗ϕ(s)− ϕ(t∗s)‖2 + δ′′ < (4 + 4mn)δ′′.

It follows by our choice of δ′′ that ‖ϕ(f)‖2 ≤ 2‖f‖2 for all f ∈ [F≤mn]. Write ϕ\ for ϕ◦θ. We will
show that ϕ\ ∈ SA(L, n, δ′, d). Let k ∈ {1, . . . , n} and t1, . . . , tk ∈ L. For each i = 1, . . . , k we
can write θ(ti) =

∑
s∈

⋃m
j=1 F

×j λi,sš where λi,s ∈ {0, 1} and š means s1 · · · sj for s = (s1, . . . , sj).

For every k = 1, . . . , n and (s1, . . . , sk) ∈ F×j1 × · · · × F×jk where 1 ≤ j1, . . . , jk ≤ m we have,
writing si = (si,1, . . . , si,ji),∥∥∥∥ϕ( k∏

i=1

ši

)
−

k∏
i=1

ϕ(ši)

∥∥∥∥
2

=

∥∥∥∥ϕ( k∏
i=1

ji∏
j=1

si,j

)
−

k∏
i=1

ji∏
j=1

ϕ(si,j)

∥∥∥∥
2

+

∥∥∥∥ k∏
i=1

ji∏
j=1

ϕ(si,j)−
k∏
i=1

ϕ

( ji∏
j=1

si,j

)∥∥∥∥
2
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< δ′′ +
k∑
p=1

∥∥∥∥ p−1∏
i=1

ji∏
j=1

ϕ(si,j)

∥∥∥∥
∞

∥∥∥∥ ji∏
j=1

ϕ(sp,j)− ϕ
( ji∏
j=1

sp,j

)∥∥∥∥
2

×
∥∥∥∥ k∏
i=p+1

ϕ

( ji∏
j=1

si,j

)∥∥∥∥
∞

≤ δ′′ +
k∑
i=1

∥∥∥∥ ji∏
j=1

ϕ(si,j)− ϕ
( ji∏
j=1

si,j

)∥∥∥∥
2

< (1 + n)δ′′

so that, with s ranging over
⋃m
j=1 F

×j and (s1, . . . , sk) over (
⋃m
j=1 F

×j)×k in the sums below,

‖ϕ(θ(t1) · · · θ(tk))− ϕ(θ(t1)) · · ·ϕ(θ(tk))‖2

=

∥∥∥∥ϕ( k∏
i=1

∑
s

λi,sš

)
−

k∏
i=1

ϕ

(∑
s

λi,sš

)∥∥∥∥
2

=

∥∥∥∥ ∑
(s1,...,sk)

( k∏
i=1

λi,si

)[
ϕ

( k∏
i=1

ši

)
−

k∏
i=1

ϕ(ši)

]∥∥∥∥
2

≤
∑

(s1,...,sk)

∥∥∥∥ϕ( k∏
i=1

ši

)
−

k∏
i=1

ϕ(ši)

∥∥∥∥
2

< |F≤mn|(1 + n)δ′′

≤ δ′

2
.

Therefore

‖ϕ\(t1 · · · tk)− ϕ\(t1) · · ·ϕ\(tk)‖2
≤ ‖ϕ(θ(t1 · · · tk)− θ(t1) · · · θ(tk))‖2

+ ‖ϕ(θ(t1) · · · θ(tk))− ϕ(θ(t1)) · · ·ϕ(θ(tk))‖2

≤ 2‖θ(t1 · · · tk)− θ(t1) · · · θ(tk)‖2 +
δ′

2

<
δ′

2
+
δ′

2
= δ′.

Finally, for t ∈ L≤n we can write θ(t) =
∑

s∈
⋃m
k=1 F

×k λt,sš where λt,s ∈ {0, 1} and š means

s1 · · · sk for s = (s1, . . . , sk), so that

|tr ◦ ϕ(θ(t))− τ(θ(t))| =
∣∣∣∣ ∑
s∈

⋃m
k=1 F

×k

λt,s(tr ◦ ϕ(š)− τ(š))

∣∣∣∣
≤

∑
s∈

⋃m
k=1 F

×k

|tr ◦ ϕ(š)− τ(š)| ≤ |F≤m|δ′′ < δ′

2
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and hence

|tr ◦ ϕ\(t)− τ(t)| ≤ |tr ◦ ϕ(θ(t))− τ(θ(t))|+ |τ(θ(t)− t)|

<
δ′

2
+ ‖θ(t)− t‖2 < δ′.

Thus ϕ\ ∈ SA(L, n, δ′, d), as desired.
Let Γ : SA(F,mn, δ′′, d) → SA(L, n, δ′, d) be the map ϕ 7→ ϕ\. Pick an ε′ > 0 such that

2|L|nnε′ < ε/4. Let Z be an ε′-net in SA(L, n, δ′, d) with respect to ρK of minimal cardi-
nality. Each element of Z within distance ε′ to Γ(SA(F,mn, δ′′, d)) we perturb to an element
of Γ(SA(F,mn, δ′′, d)) in order to construct a set Y ⊆ SA(F,mn, δ′′, d) such that |Y | ≤ |Z|
and Γ(Y ) is a 2ε′-net for Γ(SA(F,mn, δ′′, d)) with respect to ρK . Let ϕ and ψ be elements of
SA(F,mn, δ′′, d) with ρK(ϕ\, ψ\) < 2ε′. Then for k ∈ {1, . . . , n} and t = (t1, . . . , tk) ∈ K×k we
have, since K ⊆ L,

‖ϕ\(ť)− ψ\(ť)‖2 ≤ ‖ϕ\(t1 · · · tk)− ϕ\(t1) · · ·ϕ\(t1)‖2
+ ‖ϕ\(t1) · · ·ϕ\(tk)− ψ\(t1) · · ·ψ\(tk)‖2
+ ‖ψ\(t1) · · ·ψ\(tk)− ψ\(t1 · · · tk)‖2

< 2δ′ +
k∑
i=1

‖ψ\(s1) · · ·ψ\(si−1)‖∞‖ϕ\(ti)− ψ\(ti)‖2‖ϕ\(si+1) · · ·ϕ\(sk)‖∞

< 2(δ′ + nε′)

and thus, for s ∈ E, with t ranging over
⋃n
k=1K

×k in the sums below,

‖ϕ\(s̃)− ψ\(s̃)‖2 =

∥∥∥∥ϕ\(∑
t

γs,tť

)
− ψ\

(∑
t

γs,tť

)∥∥∥∥
2

=

∥∥∥∥∑
t

γs,t(ϕ
\(ť)− ψ\(ť))

∥∥∥∥
2

≤
∑
t

‖ϕ\(ť)− ψ\(ť)‖2

< 2|K≤n|(δ′ + nε′) <
ε

2

whence, using the fact that E ⊆ F ,

ρE(ϕ,ψ) = max
s∈E
‖ϕ(s)− ψ(s)‖2

≤ max
s∈E

(‖ϕ(s− θ(s̃))‖2 + ‖ϕ\(s̃)− ψ\(s̃)‖2 + ‖ψ(θ(s̃)− s)‖2)

< 4 max
s∈E
‖s− θ(s̃)‖2 +

ε

2

< 4 · ε
8

+
ε

2
= ε.

Therefore Y is an ε-net for SA(F,mn, δ′′, d) with respect to ρE , and so

Nε(SA(F,mn, δ′′, d), ρE) ≤ |Y | ≤ |Z| ≤ Nε′(SA(L, n, δ′, d), ρK) ≤ |SA(L, n, δ, d)|K
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using the fact that δ′ ≤ δ. Consequently

sE(Ω) ≤ sE(F,mn)

≤ sE,ε(F,mn) + κ

≤ lim sup
d→∞

1

d log d
logNε(SA(F,mn, δ′′, d), ρE) + κ

≤ lim sup
d→∞

1

d log d
log |SA(L, n, δ, d)|K + κ

≤ sK(Υ) + 2κ ≤ s(Υ) + 2κ.

Since E was an arbitrary finite subset of Ω and κ an arbitrary positive number, we conclude
that s(Ω) ≤ s(Υ). �

Definition 2.12. A set Ω ⊆ G is said to be approximation regular if s(Ω) = s(Ω). We say that
G is approximation regular if s(G ) = s(G ).

We round out this section by recording a few basic facts about sofic dimension.

Lemma 2.13. Let E and F be nonempty finite subsets of IG and let n ∈ N. Consider a sequence
1 ≤ d1 < d2 < . . . of integers where limk→∞ dk+1/dk = 1. Then

sE(F, n) = inf
δ>0

lim sup
k→∞

1

dk log dk
log |SA(F, n, δ, dk)|E ,

sE(F, n) = inf
δ>0

lim inf
k→∞

1

dk log dk
log |SA(F, n, δ, dk)|E .

In particular, for every ` ∈ N,

sE(F, n) = inf
δ>0

lim sup
d→∞

1

`d log `d
log |SA(F, n, δ, `d)|E ,

sE(F, n) = inf
δ>0

lim inf
d→∞

1

`d log `d
log |SA(F, n, δ, `d)|E .

Proof. For integers 1 ≤ d1 ≤ d2, we have the inclusion Id1 ⊆ Id2 , as partial transformations of
{1, . . . , d1} may be viewed as partial transformations of {1, . . . , d2} which fix the points from
d1 + 1 to d2. It is easily seen that this results in an inclusion SA(F, n, δ, d1) ⊆ SA(F, n, δ′, d2),

where δ′ = δ′(d1, d2) = δ +
√

(d2 − d1)/d2. Thus, δ′ → δ if d1 and d2 are increasing without
bound in such a way that d2/d1 → 1. Moreover, if r = d2/d1 then

d2 log d2

d1 log d1
= r

log d1 + log r

log d1
,

so also this ratio tends to 1. This implies that for every η > 0 and λ > 1 there is a k0 ∈ N such
that for every integer k ≥ k0 and integer d with dk ≤ d ≤ dk+1 we have

λ−1

dk log dk
log |SA(F, n, δ − η, dk)|E ≤

1

d log d
log |SA(F, n, δ, d)|E

≤ λ

dk+1 log dk+1
log |SA(F, n, δ + η, dk+1)|E

and the lemma follows from this. �
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A p.m.p. groupoid G is said to have infinite classes if s−1({x}) is infinite (equivalently, r−1({x})
is infinite) for µ-almost every x ∈ G 0.

Proposition 2.14. Suppose that the p.m.p. groupoid G is sofic and has infinite classes. Then
s(G ) ≥ 1.

Proof. Let m and n be integers greater than 1 and let 0 < ε < 1/2. Since G has infinite classes,
the sets s−1(x)∩ (G \G 0) and r−1(x)∩ (G \G 0) are countably infinite for µ-almost every x ∈ G 0.
By a standard selection theorem [11, Thm. 18.10], as used in the proof of Theorem 1 in [7] in the
equivalence relation setting, there exist a countable Borel partition of G into sets on which the
range and source maps are injective. Thus we can find disjoint Borel sets B1, . . . , Bk ⊆ G \ G 0

and a Borel set Y ⊆ G 0 with µ(Y ) ≥ 1 − ε/2 such that s|Bi and r|Bi are injective for every

i = 1, . . . , k and |s−1(x) ∩
⋃k
i=1Bi| ≥ m for every x ∈ Y . For each i = 1, . . . , k write si for

the element of IG defined by the characteristic function of Bi. Note that τ(si) = 0 for every
i = 1, . . . , k. Set E = {s1, . . . , sk, 1Y }. Take a finite set F ⊆ IG with 1Y ∈ F ∗ = F , an n ∈ N,
and a δ > 0 such that

sE(IG ) + ε ≥ lim inf
d→∞

1

d log d
log |SA(F, n, δ, d)|E .

By shrinking δ if necessary we may assume that it is sufficiently small as a function of ε, m, and
k for a purpose to be described in a moment.

Since G is sofic we can find an ` ∈ N and an (F, n, δ)-approximately multiplicative linear
map ϕ : [IG ] → [I`] such that ϕ(F≤n) ⊆ I` and |tr` ◦ ϕ(s) − τ(s)| < δ for all s ∈ F≤n. Since
τ(si) = 0 for every i = 1, . . . , k, τ(s∗jsi) = 0 for all distinct i, j ∈ {1, . . . k}, and 1Y ∈ F , by
a straightforward approximation argument we can find, assuming δ to be small enough as a
function of ε, m, and k, a set C ⊆ {1, . . . , `} with tr`(1C) > 1− ε such that

(1)
∑k

i=1 ϕ(s∗i si)1C ≥ m · 1C in M`,
(2) tr`(ϕ(si)1C) = 0 for all i = 1, . . . , k,
(3) tr`(ϕ(s∗jsi)1C) = 0 for all distinct i, j ∈ {1, . . . k}, and

(4) ϕ(sj)
∗ϕ(si)c = ϕ(s∗jsi)c for all i, j ∈ {1, . . . , k} and c ∈ C.

Decompose {1, . . . , `} into subsets which are invariant under ϕ(si) for every i = 1, . . . , k and
are minimal with respect to this property. Write A1, . . . , Aq for the members of this collection
which have cardinality at least m. We claim that C ⊆

⋃q
i=1Ai. To verify this, let c ∈ C and

write I for the set of all i ∈ {1, . . . , k} such that the domain of the partial transformation ϕ(si)
contains c. By conditions (1) and (4) above, the set I has cardinality at least m. Now suppose
that ϕ(si)c = ϕ(sj)c for some i, j ∈ I. Then ϕ(s∗jsi)c = ϕ(sj)

∗ϕ(si)c = ϕ(sj)
∗ϕ(sj)c = c. It

follows that i = j, for otherwise trd(ϕ(s∗jsi)1C) > 0, contradicting (3). We thereby deduce that

C ⊆
⋃q
i=1Ai.

Now let d ∈ N. For each j = 0, . . . , d − 1 define the bijection γj : {1, . . . , `} → {j` + 1, j` +
2, . . . , j`+ `} by γj(c) = j`+ c. Define a map ψ : IG → I`d by

ψ(s)(j`+ c) = γj ◦ ϕ(s) ◦ γ−1
j (j`+ c)

for s ∈ G, j = 0, . . . , d− 1, and c = 1, . . . , `. Then ψ is an (F, n, δ)-approximately multiplicative
map such that |tr`d ◦ψ(s)− τ(s)| < δ for all s ∈ F≤n. For each j = 0, . . . , d− 1 and i = 1, . . . , q

write Aj,i for the subset γj(Ai) of {1, . . . , `d}. Set A =
⋃d−1
j=0

⋃q
i=1Aj,i.
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Write ni for the cardinality of Ai. Note that the number of ways of partitioning A into `k
many subsets with cardinalities |Aj,i| for i = 1, . . . , q and j = 0, . . . , d− 1 is bounded below by

|A|!
n1!d · · ·nq!d(dq)!

(the factor (dq)! in the denominator accounts for the possible repetition of cardinalities among
the subsets, yielding the exact formula in the extreme case that all of the subsets have the same
cardinality). For each one of these partitions choose a permutation of {1, . . . , `d} which sends
each partition element to one of the Aj,i with the same cardinality. Write S for the collection of
these permutations. Then the conjugates of ψ by the permutations in S, when restricted to E,
are pairwise distinct by construction. It follows using Lemma 2.13 and Stirling’s approximation
that

s(G ) + ε ≥ sE(IG ) + ε ≥ lim inf
d→∞

1

`d log(`d)
log |SA(F, n, δ, `d)|E

≥ lim inf
d→∞

1

`d log(`d)
log

(
|A|!

n1!d · · ·nq!d(dq)!

)
≥ lim inf

d→∞

1

`d log(`d)
log

(
((1− ε)`d)(1−ε)`d

ndn1
1 · · ·ndnqq (dq)dq

)
≥ lim inf

d→∞

[
1− ε−

∑q
i=1 ni log ni
` log(`d)

− q log(dq)

` log(`d)

]
= 1− ε− q

`

≥ 1− ε− 1

m
.

Since ε was an arbitrary positive number and m an arbitrary integer greater than 1, we conclude
that s(G ) ≥ 1. �

Proposition 2.15. Let F be a finite subset of G . Then s(F ) ≤ |F |.

Proof. For every n ∈ N, δ > 0, and d ∈ N the number of restrictions σ|F where σ ∈ SA(F, δ, n, d)

is at most
(∑d

k=0

(
d
k

)2
k!
)|F |

, which is bounded above by
((

2d
d

)
d!
)|F |

, which for a given ε > 0 is

less than d(1+ε)|F |d for all sufficiently large d by Stirling’s approximation, giving the result. �

Proposition 2.15 immediately implies the following.

Proposition 2.16. The quantity s(G ) is bounded above by the smallest cardinality of a set of
generators for G .

3. Groups

Throughout this section G is a countable discrete group. In this case IG can be identified with
G along with the zero element. We will simply record here some basic facts, and then discuss
amalgamated free products and amenability in the next section.

For the purpose of formulating sofic dimension in the case of groups it is equivalent and
technically more convenient to work with maps into Sd instead of Id, so that the sofic models
for group elements are full permutation matrices. We will also write σs instead of σ(s) for the
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image of an element s ∈ G under a map σ : G→ Sd. Given a finite set F ⊆ G, n, d ∈ N, and a
δ > 0, we write GA(F, n, δ, d) for the set of all identity-preserving maps σ : G→ Sd such that

(1) ‖σs1,...,sn − σs1 · · ·σsn‖2 < δ for all (s1, . . . sn) ∈ (F ∪ F ∗ ∪ {e})×n, and
(2) trd(σs) < δ for all s ∈ (F ∪ F ∗ ∪ {e})n \ {e},

For a finite set E ⊆ G we write |GA(F, n, δ, d)|E for the cardinality of GA(F, n, δ, d) modulo
equality on E, i.e., the cardinality of the set of restrictions σ|E where σ ∈ GA(F, n, δ, d). By
a straightforward argument that uses Lemma 2.5 to handle the problem that the images of a
group element under maps in SA(F, n, δ, d) need not have full domain and that also requires
perturbing maps in SA(F, n, δ, d) so as to be identity-preserving, one can readily verify in the
case E ⊆ F that

sE(F ) = inf
n∈N

inf
δ>0

lim sup
d→∞

1

d log d
log |GA(F, n, δ, d)|E

and

sE(F ) = inf
n∈N

inf
δ>0

lim inf
d→∞

1

d log d
log |GA(F, n, δ, d)|E .

The following are special cases of Propositions 2.14 and 2.16, respectively.

Proposition 3.1. If G is sofic and infinite then s(G) ≥ 1.

Proposition 3.2. The quantity s(G) is bounded above by the smallest cardinality of a set of
generators for G.

Proposition 3.3. Let H be a finite index subgroup of G. Then

(s(H)− 1) ≤ [G : H](s(G)− 1).

Proof. Set m = [G : H]. Take a set R of representatives for the left cosets of H in G with e ∈ R.
Define a map β : G→ R by declaring β(s) to be the unique element in R ∩ sH for every s ∈ G.
Then, given any s ∈ G, writing β(s)(β(s)−1s) gives a unique expression of s as a product of an
element in R and an element of H.

Suppose first that s(H) is finite. Let κ > 0. Take a finite set K ⊆ H such that sK(H) ≥
s(H)−κ. Let E be a finite subset of G containing R and K. Let F be a finite symmetric subset
of G containing R, and let δ > 0 and n ∈ N. Set L = H ∩R−1FR.

Let n ∈ N and δ > 0, and let d ∈ N. Let σ ∈ GA(L, n, δ, d). Define a map ω : G →
Sym({1, . . . , d} ×R) by setting

ωs(c, t) = (σβ(st)−1st(c), β(st))

for all s ∈ G and (c, t) ∈ {1, . . . , d} × R. Now if (s1, . . . , sn) ∈ F×n and (c, t) ∈ {1, . . . , d} × R
then

ωs1···sn(c, t) =
(
σβ(s1···snt)−1s1···snt(c), β(s1 · · · snt)

)
and, using the fact that β(r1β(r2)) = β(r1r2) for all r1, r2 ∈ G,

ωs1 · · ·ωsn(c, t) =

(( n∏
i=1

σβ(si···snt)−1siβ(si+1···snt)

)
(c), β(s1 · · · snt)

)
.
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Now for every t ∈ R, the proportion of c ∈ {1, . . . , d} such that

σβ(s1···snt)−1s1···snt(c) 6=
( n∏
i=1

σβ(si···snt)−1siβ(si+1···snt)

)
(c)

is equal to ‖σβ(s1···snt)−1s1···snt−
∏n
i=1 σβ(si···snt)−1siβ(si+1···snt)‖

2
2. Since β(si · · · snt)−1siβ(si+1 · · · snt)

is an element of L for each i = 1, . . . , n, we infer that ‖ωs1 · · ·ωsn −ωs1···sn‖2 < δ. If s = e, then
ωs is the identity permutation, as required. If s ∈ F\{e}, then for t ∈ R, either (i) β(st) 6= t, in
which case ωs(c, t) 6= (c, t) for every c, or (ii) β(st) = t, in which case β(st)−1st = t−1st 6= e, and
the proportion of c for which ωs(c, t) = (c, t) is less than δ; in either case, we have |tr(ωs)| < δ.
Therefore ω ∈ GA(F, δ, n,md).

Note that ωs(c, e) = (c, s) for every s ∈ R. Write P for the collection of all colorings of
{1, . . . ,md} into d different colors {1, . . . , d}, with exactly m elements of each color. Given
P ∈ P and c ∈ {1, . . . , d} write Pc for the set of elements with color c and choose a bijection
γP : {1, . . . , d} × R → {1, . . . ,md} such that γP ({(c, s) : s ∈ R}) = Pc for each c = 1, . . . , d.
Define σP : G→ Sym(md) by s 7→ γP ωsγ

−1
P ; this is an element of GA(F, δ, n,md) since ω is.

Having thus constructed a σP ∈ GA(F, δ, n,md) for every σ ∈ GA(L, δ, n, d) and P ∈P, we
observe that, given a ρ ∈ GA(F, δ, n,md), if W is a subset of GA(L, δ, n, d)×P such that the
pairs (σ|K , P ) for (σ, P ) ∈ W are all distinct and σP |E = ρ|E for all (σ, P ) ∈ W , then W has

cardinality at most (md)!
(md−d)! , since R ⊆ E. Indeed if σP |E and the d values xc = γP (c, e) for

c = 1, . . . , d are specified, then the coloring P is determined by Pc = {σP,s(xc) : s ∈ R}. Since

P is determined, we know γP and recover σ|K . Thus, since (md)!
(md−d)! ≤ (md)d,

|GA(F, δ, n,md)|E ≥
|P|

(md)d
|GA(L, δ, n, d)|K =

(md)!

m!d(md)d
|GA(L, δ, n, d)|K .

Therefore, employing Lemma 2.13 and using Stirling’s approximation,

sE(F ) ≥ lim sup
d→∞

1

md logmd
log

(md)!

m!d(md)d
+
sK(L)

m

≥ 1− 1

m
+
s(H)

m
+
κ

m
.

Taking an infimum over all finite sets F ⊆ G and letting κ→ 0, we obtain

s(G) ≥ sE(G) ≥ 1− 1

m
+
s(H)

m
,

yielding the desired conclusion.
Observe finally that when s(H) =∞ the above arguments show that s(G) =∞. �

Question 3.4. When is the inequality in the above proposition an equality?

Proposition 3.5. Suppose that G is finite. Then

s(G) = 1− 1

|G|
.

Proof. Applying Proposition 3.3 with H = {e} we obtain s(G) ≥ 1 − |G|−1 since obviously
s({e}) = 0. To complete the proof let us show that s(G) ≤ 1 − |G|−1. Set m = |G|. Let



18 KEN DYKEMA, DAVID KERR, AND MIKAËL PICHOT

0 < κ < 1 be small and let n ∈ N and δ > 0. Let d ∈ N. It is readily seen that if n ≥ 2 and δ is
small enough as a function of κ and |G| then for every σ ∈ GA(G, δ, n, d) the set

Vσ =
{
c ∈ {1, . . . , d} : σst(c) = σs(σt(c)) for all s, t ∈ G and σs(c) 6= c for all s ∈ G \ {e}

}
.

will have cardinality at least (1 − κ)d. Observe that each of the sets Vσ can be partitioned
into σ(G)-invariant subsets of cardinality m, on each of which σ yields a transitive action of G
(thus, a copy of G acting on itself by left multiplication). Let q be the smallest multiple of m
which is no less than (1 − κ)d. The number of subsets of {1, . . . , d} of cardinality q is at most(
d
κd

)
and the number of ways of partitioning each such subset into subsets of cardinality m is at

most q!/((m!)q/m(q/m)!) and the number of ways G can act transitively on each of these sets is
bounded above by m!. Since G can map to permutations on a set of cardinality at most κd in
at most ((κd)!)m ways, we obtain

|GA(G,n, δ, d)| ≤ q!

(m!)q/m(q/m)!
(m!)q/m

(
d

κd

)
((κd)!)m.

Using (1− κ)d ≤ q ≤ (1− κ)d+m and applying Stirling’s approximation,

s(G) = sG(G) ≤ sG(G,n, δ) = lim sup
d→∞

1

d log d
log |GA(G, δ, n, d)| ≤ 1− 1

m
+ κm.

Since κ was an arbitrary number in (0, 1) we conclude that s(G) ≤ 1− 1/m, as desired. �

4. Free product groups with amalgamation over amenable subgroups

We begin by establishing an upper bound for the sofic dimension of amalgamated free prod-
ucts. Recall that Sd acts on the set of maps σ : G→ Sd by (γ · σ)s = γσsγ

−1.

Lemma 4.1. Let G1 and G2 be countable discrete groups and H a common subgroup of G1 and
G2. Then

s(G1 ∗H G2) ≤ s(G1) + s(G2)− 1 +
1

|H|
.

Proof. We may assume that both s(G1) and s(G2) are finite. We will also assume that s(G1 ∗H
G2) is finite. The same argument with minor modifications can be used to handle the case that
s(G1 ∗H G2) is infinite. Let κ > 0. Since G1 ∪ G2 generates G1 ∗H G2, by Theorem 2.11 there
are nonempty finite sets E1 ⊆ G1 and E2 ⊆ G2 such that s(G1 ∗H G2) ≤ sE1∪E2(G1 ∪G2) + κ.
Take nonempty finite sets F1 ⊆ G1 and F2 ⊆ G2 such that sE1(F1) ≤ s(G1) + κ and sE1(F1) ≤
s(G2) + κ.

Suppose first that H is finite. We may assume that H ⊆ E1 and H ⊆ E2. Let d, n ∈ N and
δ > 0. Let σ ∈ GA(F1 ∪ F2, δ, n, d). Set

Vσ =
{
c ∈ {1, . . . , d} : σst(c) = σs(σt(c)) for all s, t ∈ H and σs(c) 6= c for all s ∈ H \ {e}

}
.

and observe that Vσ can be partitioned into σ(H)-invariant subsets of cardinality |H|, on each
of which σ|H defines a transitive action of H. Since the number of partitions of Vσ into sets of

size |H| is equal to |Vσ|!/(|H|!|Vσ |/|H|(|Vσ|/|H|)!) and |Vσ|/d → 1 as δ → 0 independently of d
and σ, we see using Stirling’s approximation that for all sufficiently large d the cardinality of
Sd · σ|H is at least dd(1−1/|H|−κ) for some κ > 0 which does not depend on d or σ with κ → 0
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as δ → 0. Thus, writing Υσ for the subgroup {γ ∈ Sd : γ · σ|H = σ|H} of Sd, we have, for all d
larger than some d0 not depending on σ,

|Υσ| =
|Sd|∣∣Sd · σ|H ∣∣ ≤ d!

dd(1−1/|H|−κ)
(∗)

Now set Λi = {σ|Ei : σ ∈ GA(Fi, δ, n, d)} for i = 1, 2 and Λ = {σ|E1∪E2 : σ ∈ GA(F1 ∪
F2, δ, n, d)}. Since for every σ ∈ GA(F1 ∪ F2, δ, n, d) we have σ|G1 ∈ GA(F1, δ, n, d) and σ|G2 ∈
GA(F2, δ, n, d), and GA(F1, δ, n, d) is invariant under the action of Sd, we can define a map
Θ : Sd × Λ → Λ1 × Λ2 by (γ, ω) 7→ (γ · ω|E1 , ω|E2). If (γ, ω) is a pair in Sd × Λ, then every
other pair in Sd × Λ with the same image as (γ, ω) under Θ has the form (γ̃, ω̃) where γ̃ ∈ Sd,
γ̃ · ω|H = ω|H , ω̃|E1 = γ̃−1 · ω|E1 , and ω̃|E2 = ω|E2 . Note in particular that ω̃ is determined by
γ̃. It follows by (∗) that for all sufficiently large d the inverse image under Θ of each pair in

Λ1 × Λ2 has cardinality at most d!/dd(1−1/|H|−κ), in which case

d!|Λ| = |Sd × Λ| =
∑

(ω1,ω2)∈Λ1×Λ2

|Θ−1(ω1, ω2)| ≤ |Λ1||Λ2|
d!

dd(1−1/|H|−κ)
.

We consequently obtain

s(G1 ∗H G2) ≤ sE1∪E2(F1 ∪ F2) + κ

≤ sE1(F1) + sE2(F2)− 1 +
1

|H|
+ 2κ

≤ s(G1) + s(G2)− 1 +
1

|H|
+ 4κ

Since κ was an arbitrary positive number this yields the desired inequality.
Suppose now that H is infinite. By an argument as in the proof of Proposition 2.14 that

produces a collection of sofic approximations on arbitrarily large finite sets by concatenating
together sofic approximations on a fixed finite set and conjugating, we can find a finite set
H0 ⊆ H, an n ∈ N, and a δ such that, for all sufficiently large d, given a σ ∈ GA(F1, n, δ, d) the

number of restrictions of elements in Sd · σ to H0 is at least dd(1−κ). Assuming that H0 ⊆ E1

and H0 ⊆ E2, this yields, by the same type of argument used above in the case of finite H,

|GA(F1 ∪ F2, n, δ, d)|E1∪E2 ≤ |GA(F1, n, δ, d)|E1 |GA(F2, n, δ, d)|E2d
−d(1−κ),

which again leads to the desired inequality. �

Our goal now is to establish the reverse inequality for lower sofic dimension under the as-
sumption that the common subgroup is amenable (Lemma 4.8).

The following is a perturbative version of the universal property for amalgamated free prod-
ucts.

Lemma 4.2. Let G1 and G2 be countable discrete groups and H a common subgroup. Let
F1 ⊆ G1 and F2 ⊆ G2 be finite symmetric sets both containing e. Let n ∈ N and δ > 0. Then
there are an m ∈ N and an ε > 0 such that if d ∈ N and σ : G1 → Sd and ω : G2 → Sd are
identity-preserving maps satisfying

(1) ‖σs − ωs‖2 < ε for all s ∈ H which are contained in both Fm1 and Fm2 ,
(2) ‖σst − σsσt‖2 < ε for all s, t ∈ Fm1 , and
(3) ‖ωst − ωsωs‖2 < ε for all s, t ∈ Fm2 ,
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then there is an identity-preserving map ρ : G1 ∗H G2 → Sd satisfying

(4) ‖ρs − σs‖2 < δ for all s ∈ F1,
(5) ‖ρs − ωs‖2 < δ for all s ∈ F2, and
(6) ‖ρs1···sr − ρs1 · · · ρsr‖2 < δ for all r = 2, . . . , n and s1, . . . , sr ∈ F1 ∪ F2.

Proof. Suppose to the contrary that no such m and ε exist. We may assume that G1 is generated
by F1 and G2 is generated by F2. Then for every k ∈ N we can find a dk ∈ N and identity-
preserving maps σk : G1 → Sdk and ωk : G2 → Sdk such that ‖σk,s − ωk,s‖2 < 1/k for all

s ∈ F k1 ∩ F k2 , ‖σk,st − σk,sσk,t‖2 < 1/k for all s, t ∈ F k1 , and ‖ωk,st − ωk,sωk,t‖2 < 1/k for all

s, t ∈ F k2 but there is no identity-preserving map ρ : G1 ∗H G2 → Sdk such that ρ|G1 = σk,
ρ|G2 = ωk, and ‖ρs1···sr − ρs1 · · · ρsr‖2 < δ for all r = 2, . . . , n and s1, . . . , sr ∈ F1 ∪ F2. Take a
nonprincipal ultrafilter U on N. Write N for the normal subgroup of G =

∏∞
k=1 Sdk consisting

of all sequences (gk)k such that limk→U ‖gk − id‖2 = 0. Let π : G → G /N be the quotient map.
Define σ′ : G1 → N by σ′s = π((σk,s)k) and ω′ : G2 → N by ω′s = π((ωk,s)k). Then σ′ and ω′

are homomorphisms since F1 and F2 are symmetric and both contain e, and they agree on H.
It follows by the universal property of the amalgamated free product there is a homomorphism
γ : G1 ∗H G2 → G /N such that γ|G1 = σ′ and γ|G2 = ω′. Choose a lift γ̃ : G1 ∗H G2 → G
of γ, which we may take to be identity-preserving. Then for some m ∈ N the composition
ρ = πm ◦ γ, where πm : G =

∏∞
k=1 Sdk → Sdm is the projection, satisfies ‖ρs − σm,s‖2 < δ for all

s ∈ F1, ‖ρs − ωm,s‖2 < δ for all s ∈ F2, and ‖ρs1···sr − ρs1 · · · ρsr‖2 < δ for all r = 2, . . . , n and
s1, . . . , sr ∈ F1 ∪ F2, a contradiction. �

Next we record a special case of Lemma 4.5 of [14], which is based on the quasitiling theorem
of Orntein and Weiss [17]. The numbers λ1, . . . , λk and condition (3) below do not appear in the
statement of Lemma 4.5 of [14], but the proof of the latter is easily seen to yield this stronger
version.

For a finite set D and an ε ≥ 0, we say that a collection {Ai}i∈I of subsets of D is ε-disjoint if

there exist pairwise disjoint sets Âi ⊆ Ai such that |Âi| ≥ (1− ε)|Ai| for all i ∈ I. A set A ⊆ D
is said to ε-cover D if |A| ≥ ε|D|.
Lemma 4.3. Let G be a countable discrete group. Let 0 < ε < 1. Then there are a k ∈ N,
numbers 0 < λ1, . . . , λk ≤ 1 with 1 − ε < λ1 + · · · + λk ≤ 1, and an η > 0 such that whenever
e ∈ T1 ⊆ T2 ⊆ · · · ⊆ Tk are finite subsets of G with |(T−1

j−1Tj) \ Tj | ≤ η|Tj | for j = 2, . . . , k there
exists a finite set K ⊆ G containing e and a δ > 0 such that for every d ∈ N and every map
σ : G→ Sd satisfying

(1) ‖σst − σsσt‖2 < δ for all s, t ∈ K, and
(2) tr(σs) < δ for all s ∈ K−1K \ {e}

there exist C1, . . . , Ck ⊆ {1, . . . , d} such that

(3)
∣∣|Tj ||Cj |/d− λj∣∣ < ε for every j = 1, . . . , d,

(4) for every j = 1, . . . , k and c ∈ Cj, the map s 7→ σs(c) from Tj to σ(Tj)c is bijective,

(5) the sets σ(T1)C1, . . . , σ(Tk)Ck are pairwise disjoint and the family
⋃k
j=1{σ(Tj)c : c ∈ Cj}

is ε-disjoint and (1− ε)-covers {1, . . . , d}.
Lemma 4.4. For every ε > 0 we have

lim
d→∞

min
A∈Id

1

d!2
|{(U, V ) ∈ Sd × Sd : tr(UAV ∗) < ε}| = 1.
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Proof. Let ε > 0. Since the map (U, V ) 7→ V ∗U from Sd × Sd to Sd is d!-to-1 and tr(UAV ∗) =
tr(V ∗UA) for all A ∈ Id, it is enough to prove that

lim
d→∞

min
A∈Id

1

d!
|{U ∈ Sd : tr(UA) < ε}| = 1. (∗)

Let A ∈ Id for some d ∈ N. Take a W ∈ Sd such that AW = AA∗. If U ∈ Sd satisfies tr(U) < ε
then, writing δ1, . . . , δd for the standard basis vectors of Cd,

tr(WUA) = tr(UAW ) = tr(UAA∗)

=
1

d

d∑
k=1

〈UA∗Aδk, δk〉 ≤
1

d

d∑
k=1

〈Uδk, δk〉 = tr(U) < ε.

Since the map U 7→WU is a bijection from Sd to itself, we obtain

|{U ∈ Sd : tr(UA) < ε}| ≥ |{U ∈ Sd : tr(U) < ε}|.

Now it is well known that, for a fixed k ∈ N, the proportion of permutations of {1, . . . , d} which
have exactly k fixed points tends to e−1/k! as d→∞ (see [19], Chap. 3, Sect. 5). It follows that
limd→∞ |{U ∈ Sd : tr(U) < ε}|/d! = 1, yielding (∗). �

The following is a multiparameter version of Theorem 2.1 in [4].

Lemma 4.5. Let n ∈ N. Let ` ∈ {1, . . . , n} and let ρ : {1, . . . , 2n} → {1, 2, . . . , `} be a surjective

map. For k = 1, . . . , 2n and d ∈ N let A
(d)
k ∈ Id. Then there are Cn, Dn > 0 depending only on

n such that

1

d!`

∑
U1,...,U`∈Sd

tr
(
A

(d)
1 (Uρ(1)A

(d)
2 U∗ρ(2))A

(d)
3 (Uρ(3)A

(d)
4 U∗ρ(4)) · · ·A

(d)
2n−1(Uρ(2n−1)A

(d)
2nU

∗
ρ(2n))

)
< Cn max

k=1,...,2n
trd
(
A

(d)
k

)
+
Dn

d
.

Proof. Using independence with respect to the variables U1, . . . , U` and an observation in the
first part of the proof of Theorem 2.1 in [4], for all 1 ≤ i1, i2, . . . , i4n ≤ d we have, writing

Uk = (u
(k)
i,j )i,j ,

1

d!`

∑
U1,...,U`∈Sd

u
(ρ(1))
i1,i2

u
(ρ(2))
i4,i3

u
(ρ(3))
i5,i6

u
(ρ(4))
i8,i7

· · ·u(ρ(2n−1))
i4n−3,4n−2

u
(ρ(2n))
i4n,4n−1

=
∏̀
m=1

1

d!

∑
U∈Sd

∏
k∈ρ−1(m)

{
u

(m)
i2k−1,i2k

k odd

u
(m)
i2k,i2k−1

k even

=

{∏`
m=1

(d−|rm|)!
d! if rm = sm for all m = 1, . . . , `

0 otherwise

where rm and sm are the partitions of ρ−1(m) such that k and k′ belong to the same element of
rm if and only if the first lower indices of the corresponding factors in the middle line agree, and
belong to the same element of sm if and only if the second lower indices of these corresponding
factors agree. For a finite set F write P(F ) for the set of all partitions of F , and for r ∈
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P({1, . . . , 2n}) write I(r) for the subset of {1, . . . , d}2n depending on r that appears in the

proof of Theorem 2.1 in [4]. Writing A
(d)
k = (a

(k)
i,j )i,j , we then have

1

d!`

∑
U1,...,U`∈Sd

tr
(
A

(d)
1 (Uρ(1)A

(d)
2 U∗ρ(2))A

(d)
3 (Uρ(3)A

(d)
4 U∗ρ(4)) · · ·A

(d)
2n−1(Uρ(2n−1)A

(d)
2nU

∗
ρ(2n))

)
≤ 1

d

∑
r1∈P(ρ−1(1))

· · ·
∑

r`∈P(ρ−1(`))

∏̀
m=1

(d− |rm|)!
d!

∑
i∈I(r1∪···∪r`)

a
(1)
i1,i2

a
(2)
i3,i4
· · · a(2n)

i4n−1,i4n

≤ 22n
∑

r∈P({1,...,2n})

d−|r|−1
∑
i∈I(r)

a
(1)
i1,i2

a
(2)
i3,i4
· · · a(2n)

i4n−1,i4n
.

One can now estimate the last expression in the above display as in the proof of Theorem 2.1
in [4] to obtain the result. �

The following result is a standard sort of strengthening of Lemma 4.5 based on concentration
results of Gromov and Milman [9].

Lemma 4.6. Let n ∈ N and ε > 0. Let ` ∈ {1, . . . , n} and let ρ : {1, . . . , 2n} → {1, 2, . . . , `} be

a surjective map. For k = 1, . . . , 2n and d ∈ N let A
(d)
k ∈ Id. Let Cn > 0 be as in Lemma 4.5

and set

Ωd,ε =

{
(U1, . . . , U`) ∈ S`d : trd

(
A

(d)
1 (Uρ(1)A

(d)
2 U∗ρ(2))A

(d)
3 (Uρ(3)A

(d)
4 U∗ρ(4))

· · ·A(d)
2n−1(Uρ(2n−1)A

(d)
2nU

∗
ρ(2n))

)
< Cn max

k=1,...,2n
trd
(
A

(d)
k

)
+ ε

}
.

Then limd→∞ |Ωd,ε|/d!` = 1.

Proof. From Lemma 4.5 we have

1

d!`

∑
U1,...,U`∈Sd

tr
(
A

(d)
1 (Uρ(1)A

(d)
2 U∗ρ(2))A

(d)
3 (Uρ(3)A

(d)
4 U∗ρ(4)) · · ·A

(d)
2n−1(Uρ(2n−1)A

(d)
2nU

∗
ρ(2n))

)
< Cn max

k=1,...,2n
trd
(
A

(d)
k

)
+
Dn

d

for certain constants Cn and Dn depending only on n. Note that

0 ≤ trd
(
A1(U1A2U

∗
2 )A3(U3A4U

∗
4 ) · · ·A2n−1(U2n−1A2nU

∗
2n)
)
≤ 1

for all U1, . . . , U2n ∈ Sd and all Aj ∈ Id. Set f(d) = maxk=1,...,2n trd(A
(d)
k ). From the first display

above we get |Ωd,ε|/d!` ≥ ε/2
Cnf(d)+ε for all sufficiently large d. Since f(d) ≤ 1 for all d, we infer

that lim infd→∞ |Ωd,ε|/d!` > 0 for all ε > 0.
If on Sd we express the normalized Hamming distance

ρd(U, V ) =
1

2
trd(|U − V |2) =

1

2
‖U − V ‖22

in terms of the 2-norm and use the Cauchy-Schwarz and triangle inequalities, then we find
that for every δ > 0 there is an η > 0 such that Nη(Ωd,ε) ⊆ Ωd,ε+δ, where Nη(·) denotes the
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η-neighbourhood with respect to the maximum of the coordinatewise normalized Hamming dis-
tances. Gromov and Milman observe in Remark 3.6 of [9] that results of Maurey [15] imply that
the symmetric groups Sd equipped with normalized Hamming metrics and uniform probability
measures form a Lévy family as d → ∞ (see Chapter 7 of [16]). Since a finite product of Lévy
families is again a Lévy family (see Section 2 of [9]), we conclude that limd→∞ |Nη(Ωd,ε)|/d!` = 1
for all η > 0, yielding the lemma. �

Lemma 4.7. Let n,m ∈ N and ε > 0. Let {Y1, . . . , Y`} be a partition of {1, . . . ,m}. Then there
is a δ > 0 such that the following holds. For d ∈ N fix an identification of Mmd with Mm ⊗Md

which pairs off matrix units with tensors products of matrix units, and for each k = 1, . . . , 2n

let A
(d)
k be a partial permutation matrix in Mmd such that, writing A

(d)
k =

∑m
i,j=1Ei,j ⊗A

(d)
k,i,j ∈

Mm ⊗Md where the Ei,j are matrix units, one has

max
q=1,...,`

max
(i,j)∈Yq×Yq

trd(A
(d)
k,i,j) < δ.

Write Xd for the set of all permutation matrices in Mmd of the form
∑`

r=1 Pr⊗Ur ∈Mm⊗Md

where Pr is the characteristic function of Yr viewed as a diagonal matrix in Mm. Set

Υd,ε =

{
U ∈Xd : trmd

( n∏
k=1

A
(d)
2k−1

(
UA

(d)
2k U

∗)) < ε

}
.

Then limd→∞ |Υd,ε|/|Xd| = 1.

Proof. Since the map (U, V ) 7→ V ∗UV from Xd ×Xd to Xd is |Xd|-to-1, it suffices to prove
that the set

Λd,ε =

{
(U, V ) ∈Xd ×Xd : trmd

( n∏
k=1

A
(d)
2k−1

(
V ∗UV A

(d)
2k (V ∗UV )∗

))
< ε

}
.

satisfies limd→∞ |Λd,ε|/|Xd|2 = 1. Let δ > 0, to be specified. Define h : {1, . . . ,m} → {1, . . . , `}
so that i ∈ Yh(i) for every i = 1, . . . ,m. Write Yd for the set of all

∑`
r=1 Pr ⊗ Vr ∈Xd such that

tr(Vh(i)A
(d)
k,i,jV

∗
h(j)) < δ for all k = 1, . . . , 2n and i, j = 1, . . . ,m with h(i) 6= h(j). By multiple

applications of Lemma 4.4 we infer that limd→∞ |Yd|/|Xd| = 1.

Let V =
∑`

r=1 Pr ⊗ Vr ∈ Yd. Set

Xd,V,ε =

{
U ∈Xd : trmd

( n∏
k=1

V A
(d)
2k−1V

∗(UV A(d)
2k V

∗U∗
))

< ε

}
Let U =

∑`
r=1 Pr ⊗ Ur ∈Xd. The (i, i) entry of

∏n
k=1 V A

(d)
2k−1V

∗(UV A
(d)
2k V

∗U∗) in Mm(Md) ∼=
Mm ⊗Md is equal to the sum over all (i1, . . . , i2n−1) ∈ {1, . . . ,m}2n−1 of the products

n∏
k=1

Vh(i2k−2)A
(d)
2k−1,i2k−2,i2k−1

V ∗h(i2k−1)

(
Uh(i2k−1)Vh(i2k−1)A

(d)
2k,i2k−1,i2k

V ∗h(i2k)U
∗
h(i2k)

)
where i0 = i2n = i. Now given k ∈ {1, . . . , 2n} and i, j ∈ {1, . . . ,m}, if h(i) 6= h(j) then

tr(Vh(i)A
(d)
k,i,jV

∗
h(j)) < δ since V ∈ Yd, while if h(i) = h(j) then by hypothesis

tr(Vh(i)A
(d)
k,i,jV

∗
h(j)) = tr(A

(d)
k,i,j) < δ.
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It follows by multiple applications of Lemma 4.6 that if δ is small enough as a function of ε, m,
and n then we have limd→∞minV ∈Yd |Xd,V,ε|/|Xd| = 1. Since

⋃
V ∈Yd

{(U, V ) : U ∈ Xd,V,ε} is

contained in Λd,ε and limd→∞ |Yd|/|Xd| = 1 from above, we conclude that limd→∞ |Λd,ε|/|Xd|2 =
1, as desired. �

Recall that for sets W ⊆ X and Z and a collection Y of maps from X to Z we write |Y |W
for the cardinality of the the set of restrictions of elements of Y to W .

Lemma 4.8. Let G1 and G2 be countable discrete groups with common amenable subgroup H.
Then

s(G1 ∗H G2) ≥ s(G1) + s(G2)− 1 +
1

|H|
.

Proof. To avoid ambiguities we will view G1 and G2 as subgroups of G1 ∗H G2, in which case
G1 ∩ G2 = H (see [20, Thm. 11.67]). Let θ > 0. Then there exist finite sets E1 ⊆ G1 and
E2 ⊆ G2 such that sE1

(G1) ≥ s(G1) − θ and sE1
(G2) ≥ s(G2) − θ. Take finite symmetric sets

F1 ⊆ G1 and F2 ⊆ G2 each containing e such that sE1∪E2
(G1 ∪G2) ≥ sE1∪E2

(F1 ∪ F2)− θ. We
may assume that E2 ⊆ F2.

Let κ > 0. Let δ > 0, to be determined as a function of κ, and let n be an integer greater
than 2. Set F̃1 = F1 ∪ ((F1 ∪ F2)n ∩H) and F̃2 = F2 ∪ ((F1 ∪ F2)n ∩H). By Lemma 4.2 there
are an integer M ≥ n and a δ′ > 0 such that if d ∈ N and σ : G1 → Sd and ω : G2 → Sd are
identity-preserving maps satisfying ‖σs − ωs‖2 < δ′ for all s ∈ F̃M1 ∩ FM2 , ‖σst − σsσt‖2 < δ′ for

all s, t ∈ F̃M1 , and ‖ωst − ωsωt‖2 < δ′ for all s, t ∈ FM2 , then there is an identity-preserving map

Ω : G1 ∗H G2 → Sd for which ‖Ωs − σs‖2 < δ/(16n) for all s ∈ F̃n1 , ‖Ωs − ωs‖2 < δ/(16n) for all

s ∈ Fn2 , and ‖Ωs1···sr −Ωs1 · · ·Ωsr‖2 < δ/(16n) for all r = 2, . . . , n and s1, . . . , sr ∈ F̃n1 ∪Fn2 . We
may assume that δ′ ≤ δ/(8n).

Set F = (F−1
1 F1)M ∩ (F−1

2 F2)M .
We will first assume that H is infinite in the following part of the argument, and then explain

afterward how to handle the case when H is finite. Let ε > 0, to be determined as a function
of δ, δ′, n, and |F |. Let η > 0 be such that η ≤ ε, to be further specified. Since H is
amenable, we can apply Lemma 4.3 and pass from an ε-disjoint family in its conclusion to a
genuinely disjoint family consisting of translates of tiles of proportionally slightly smaller size
than the original tiles to obtain the following: there exist finite subsets e ∈ T1 ⊆ T2 ⊆ · · · ⊆ Tk
of H with |FTj∆Tj |/|Tj | < η for j = 1, . . . , k, rational numbers 0 < λ1, . . . , λk ≤ 1 with
1− ε < λ1 + · · ·+ λk ≤ 1, a finite set K ⊆ H containing e, and a β > 0 such that, writing m for
the smallest positive integer such that for each j = 1, . . . , k the number λjm is an integer which
|Tj |! divides, for every d ∈ N and every map σ : G→ Smd satisfying

(1) ‖σst − σsσt‖2 < β for all s, t ∈ K, and
(2) trmd(σs) < β for all s ∈ K−1K \ {e}

there exist r1, . . . , rk ∈ N and, for each j = 1, . . . , k, sets Cj,1, . . . , Cj,rj ⊆ {1, . . . ,md} and
Tj,1, . . . , Tj,rj ⊆ Tj with |Tj,r∆Tj |/|Tj | < ε for r = 1, . . . , rj such that

(3) |σ(Tj,1)Cj,1 ∪ · · · ∪ σ(Tj,rj )Cj,rj | = λjmd for every j = 1, . . . , k,
(4) for every j = 1, . . . , k, r = 1, . . . , rj , and c ∈ Cj,r, the map s 7→ σs(c) from Tj,r to σ(Tj,r)c

is bijective,
(5) the sets σ(Tj,r)c for j = 1, . . . , k, r = 1, . . . , rj , and c ∈ Cj,r are pairwise disjoint.
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Let N be a positive integer that m ·
∏k
j=1 |Tj |! divides. Then the cardinality of every subset

of each Tj divides N .
Choose ` ∈ N such that (`− b)/` > max(1− ε, 1−κ) where b is the sum of the cardinalities of

the power sets of the tiles T1, . . . , Tk. Then b is a bound of the total number of tiles Tj,r which
can appear for any σ as above. Set `′ = `− b. We will also assume that ` is sufficiently large as
a function of n and δ for a purpose to be described below.

Let δ′′ > 0, to be determined as a function of δ′. Let δ′′′ > 0 be such that `Nδ′′′ < δ′′/2. Let
δ′′′′ > 0 be smaller than β and δ/(4n), to be further specified as a function of `Nδ′′′.

Let d ∈ N. For brevity write L1 for (F̃−1
1 F̃1)M ∪ (K−1K) ∪ Tk and L2 for (F̃−1

2 F̃2)M ∪
(K−1K) ∪ Tk, and Y1 for SA(L1, n, δ

′′′′, `Nd) and Y2 for SA(L2, n, δ
′′′′, `Nd).

Let σ ∈ Y1 and ω ∈ Y2. We apply our invocation of Lemma 4.3 first to σ to get tiles Tj,r
and sets Cj,r from which, in view of our definition of `′, we can produce sets S̃1, . . . , S̃`′ ⊆ H
and D1, . . . , D`′ ⊆ {1, . . . , `Nd} and a function h : {1, . . . , `′} → {1, . . . , k} such that the sets

σ(S̃i)Di for i = 1, . . . , `′ are pairwise disjoint and, for each i = 1, . . . , `′,

(6) S̃i is equal to Th(i),r for some r and Di is a subset of the corresponding Ch(i),r, and

(7) |S̃i||Di| = Nd.

Note in particular that |S̃i∆Th(i)|/|Th(i)| < ε for i = 1, . . . , `′.

Now we apply our invocation of Lemma 4.3 to ω to get tiles like the Tj,r and S̃i above. In this
case the tiles will be different, but since the numbers λi are independent of σ and ω we can pair
off the tiles S̃i with their counterparts for ω in a way that enables us to construct a permutation
W ∈ S`Nd such that, setting ω′ = W · ω ∈ Y2, there exist an N ′ ∈ N with N ′/N > 1 − 3ε

and tiles S1 ⊆ S̃1, . . . , S`′ ⊆ S̃`′ with |Si|/|S̃i| = N ′/N for each i = 1, . . . , `′ (which we obtain

by intersecting each S̃i with its counterpart for ω and proportionally slightly shrinking these
intersections to achieve the relative cardinality condition, as is possible if we assume N to be
large enough) such that

(8) |Si||Di| = N ′d for every i = 1, . . . , `′,
(9) for every i = 1, . . . , `′ and c ∈ Di the maps s 7→ σs(c) and s 7→ ω′s(c) from Si to σ(Si)c

agree and are bijective,
(10) |Si∆Th(i)|/|Th(i)| < 4ε for every i = 1, . . . , `′,
(11) the sets σ(Si)c for i = 1, . . . , `′ and c ∈ Di are pairwise disjoint.

It follows from (3) that if ε is sufficiently small so that |Th(i)|/|Si| ≤ 2 for i = 1, . . . , `′ then we
will have, for each i = 1, . . . , `′,

|FSi∆Si|
|Si|

≤
|Th(i)|
|Si|

( |FSi∆FTh(i)|
|Th(i)|

+
|FTh(i)∆Th(i)|
|Th(i)|

+
|Th(i)∆Si|
|Th(i)|

)
(∗)

< 2(4|F |ε+ η + 4ε) < (8|F |+ 10)ε.

For i = 1, . . . , `′ set Ni = N ′/|Si|, which is equal to N/|S̃i| and hence is integral by our choice
of N , and write Zi for the set σ(Si)Di = ω′(Si)Di, which has cardinality N ′d. We identify the
subalgebra B(`2(Zi)) ∼= MN ′d of B(`2({1, . . . , `Nd})) ∼= M`Nd with B(`2(Si)) ⊗ B(`2(Di)) ∼=
M|Si| ⊗MNid in such a way that the elements ω′s for s ∈ F act in a manner consistent with (9).
Fix an identification MNid

∼= MNi ⊗Md under which matrix units pair with tensor products of
matrix units. This gives us an identification B(`2(Zi)) ∼= M|Si| ⊗MNi ⊗Md. Writing Pi for the
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characteristic function of Zi viewed as a diagonal matrix in M`Nd, for t ∈ (Fn1 ∪ Fn2 ) \ H we
express PiσtPi (in the case t ∈ G1) or Piω

′
tPi (in the case t ∈ G2) as∑

a,b∈Si

Ni∑
p,q=1

Ea,b ⊗ Ep,q ⊗ V
(t)
i,a,b,p,q ∈M|Si| ⊗MNi ⊗Md

∼= B(`2(Zi))

where the Ea,b and Ep,q are matrix units. WriteR for the orthogonal projection of `2({1, . . . , `Nd})
onto

⊕`′

i=1 `
2(Zi) and Xd,σ,ω,W for the set of all U ∈ S`Nd of the form (1−R) +

∑`′

i=1

∑Ni
p=1 Pi⊗

Ep,p ⊗ Ui,p where Pi ⊗ Ep,p ⊗ Ui,p ∈M|Si| ⊗MNi ⊗Md
∼= B(`2(Zi)).

Let t ∈ (Fn1 ∪ Fn2 ) \ H, i ∈ {1, . . . , `′}, and p ∈ {1, . . . Ni}, and let a, b ∈ Si. We will verify

that trd(V
(t)
i,a,b,p,p) < δ′′. Suppose first that t ∈ Fn1 \ H. Since σbσ

−1
a sends σa(Di) to σb(Di),

writing Q for the projection Eb,b ⊗ Ep,p ⊗ 1Md
we see that

Eb,b ⊗ Ep,p ⊗ V
(t)
i,a,b,p,p = σbσ

−1
a

(
Ea,b ⊗ Ep,p ⊗ V

(t)
i,a,b,p,p

)
= Qσbσ

−1
a σtQ

Also, since σ ∈ SA(L1, n, δ
′′′′′, `Nd), Si ⊆ Th(i) ⊆ L1, t ∈ L1, and n ≥ 3, we have

‖σba−1t − σbσ−1
a σt‖2 ≤ ‖σba−1t − σbσa−1σt‖2 + ‖σb(σa−1 − σ−1

a )σt‖2
< δ′′′′ + ‖σaσa−1 − 1‖2 < 2δ′′′′.

Since Qσba−1tQ = Eb,b ⊗ Ep,p ⊗ V
(ba−1t)
i,b,b,p,p , it follows that if δ′′′′ small enough, independently of

d, then we will have ‖V (ba−1t)
i,b,b,p,p − V

(t)
i,a,b,p,p‖Md,2 < `Nδ′′′. Next note that σ, being an element of

SA(L1, n, δ
′′′′, `Nd), satisfies tr`Nd(σba−1t) < δ′′′′, since b, a−1, t ∈ L1, n ≥ 3, and ba−1t 6= e (as

ba−1 ∈ H and t /∈ H). Consequently

trd(V
(t)
i,a,b,p,p) ≤ trd(V

(ba−1t)
i,b,b,p,p ) + ‖V (ba−1t)

i,b,b,p,p − V
(t)
i,a,b,p,p‖Md,2

< `Ntr`Nd(σba−1t) + `Nδ′′′ < `Nδ′′′′ +
δ′′

2
< δ′′.

By a similar argument using ω′, we may also arrange, by taking δ′′′′ smaller if necessary, that

trd(V
(t)
i,a,b,p,p) < δ′′ in the case that t ∈ Fn2 \H.

Write Υd,σ,ω,W for the set of all U ∈Xd,σ,ω,W such that

tr`′N ′d
(
Ã1Ã2 · · · Ãk

)
< δ′

for all even numbers k ∈ {1, . . . , n} and A1, . . . , Ak alternating membership in {σs : s ∈ Fn1 \H}
and {ω′s : s ∈ Fn2 \ H} where Ãj = Aj if Aj lies in the first of these two sets and Ãj =
(RUR)Aj(RUR)∗ if Aj lies in the second. It then follows by the previous paragraph and
Lemma 4.7 (taking the projections labeled P1, . . . , P` there to be the projections Pi ⊗ Ep,p
for i = 1, . . . , `′ and p = 1, . . . , Ni in the present context) that if k is even and δ′′ is small enough
then limd→∞ |Υd,σ,ω,W |/|Xd,σ,ω,W | = 1 where the convergence is uniform with respect to σ, ω,
and W . Then for all U ∈ Υd,σ,ω,W , k = 1, . . . , bn/2c, A1, A3, . . . , A2k−1 ∈ {σs : s ∈ Fn1 \ H},
and A2, A4, . . . , A2k ∈ {ω′s : s ∈ Fn2 \H} we have, writing R0 for R, R1 for 1−R, and σ0 for the
element of {0, 1}4k whose entries are all 0,

tr`Nd

( k∏
j=1

A2j−1

(
UA2jU

∗))
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=
`′N ′

`N
tr`′N ′d

( k∏
j=1

A2j−1

(
(RUR)A2j(RUR)∗

))

+
∑

σ∈{0,1}4k\{σ0}

tr`Nd

( k∏
j=1

A2j−1Rσ(4j−3)URσ(4j−2)A2jRσ(4j−1)URσ(4j)

))

< δ′ + 24n‖1−R‖2 <
δ

4n

using the fact that δ′ ≤ δ/(8n) and assuming that ` is large enough as a function of n and δ
and that ε is small enough as a function of δ so that `′/` and N ′/N are sufficiently close to 1 to
ensure that 24n‖1−R‖2 < δ/(8n). By the tracial property this shows more generally that

tr`Nd
(
Ã1Ã2 · · · Ãk

)
<

δ

4n
(†)

for all U ∈ Υd,σ,ω,W , even numbers k ∈ {1, . . . , n}, and A1, . . . , Ak alternating membership in

{σs : s ∈ Fn1 \H} and {ω′s : s ∈ Fn2 \H} where Ãj = Aj if Aj lies in the first of these two sets

and Ãj = UAjU
∗ if Aj lies in the second.

Take a U ∈ Υd,σ,ω,W and set ω′′ = U · ω′. By (∗) above as it applies to ω′, if we assume ε
to be small enough as a function of δ′ and |F | and assume δ′′′′ to be small enough so that the
proportion of v ∈ {1, . . . , d} for which ω′sω

′
t(v) = ω′st(v) for all s ∈ F and t ∈ Tk is sufficiently

close to one, then for every s ∈ FM1 ∩FM2 the matrix ω′s almost commutes with U in trace norm to
within a small enough tolerance to ensure that ‖ω′′s −ω′s‖2 < δ′/2. We may similarly guarantee,
by assuming ε to be small enough as a function of δ′ and assuming δ′′′′ to be small enough so
that the proportion of v ∈ {1, . . . , d} for which σsσt(v) = σst(v) for all s ∈ F and t ∈ Tk is
sufficiently close to one, that ‖ω′s − σs‖2 < δ′/2 for every s ∈ FM1 ∩ FM2 . Thus ‖ω′′s − σs‖2 < δ′

for all s ∈ FM1 ∩ FM2 .
In the case that H is finite, we substitute for Lemma 4.3 the fact that a good sofic approx-

imation for H will decompose into transitive orbits off of a set of small proportion. Thus,
if we are given positive integers `, `′ with `′/` > max(1 − ε, 1 − κ) as before then, setting
N = |H|, for every sufficiently good sofic approximation σ : H → {1, . . . , `Nd} there are sets
D1, . . . , D`′ ⊆ {1, . . . , `Nd} each of cardinality d such that

(i) the map s 7→ σs(c) from H to {1, . . . , `Nd} is injective for every c ∈
⋃`′

i=1Di, and

(ii) the sets σ(H)c for c ∈
⋃`′

i=1Di are pairwise disjoint.

We can then carry out a similar kind of analysis as above with the tiles S1, . . . , S`′ all being equal
to H, N ′ being equal to N , and each Ni being equal to 1 in order to obtain ‖ω′′s − σs‖2 < δ′ for
all s ∈ FM1 ∩FM2 as in the previous paragraph. We also define Xd,σ,ω,W as before, i.e., as the set

of all U ∈ S`Nd of the form (1−R) +
∑`′

i=1 Pi ⊗Ui under the appropriate identifications, where
Pi ⊗ Ui ∈ M|H| ⊗Md

∼= B(`2(σ(H)Di)) and R is the orthogonal projection of `2({1, . . . , `Nd})
onto `2

(⋃`′

i=1 σ(H)Di

)
.

Now by our application of Lemma 4.2 at the beginning of the proof there exists an identity-
preserving map Ω : G1 ∗H G2 → Sd such that ‖Ωs − σs‖2 < δ/(16n) for all s ∈ F̃n1 , ‖Ωs −
ω′′s‖2 < δ/(16n) for all s ∈ F̃n2 , and ‖Ωs1···sr − Ωs1 · · ·Ωsr‖2 < δ/(16n) for all r = 1, . . . , n and

s1, . . . , sr ∈ F̃n1 ∪ F̃n2 . Let us verify that Ω belongs to SA(F1∪F2, n, δ, `Nd). We need only check
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that Ωs has trace less than δ when s is a word in F1∪F2 of length at most n which does not equal
e. Suppose then that we are given r ∈ {1, . . . , n} and s1, . . . , sr ∈ F1∪F2 such that s1 · · · sr 6= e.
By a reduction procedure that starts by taking a maximal collection C of disjoint subwords of
s1 · · · sr each of which belongs to H, partitions the complement of the union of C into subwords
which alternate membership in Fn1 and Fn2 , and then concatenates these subwords as necessary

using the fact that F̃1 and F̃2 both contain (F1∪F2)n∩H, we can write s1 · · · sr = t1 · · · tv where
either

(a) v = 1 and t1 ∈ H, or

(b) v ≤ r and t1, . . . , tv alternate membership in F̃n1 \H and F̃n2 \H.

In case (a) we have t1 ∈ (F1 ∪ F2)n ∩H ⊆ F̃1 ∩ L1 and so

tr(Ωs1···sr) ≤ tr(σt1) + ‖σt1 − Ωt1‖2 < δ′′′′ +
δ

16n
≤ δ.

To handle case (b), first observe that, writing ρti = σti if ti ∈ F̃n1 and ρti = ω′′ti if ti ∈ F̃n2 ,

‖Ωs1···sr − ρt1 · · · ρtv‖2 ≤ ‖Ωt1···tv − Ωt1 · · ·Ωtv‖2

+
v∑
i=1

‖ρt1 · · · ρti−1(Ωti − ρti)Ωti+1 · · ·Ωtv‖2

<
δ

16n
+

v∑
i=1

‖Ωti − ρti‖2 <
δ

16n
+ n · δ

16n
≤ δ

2

so that

tr(Ωs1···sr) ≤ tr(ρt1 · · · ρtv) + ‖Ωs1···sr − ρt1 · · · ρtv‖2 < tr(ρt1 · · · ρtv) +
δ

2
.

It thus suffices to show that tr(ρt1 · · · ρtv) < δ/2. If v is even then we have the estimate
tr(ρt1 · · · ρtv) < δ/(4n) provided by (†) (the division by 4n will be useful below). In the case

v = 1 we have t1 ∈ F̃n1 ∪ F̃n2 ⊆ L1 ∪ L2 so that

tr(ρt1) < δ′′′′ <
δ

4n
.

Finally, if v is odd and greater than 1, we first note that t1 and tv either both belong to F̃n1 or

both belong to F̃n2 so that ‖ρtvρt1 − ρtvt1‖2 < δ′′′′ ≤ δ/(4n), and then subdivide into two cases:

(c) tvt1 /∈ H. As tvt1 belongs to F̃n1 if t1, tv ∈ F̃n1 or to F̃n2 if t1, tv ∈ F̃n2 , we can reduce to
the case of even v:

tr(ρt1 · · · ρtv) ≤ tr(ρtvt1ρt2 · · · ρtv−1) + ‖(ρtvρt1 − ρtvt1)ρt2 · · · ρtv−1‖2

<
δ

4n
+

δ

4n
=

δ

2n
.

(d) tvt1 ∈ H. In this case tvt1t2 /∈ H, tvt1 belongs to one of F̃n1 and F̃n2 and t2 to the other,

and tvt1t2 ∈ F̃n1 ∪ F̃n2 since tvt1 ∈ (F1 ∪ F2)n ∩H. Thus

‖ρtvt1t2 − ρtvt1ρt2‖2 ≤ ‖ρtvt1t2 − Ωtvt1t2‖2 + ‖Ωtvt1t2 − Ωtvt1Ωt2‖2
+ ‖(Ωtvt1 − ρtvt1)Ωt2‖2 + ‖ρtvt1(Ωt2 − ρt2)‖2
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< 4 · δ

16n
=

δ

4n

and so

tr(ρt1 · · · ρtv) ≤ tr(ρtvt1t2ρt3 · · · ρtv−1) + ‖ρtvt1t2 − ρtvt1ρt2‖2
+ ‖(ρtvt1 − ρtvρt1)ρt2‖2

< tr(ρtvt1t2ρt3 · · · ρtv−1) +
δ

2n
.

To estimate tr(ρtvt1t2ρt3 · · · ρtv−1) we again run through the procedure for handling the
case of odd v in (b) with ρt1 · · · ρtv now replaced by the shorter product ρtvt1t2ρt3 · · · ρtv−1 .
This may lead us back repeatedly into case (d), but after less than n steps the process
will stop, with the estimates accumulating to yield tr(ρt1 · · · ρtv) < δ/2.

We conclude that Ω ∈ SA(F1 ∪ F2, n, δ, `Nd), as desired.
We finish the proof with the following counting argument. Note that Ω was obtained by

amalgamating perturbations of σ and ω′′, where the latter was obtained from ω by conjugating
by W and then by U . The set Λd,σ,ω of all products UW such that U and W together do the
required job has cardinality at least |Xd,σ,ω,W0 |/2 for all d larger than some d0 not depending
on σ or ω, where W0 is any fixed W doing the required job. Thus, by Stirling’s approximation
and the fact that `′ > (1− κ)`, for all sufficiently large d we have

|Λd,σ,ω| ≥
1

2
|Xd,σ,ω,W0 | ≥

1

2
d!`
′ ≥ d`d(1−κ)

and hence, writing S for the set of all U ∈ S`Nd such that (U · ω)|E2 = ω|E2 ,

|S`Nd · ω|E2 =
|S`Nd|
|S|

≤ (`Nd)`Nd

|S|
·
|Λd,σ,ω|
d`d(1−κ)

= (`Nd)`Ndd−`d(1−κ) |Λd,σ,ω|
|S|

≤ (`Nd)`Ndd−`d(1−κ)|Λd,σ,ω · ω|E2 .

Let R be a set of representatives for the orbits of the action of S`Nd on Y2 modulo the relation
of equality on E2. Then |Y2|E2 =

∑
ω∈R |S`Nd · ω|E2 . Since E2 ⊆ L2, by Lemma 2.5 we see

that, independently of d, if δ is small enough as a function of κ then, modulo the relation of
equality on E2, given a σ ∈ Y1 at most (`Nd)κ`Nd many ω ∈ Y2 which all differ on E2 can lead
via our procedure to maps Ω which all agree on E1 ∪ E2. Take a set Y ′1 of representatives for
the relation on Y1 given by equality on E1. By Lemma 2.5, if δ is small enough independently
of d then we can find a Y ′′1 ⊆ Y ′1 with |Y ′′1 | ≥ (`Nd)−κ`Nd|Y ′1 | such that distinct elements of
Y ′′1 give rise to maps Ω which disagree on E1 no matter which elements of Y2 are used. We
therefore obtain, for all sufficiently large d,

|SA(F1 ∪ F2, n, δ, `Nd)|E1∪E2 ≥ (`Nd)−κ`Nd
∑
σ∈Y ′′1

∑
ω∈R

|Λd,σ,ω · ω|E2

≥ (`Nd)−`Nd(1+κ)d`d(1−κ)|Y ′′1 |
∑
ω∈R

|S`Nd · ω|E2
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≥ (`Nd)−`Nd(1+2κ)d`d(1−κ)|Y1|E1

∑
ω∈R

|S`Nd · ω|E2

= (`Nd)−`Nd(1+2κ)d`d(1−κ)|Y1|E1 |Y2|E2

and hence, in view of Lemma 2.13,

lim inf
d→∞

1

`Nd log(`Nd)
|SA(F1 ∪ F2, n, δ, `Nd)|E1∪E2

≥ lim inf
d→∞

1

`Nd log(`Nd)
|SA(L1, n, δ

′′′′, `Nd)|E1

+ lim inf
d→∞

1

`Nd log(`Nd)
|SA(L2, n, δ

′′′′, `Nd)|E2 − 1 +
1

N
(1− κ)− 2κ

≥ sE1
(L1) + sE2

(L2)− 1 +
1

N
(1− κ)− 2κ.

Since n was an arbitary postive integer, κ and δ can be taken arbitrarily small, and N = |H|
in the case that H is finite, it follows that sE1∪E2

(F1 ∪ F2) ≥ sE1
(G1) + sE2

(G2) − 1 + |H|−1.
Thus, using Theorem 2.11 together with the fact that G1 ∪G2 generates G1 ∗H G2,

s(G1 ∗H G2) = s(G1 ∪G2)

≥ sE1∪E2
(G1 ∪G2)

≥ sE1∪E2
(F1 ∪ F2)− θ

≥ sE1
(G1) + sE2

(G2)− 1 +
1

|H|
− θ

≥ s(G1) + s(G2)− 1 +
1

|H|
− 3θ.

Since θ was an arbitrary positive number we thereby obtain the result. �

Remark 4.9. Lemma 4.8, in conjunction with Propositions 3.1 and 3.5, gives a free probability
proof that G1∗HG2 is sofic whenever G1 and G2 are sofic countable discrete groups with common
amenable subgroup H. This fact was established for monotileable H in [4] using similar free
probability arguments, and in general in [6] by means of graph techniques and in [18] using
Bernoulli shifts and equivalence relations.

Combining Lemmas 4.1 and 4.8 we obtain the following.

Theorem 4.10. Let G1 and G2 be countable discrete groups with common amenable subgroup
H. Suppose that G1 and G2 are approximation regular. Then G1 ∗HG2 is approximation regular
and

s(G1 ∗H G2) = s(G1) + s(G2)− 1 +
1

|H|
.

Corollary 4.11. Let r ∈ N ∪ {∞}. Then s(Fr) = s(Fr) = r.

Proof. If r <∞ then we can repeatedly apply Theorem 4.10 using the fact that s(Z) = s(Z) = 1,
which one can either compute directly or obtain from Theorem 4.12 below. Consider then the
case r = ∞. Let s1, s2, . . . be the standard generators for F∞. Then, in the spirit of the
proof of Lemma 4.7, for positive integers n ≤ m one can show by repeated application of
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Lemma 4.6 that a random choice of m permutations of a finite set {1, . . . , d} will, with high
probability, be a good sofic model for G up to within some prescribed precision. This will
demonstrate that s{s1,...,sn}({s1, . . . , sm}) = n and hence s{s1,...,sn}(F∞) = n, so that s(F∞) =∞
by Theorem 2.11. �

Theorem 4.12. Suppose that G is amenable. Then s(G) = s(G) = 1− |G|−1.

Proof. By Proposition 3.5 we may assume that G is infinite. Then by Proposition 2.14 we
have s(G) ≥ s(G) ≥ 1. On the other hand, it follows from Lemma 4.3 that for any two good
enough sofic approximations G → Sym(d) there is an element of Sym(d) which approximately
conjugates one to the other in trace norm on a prescribed finite set, with this approximation
not depending on d. Consequently s(G) ≤ 1. �

The above theorem shows that all subsets of an amenable group are approximation regular,
since amenability passes to subgroups.

5. Group actions

Throughout this section and the next G denotes a countable discrete group and (X,µ) a
standard probability space, which are arbitrary unless otherwise specified. Let α a measure-
preserving action of G on (X,µ). The notation α will actually be reserved for the induced
action of G on L∞(X,µ), so that αs(f)(x) = f(s−1x) for s ∈ G, f ∈ L∞(X,µ), and x ∈ X,
with concatenation being used for the action on X. For a set of projections P ⊆ L∞(X,µ)
and a nonempty finite set F ⊆ G, we write PF for the set of the projections of the form∏
s∈F αs(ps) where ps ∈ P. We say that a subset Ω of L∞(X,µ) is dynamically generating if the

set
⋃
s∈G{αs(a) : a ∈ Ω} generates L∞(X,µ) as a von Neumann algebra. In the case that Ω is

a partition of unity consisting of projections this is the same as the underlying partition of X
being generating for the action.

We write s(G,X) for s(G ), s(G,X) for s(G ), and IG,X for IG , where G is the p.m.p. groupoid
associated to the action. For a group element s we write us for the corresponding element in
IG,X . We say that the action is approximation regular if s(G,X) = s(G,X).

For the purpose of working with s(G,X) and s(G,X) it is often more convenient to handle the
group and space components separately as follows. Let σ be a map from G to Sd for some d ∈ N.
The image σs of a group element s under σ will usually be interpreted as a permutation matrix in
Md. Viewed as such, σs gives rise to an automorphism Adσs of Cd as identified with the algebra
diag(Md) of diagonal matrices in Md. Let F be a nonempty finite subset of G and δ > 0.
Recall from the previous section that GA(F, n, δ, d) denotes the set of all identity-preserving
maps σ : G → Sd such that ‖σs1,...,sn − σs1 · · ·σsn‖2 < δ for all (s1, . . . sn) ∈ (F ∪ F ∗ ∪ {e})×n
and tr(σs) < δ for all s ∈ (F ∪F ∗ ∪{e})n \ {e}. Let P be a finite set of projections in L∞(X,µ).
Write HA(F,P, n, δ, d) for the set of all pairs (σ, ϕ) where σ ∈ GA(F, n, δ, d) and ϕ is a unital
homomorphism from span(P(F∪F ∗∪{e})n) to Cd = diag(Md) satisfying

(i) |tr ◦ ϕ(p)− µ(p)| < δ for all p ∈ P(F∪F ∗∪{e})n ,
(ii) ‖ϕ ◦ αs(p)−Adσs ◦ ϕ(p)‖2 < δ for all p ∈ P and s ∈ (F ∪ F ∗ ∪ {e})n.

Given sets A1, A2, B1, B2, Z1, Z2 and a collection Y of ordered pairs consisting of maps A1 → Z1

and A2 → Z2, we write |Y |B1,B2 for the cardinality of the set of pairs (σ|B1∩A1 , ϕ|B2∩A2) where
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(σ, ϕ) ∈ Y . For a finite set E ⊆ G and a finite set Q of projections in L∞(X,µ) we set

sE,Q(F,P, n, δ) = lim sup
d→∞

1

d log d
log |HA(F,P, n, δ, d)|E,Q,

sE,Q(F,P, n) = inf
δ>0

sE,Q(F,P, n, δ),

sE,Q(F,P) = inf
n∈N

sE,Q(F,P, n).

and

sE,Q(F,P, n, δ) = lim inf
d→∞

1

d log d
log |HA(F,P, n, δ, d)|E,Q,

sE,Q(F,P, n) = inf
δ>0

sE,Q(F,P, n, δ),

sE,Q(F,P) = inf
n∈N

sE,Q(F,P, n).

A simple approximation argument shows the following.

Proposition 5.1. Let E,F ⊆ G be finite sets and let Q be a finite set of projections in L∞(X,µ).

Let P be a finite partition of unity in L∞(X,µ) consisting of projections. Then the set P̃ of all
projections in the ∗-subalgebra spanned by P satisfies

sE,Q(F, P̃) = sE,Q(F,P).

Proposition 5.2. Let F be a finite symmetric subset of G containing e and let P be a set
consisting of the projections in some finite-dimensional unital ∗-subalgebra A of L∞(X,µ). Let
E be a finite subset of G and Q a subset of P. Then sE∪Q(F ∪P) = sE,Q(F,P) and sE∪Q(F ∪P) =
sE,Q(F,P).

Proof. First we show that sE∪Q(F ∪ P) ≥ sE,Q(F,P) and sE∪Q(F ∪ P) ≥ sE,Q(F,P). Let n ∈ N
and δ > 0. Let δ′ > 0 be such that 3nδ′ < δ. Let d ∈ N. Let (σ, ϕ) ∈ HA(F,P, n, δ′, d). Write P̃

for the subset of P consisting of the minimal projections of A. Define a map Φσ,ϕ : IG → Id by

setting Φσ,ϕ(pus) = ϕ(p)σs for all p ∈ P̃Fn and s ∈ G, extending linearly, and then extending
arbitrarily to all of IG . Note in particular that Φσ,ϕ(1) = 1 since σ is identity-preserving and ϕ
is unital. We will show that Φσ,ϕ ∈ SA(F ∪ P, n, δ, d).

Let p1, . . . pn ∈ P and s1, . . . sn ∈ F . Then( n∏
i=1

ϕ(pi)σsi

)
σ−1
sn · · ·σ

−1
s1 =

n∏
i=1

(Adσs1 · · ·σsi−1)(ϕ(pi))

and so by untelescoping to estimate the difference of products we obtain∥∥∥∥ϕ( n∏
i=1

αs1···si−1(pi)

)
−
( n∏
i=1

ϕ(pi)σsi

)
σ−1
sn · · ·σ

−1
s1

∥∥∥∥
2

≤
n∑
i=2

(
‖ϕ(αs1···si−1(pi))−Adσs1···si−1(ϕ(pi))‖2

+ ‖(Adσs1···si−1 −Adσs1 · · ·σsi−1)(ϕ(pi))‖2
)
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< (n− 1)δ′ + 2

n∑
i=2

‖σs1···si−1 − σs1 · · ·σsi−1‖2

< 3(n− 1)δ′.

Since
∏n
i=1 piusi = (

∏n
i=1 αs1···si−1(pi))us1···sn , it follows that∥∥∥∥Φσ,ϕ

( n∏
i=1

piusi

)
−

n∏
i=1

Φσ,ϕ(pi)Φσ,ϕ(usi)

∥∥∥∥
2

=

∥∥∥∥ϕ( n∏
i=1

αs1···si−1(pi)

)
σs1···sn −

n∏
i=1

ϕ(pi)σsi

∥∥∥∥
2

=

∥∥∥∥ϕ( n∏
i=1

αs1···si−1(pi)

)
(σs1···sn − σs1 · · ·σsn)

∥∥∥∥
2

+

∥∥∥∥ϕ( n∏
i=1

αs1···si−1(pi)

)
−
( n∏
i=1

ϕ(pi)σsi

)
σ−1
sn · · ·σ

−1
s1

∥∥∥∥
2

< ‖σs1···sn − σs1 · · ·σsn‖2 + 3(n− 1)δ′ < (3n− 2)δ′ < δ.

Since 1 ∈ P and e ∈ F this shows that ‖Φσ,ϕ(a1 · · · ak) − Φσ,ϕ(a1) · · ·Φσ,ϕ(ak)‖ < δ for

all k = 1, . . . , n and (a1, . . . , ak) ∈ (F ∪ P)×k. Note also that if s1 · · · sn = e then, since∏n
i=1 αs1···si−1(pi) ∈ PFn ,∣∣∣∣tr ◦ Φσ,ϕ

( n∏
i=1

piusi

)
− τ
( n∏
i=1

piusi

)∣∣∣∣ =

∣∣∣∣(tr ◦ ϕ− µ)

( n∏
i=1

αs1···si−1(pi)

)∣∣∣∣ < δ′ < δ,

while if s1 · · · sn 6= e then∣∣∣∣tr ◦ Φσ,ϕ

( n∏
i=1

piusi

)
− τ
( n∏
i=1

piusi

)∣∣∣∣ =

∣∣∣∣tr(ϕ( n∏
i=1

αs1···si−1(pi)

)
σs1···sn

)∣∣∣∣
≤ tr(σs1···sn) < δ′ < δ.

Since 1 ∈ P and e ∈ F , this shows that |tr ◦ Φσ,ϕ(a) − τ(a)| < δ for all a ∈ (F ∪ P)≤n. We
have thus verified that Φσ,ϕ ∈ SA(F ∪ P, n, δ, d). Since for any (σ, ϕ), (ω, ψ) ∈ HA(F,P, n, δ′, d)
such that (σ|E , ϕ|Q) and (ω|E , ψ|Q) are distinct the restrictions of Φσ,ϕ and Φω,ψ to E ∪ Q are
distinct, it follows that

|SA(F ∪ P, n, δ, d)|E∪Q ≥ |HA(F,P, n, δ′, d)|E,Q,
from which we infer that sE∪Q(F ∪ P) ≥ sE,Q(F,P) and sE∪Q(F ∪ P) ≥ sE,Q(F,P).

To prove the reverse inequalities, let n ∈ N, and let m be an integer larger than 6|Fn|. Let

δ′ be a positive number smaller than δ/(5 + 4n), δ/(2|P||F |m), and δ/36, to be further specified.
Let d ∈ N. Let Φ ∈ SA(F ∪ P,m, δ′, d). Let s1, . . . , sk be a enumeration of the elements of
Fn, for the purpose of indexing noncommutative products below. Given a p ∈ PFn , writing

p =
∏k
i=1 usipsiu

∗
si where the psi are projections in P, we have by Lemma 2.10∥∥∥∥ k∏

i=1

Φ(u∗si)
∗Φ(psi)

∗Φ(usi)
∗ −

k∏
i=1

Φ(usi)Φ(psi)Φ(u∗si)

∥∥∥∥
2
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≤
k∑
i=1

(
‖Φ(u∗si)

∗ − Φ(usi)‖2 + ‖Φ(psi)
∗ − Φ(psi)‖2 + ‖Φ(usi)

∗ − Φ(u∗si)‖2
)

≤ 12|Fn|δ′

and thus, using the fact that m > 6|Fn|,

‖Φ(p)∗Φ(p)− Φ(p)‖2 (1)

≤
∥∥∥∥(Φ(p)−

k∏
i=1

Φ(usk−i+1
)Φ(psk−i+1

)Φ(u∗sk−i+1
)

)∗
Φ(p)

∥∥∥∥
2

+

∥∥∥∥( k∏
i=1

Φ(u∗si)
∗Φ(psi)

∗Φ(usi)
∗ −

k∏
i=1

Φ(usi)Φ(psi)Φ(u∗si)

)
Φ(p)

∥∥∥∥
2

+

∥∥∥∥( k∏
i=1

Φ(usi)Φ(psi)Φ(u∗si)

)(
Φ(p)−

k∏
i=1

Φ(usi)Φ(psi)Φ(u∗si)

)∥∥∥∥
2

+

∥∥∥∥ k∏
i=1

Φ(usi)Φ(psi)Φ(u∗si)
k∏
i=1

Φ(usi)Φ(psi)Φ(u∗si)− Φ(p2)

∥∥∥∥
2

< (3 + 12|Fn|)δ′.

For p, q ∈ PFn we have, by a similar estimate again using the fact that m > 6|Fn|,

‖Φ(pq)− Φ(p)Φ(q)‖2 < 3δ′. (2)

As before, write P̃ for the subset of P consisting of the minimal projections in A. Pick a p0 ∈ P̃Fn .
Since Φ(p)∗Φ(p) is a projection in diag(Md) for every p ∈ P̃Fn , it follows from (1) and (2) and a
straightforward perturbation argument that we can find pairwise orthogonal projections ϕΦ(p) ∈
Cd ∼= diag(Md) for p ∈ P̃Fn \ {p0} such that ‖ϕΦ(p) − Φ(p)‖2 is as small as we wish for every

p ∈ P̃Fn \ {p0} granted that δ′ is taken small enough. Setting ϕΦ(p0) = 1−
∑

p∈P̃Fn\{p0} ϕΦ(p)

and extending linearly we obtain a unital homomorphism ϕΦ : span(PFn)→ Cd, and by taking
δ′ small enough we can ensure that ‖ϕΦ(p)−Φ(p)‖2 < δ/(3n) for every projection p in the linear
span of PFn . For s ∈ Fn \ {e} the partial isometry Φ(us) satisfies ‖Φ(u∗s) − Φ(us)

∗‖2 < 3δ′ by
Lemma 2.10 and hence

‖Φ(us)
∗Φ(us)− 1‖2 ≤ ‖(Φ(us)

∗ − Φ(u∗s))Φ(us)‖2 + ‖Φ(u∗s)Φ(us)− Φ(u∗sus)‖2
< 4δ′,

which means that we can construct a permutation matrix σΦ,s ∈ Sd such that ‖σΦ,s−Φ(us)‖2 <
4δ′. For all other s ∈ G we set σΦ,s = 1, giving us a map σΦ : G→ Sd. For all (s1, . . . , sn) ∈ F×n
we have

‖σΦ,s1···sn − σΦ,s1 · · ·σΦ,sn‖2
≤ ‖σΦ,s1···sn − Φ(us1···sn)‖2

+ ‖Φ(us1 · · ·usn)− Φ(us1) · · ·Φ(usn)‖2
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+

n∑
i=1

‖σΦ,s1 · · ·σΦ,si−1(Φ(usi)− σΦ,si)Φ(usi+1) · · ·Φ(usn)‖2

< (5 + 4n)δ′ < δ

while for s ∈ Fn \ {e} we have

tr(σΦ,s) = tr(σΦ,s − Φ(us)) + tr(Φ(us)) < 5δ′ < δ,

so that σΦ ∈ GA(F, n, δ, d).
For p ∈ PFn we have, since PFn ⊆ (F ∪ P)m,

|tr ◦ ϕΦ(p)− µ(p)| ≤ |tr(ϕΦ(p)− Φ(p))|+ |tr ◦ Φ(p)− τ(p)|

≤ ‖ϕΦ(p)− Φ(p)‖2 + δ′ <
δ

2
+
δ

2
= δ.

Note also that for p ∈ P and s ∈ Fn we have, using Lemma 2.10,

‖ϕΦ ◦ αs(p)−AdσΦ,s ◦ ϕΦ(p)‖2
≤ ‖ϕΦ(uspu

∗
s)− Φ(uspu

∗
s)‖2 + ‖Φ(uspu

∗
s)− Φ(us)Φ(p)Φ(u∗s)‖2

+ ‖(Φ(us)− σΦ,s)Φ(p)Φ(u∗s)‖2 + ‖σΦ,s(Φ(p)− ϕΦ(p))Φ(u∗s)‖2
+ ‖σΦ,sϕΦ(p)(Φ(u∗s)− Φ(us)

∗)‖2 + ‖σΦ,sϕΦ(p)(Φ(us)− σΦ,s)
∗‖2

<
δ

3
+ δ′ + 4δ′ +

δ

3
+ 3δ′ + 4δ′ < δ.

Thus (σΦ, ϕΦ) ∈ HA(F,P, n, δ, d).
It is clear from the above construction of σΦ and ϕΦ for each Φ ∈ SA(F ∪ P,m, δ′, d) that

we can find a small enough ε > 0 not depending on d with ε → 0 as δ → 0 such that for any
Φ,Ψ ∈ SA(F ∪P,m, δ′, d) satisfying ρE∪Q(Φ,Ψ) ≥ ε the pairs (σΦ|E , ϕΦ|Q) and (σΨ|E , ϕΨ|Q) are
distinct. Therefore

d−κd|SA(F ∪ P,m, δ′, d)|E∪Q ≤ |HA(F,P, n, δ, d)|E,Q
for some κ > 0 with κ → 0 as ε → 0, by Lemma 2.5. Letting δ → 0 we obtain sE∪Q(F ∪ P) ≤
sE,Q(F,P) and sE∪Q(F ∪ P) ≤ sE,Q(F,P), yielding the proposition. �

The next result is a consequence of Theorem 2.11, Proposition 5.1, and Proposition 5.2. Note
that L∞(X,µ) can be written as the L2 closure of a increasing sequence of finite-dimensional
unital ∗-subalgebras, and the set of nonzero projections in the union of such a sequence is
dynamically generating.

Proposition 5.3. Let Gy (X,µ) be a measure-preserving action. Let Ω be a generating subset
of G and M a dynamically generating ∗-subalgebra of L∞(X,µ). Then

s(G,X) = sup
E

sup
Q

inf
F

inf
P
sE,Q(F,P),

s(G,X) = sup
E

sup
Q

inf
F

inf
P
sE,Q(F,P)

where in both lines E and F run over the finite subsets of Ω and P and Q run over the finite
partitions of unity in M consisting of projections. In particular, if F is a finite generating
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subset of G and P a dynamically generating finite partition of unity in L∞(X,µ) consisting of
projections then

s(G,X) = sF,P(F,P),

s(G,X) = sF,P(F,P).

Proposition 5.4. Let G y (X,µ) be a measure-preserving action. Then s(G,X) ≤ s(G) and
s(G,X) ≤ s(G).

Proof. Let E and F be finite subsets of G and P and Q finite partitions of unity in L∞(X,µ)
consisitng of projections. Let n ∈ N, and δ > 0. Let d ∈ N. The number of restrictions ϕ|Q
where ϕ is a unital homomorphism from span(PFn) to Cd is at most |Q|d. Therefore

|HA(F,P, n, δ, d)|E,Q ≤ |Q|d|SA(F, n, δ, d)|E ,

from which we deduce that sE,Q(F,P) ≤ sE(F ) and sE,Q(F,P) ≤ sE(F ). Now apply Proposi-
tion 5.3 to obtain the result. �

Theorem 5.5. Let (Y, ν) be a probability space with Y finite and let G y (X,µ) = (Y, ν)G be
the Bernoulli action. Then s(G,X) = s(G) and s(G,X) = s(G).

Proof. By Proposition 5.4 it suffices to show that s(G,X) ≥ s(G) and s(G,X) ≥ s(G). This is
a consequence of Section 8 of [2], which shows that every sufficiently good sofic approximation
for G is compatible with a suitable sofic approximation for the action. �

Proposition 5.6. Let G y (X,µ) be a measure-preserving action. Then either s(G,X) ≥
1− |G|−1 or s(G,X) = −∞.

Proof. If s(G,X) 6= −∞ then the groupoid associated to the action is sofic, and an argument
as in the proof of Proposition 2.14 shows that s(G,X) ≥ 1− |G|−1. �

Theorem 5.7. Suppose that G is amenable. Let G y (X,µ) be a measure-preserving action.
Then s(G,X) = s(G,X) = 1− |G|−1.

Proof. In view of Propositions 5.4 and 5.6 and Theorem 4.12, it suffices to show that s(G,X) 6=
−∞. But this follows for example from Theorem 6.8 of [14]. �

6. Actions of free products

In this final section we derive a free product formula for actions. In the case of free actions a
more general formula is established in [5] using an equivalence relation approach. We follow the
notational conventions of the previous section. Also, we will write sE,P(G,X) and sE,P(G,X)
to mean sE∪P(IG,X) and sE∪P(IG,X), respectively, where as before IG,X is the p.m.p. groupoid
associated to the action Gy (X,µ).

Lemma 6.1. Let G1 and G2 be countable discrete groups. Let α be a measure-preserving action
of G1 ∗G2 on (X,µ). Then

s(G1 ∗G2, X) ≤ s(G1, X) + s(G2, X).
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Proof. Let κ > 0. SinceG1∪G2 generatesG1∗G2, by Theorem 2.11 there are nonempty finite sets
E1 ⊆ G1 and E2 ⊆ G2 and a finite set Q of projections in L∞(X,µ) such that s(G1 ∗G2, X) ≤
sE1∪E2∪Q(G1 ∗ G2, X) + κ. Take nonempty finite sets F1 ⊆ IG1,X and F2 ⊆ IG2,X such that
sE1∪Q(F1) ≤ s(G1, X) + κ and sE2∪Q(F2) ≤ s(G2, X) + κ. Given d, n ∈ N and δ > 0, for every
element ϕ ∈ SA(F1∪F2, n, δ, d) we have ϕ|[IG1,X

] ∈ SA(F1, n, δ, d) and ϕ|[IG2,X
] ∈ SA(F2, n, δ, d).

Hence

|SA(F1 ∪ F2, n, δ, d)|E1∪E2∪Q ≤ |SA(F1, n, δ, d)|E1∪Q|SA(F2, n, δ, d)|E2∪Q

and so

s(G1 ∗G2, X) ≤ sE1∪E2∪Q(F1 ∪ F2) + κ

≤ sE1∪Q(F1) + sE2∪Q(F2) + κ

≤ s(G1, X) + s(G2, X) + 3κ.

Since κ was an arbitrary positive number we obtain the lemma. �

The proof of the following lemma is similar to that of Lemma 2.13.

Lemma 6.2. Let P be a finite partition of unity in L∞(X,µ) consisting of projections. Let Q

be a finite set of projections in L∞(X,µ). Let E and F be finite subsets of G, n ∈ N, and δ > 0.
Let ` ∈ N. Then

sE,Q(F,P, n) = inf
δ>0

lim inf
d→∞

1

`d log(`d)
log |HA(F,P, n, δ, `d)|E,Q.

Recall that Sd acts on the set of maps σ : G→ Sd by (U ·σ)s = UσsU
−1. Also, given a unital ∗-

subalgebra M ⊆ L∞(X,µ), Sd acts on the set of unital homomophisms ϕ : M → diag(Md) ∼= Cd
by (U · ϕ)(f) = Uϕ(f). Thus we have an action Sd on the set of pairs (σ, ϕ) consisting of such
σ and ϕ.

Recall also that for sets A1 ⊆ A2, B1 ⊆ B2, Z1, and Z2 and a collection Y of ordered pairs
consisting of maps A1 → Z1 and A2 → Z2 we write |Y |B1,B2 for the cardinality of the set of
pairs (σ|B1 , ϕ|B2) where (σ, ϕ) ∈ Y .

Lemma 6.3. Let G1 and G2 be countable discrete groups and let α be a measure-preserving
action of G1 ∗G2 on (X,µ). Then

s(G1 ∗G2, X) ≥ s(G1, X) + s(G2, X).

Proof. Let η > 0. Then by Theorem 2.11, Proposition 5.2, and Proposition 5.1 there exist
finite sets E1 ⊆ G1 and E2 ⊆ G2 and finite sets of projections Q1,Q2 ⊆ L∞(X,µ) such that
sE1,Q1

(G1, X) ≥ s(G1, X) − η and sE2,Q2
(G2, X) ≥ s(G2, X) − η. Write R for the set of all

projections in L∞(X,µ). Take finite symmetric sets F1 ⊆ G1 and F2 ⊆ G2 containing e and
a set P consisting of the nonzero projections of some finite-dimensional unital ∗-subalgebra of
L∞(X,µ) containing Q1 ∪Q2 such that sE1∪E2,Q1∪Q2

(G1 ∪G2,R) ≥ sE1∪E2,Q1∪Q2
(F1 ∪F2,P)− η.

Let δ > 0 and n ∈ N. Set K = (F1 ∪ F2)n. Let 0 < δ′ < δ/(7n), to be further specified. Let
κ > 0, to be further specified.

Fix an ` ∈ N such that for every p ∈ PK we can find a bp ∈ N such that |µ(p) − bp/`| < κ.
Let 0 < δ′′ < δ′, to be further specified as a function of `. Let d ∈ N. For i = 1, 2 set
Yi = HA(F 2n

i ,PK , n, δ
′′, `d) for brevity.
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Fix a (σ, ϕ) ∈ HA(F 2n
1 ,PK , n, δ

′′, `d). For every map ω : G2 → Sd we construct, using
freeness, a map Ω = Ωω : G1 ∗ G2 → Sd such that for a reduced word t1 · · · tk where the ti
alternate membership in Fn1 and Fn2 we have Ωt1···tn = ρ1,t1ρ2,t2 · · · ρn,tn where ρi = σ if si ∈ Fn1
and ρi = ω otherwise.

A simple perturbation argument shows that if κ is small enough as a function of δ′ then for
sufficiently large d we can fix an identification of M`d with M`⊗Md such that matrix units pair
with tensor products of matrix units and for every p ∈ PK there is a diagonal projection D ∈M`

such that ‖ϕ(p) −D ⊗ 1‖2 < δ′. Writing Ei,j for the standard matrix units in Md, we denote

by Xd the set of all permutation matrices in M`d of the form
∑`

i=1Ei,i ⊗ Ui ∈ M` ⊗Md. Note
that for every p ∈ PK we have, taking a projection D ∈M` such that ‖ϕ(p)−D ⊗ 1‖2 < δ′,

‖Uϕ(p)− ϕ(p)U‖2 ≤ ‖U(ϕ(p)−D ⊗ 1)‖2 + ‖(D ⊗ 1− ϕ(p))U‖2 < 2δ′. (∗)

Let (ω, ψ) ∈ Y2. By the same type of perturbation argument alluded to in the previous
paragraph, if we assume κ to be sufficiently small as a function of δ′ then we can find a W ∈ S`d
such that the pair (ω′, ψ′) = W · (ω, ψ) satisfies ‖ψ′(p) − ϕ(p)‖2 < δ′ for all p ∈ PK . Write
Υd,σ,ϕ,ω,ψ,W for the set of all U ∈ Xd such that for every k = 1, . . . , n the map Ω = ΩU ·ω′
satisfies tr`d(Ωt1···tk) < δ′ for all reduced words t1 · · · tk 6= e where the tj alternate membership
in Fn1 and Fn2 .

Now given any U ∈ Xd and A ∈ S`d, if we view these as elements of M` ⊗Md and write

U =
∑`

i=1Ei,i ⊗ Ui and A =
∑`

i,j=1Ei,j ⊗ Ai,j then UAU∗ =
∑`

i,j=1Ei,j ⊗ UiAi,jU∗j . Thus,
by multiple applications of Lemma 4.4, whenever d is large enough we can find a V ∈ Xd such
that if A is equal to σs for some s ∈ F 2n

1 \ {e} or to ω′s for some s ∈ F 2n
2 \ {e} then writing

V AV ∗ =
∑`

i,j=1Ei,j⊗Ai,j the quantity tr(Ai,j) is smaller than a prescribed positive value for all

distinct i, j ∈ {1, . . . , `}, and we can also ensure that tr(Ai,i) is smaller than the same prescribed
positive value for all i = 1, . . . , n by assuming δ′′ to be small enough as a function of `. Consider
a product of the form

V A1V
∗(U(V A2V

∗)U∗) · · ·V A2r−1V
∗(U(V A2rV

∗)U∗) (∗∗)

for 1 ≤ r ≤ n/2, U ∈ Xd, and each A1, . . . , A2r equal to σs for some s ∈ F1 \ {e} or to ω′s
for some s ∈ F2 \ {e}. Expressing U as

∑`
i=1Ei,i ⊗ Ui and each V AkV

∗ as a sum of the form∑`
i,j=1Ei,j⊗Ai,j , we expand the product (∗∗) to obtain a sum of terms of the form Ei,j⊗B and

apply Lemma 4.6 to the second tensor product factor of each of these terms to deduce, assuming
δ′′ is small enough, that Υd,σ,ϕ,ω,ψ,W contains enough elements of the form V ∗UV as d→∞ so
that limd→∞ |Υd,σ,ϕ,ω,ψ,W |/|Xd| = 1. Note that although Lemma 4.6 addresses only the case of
even k, we can handle the odd case with the following reduction argument. For a product of
the form

V A1V
∗(U(V A2V

∗)U∗) · · ·V A2r−1V
∗(U(V A2rV

∗)U∗)V A2r+1V
∗

we write its trace as tr(V A2r+1A1V
∗(U(V A2V

∗)U∗) · · ·V A2r−1V
∗(U(V A2rV

∗)U∗)). If A2r+1 =
σs1 and A1 = σs2 for some s1 and s2 contained in Fi \{e} for some i ∈ {1, 2} with s1s2 6= e, then
up to a perturbation we have reduced to the even case since s1s2 lies in the set F 2n

i appearing
in the definition of Yi. Otherwise up to a perturbation we are back in the odd case with fewer
factors, and we can repeat the procedure as necessary.

Take a U ∈ Υd,σ,ϕ,ω,ψ,W and set ω′′ = U ·ω′. Let us show that (Ω, ϕ) ∈ HA(F1∪F2,P, n, δ, `d)
where Ω = Ωω′′ . Let t1, . . . , tn ∈ F1 ∪ F2. Let j1 = 1 < j2 < . . . jk ≤ n be such that for each



SOFIC DIMENSION FOR DISCRETE MEASURED GROUPOIDS 39

i = 1, . . . , k the elements tji , . . . , tji+1−1 either all lie in F1 or all lie in F2 and this common

membership alternates between F1 and F2 from one i to the next. Writing ρ(i) = σ if tji ∈ F1

and ρ(i) = ω′′ otherwise, we have

‖Ωt1···tn − Ωt1 · · ·Ωtn‖2 ≤
k∑
i=1

‖ρ(i)
tji ···tji+1−1

− ρ(i)
tji
· · · ρ(i)

tji+1−1
‖2 < kδ′′ ≤ δ.

Also, if we are given a t ∈ (F1 ∪ F2)n \ {e} then we can write t = t1 · · · tk where 1 ≤ k ≤ n and
t1, . . . , tk alternate membership in Fn1 and Fn2 , so that tr`d(Ωt) = tr`d(Ωt1···tk) < δ′ ≤ δ. Thus Ω
is an element of GA(F1 ∪ F2, n, δ, `d).

Now let us check that, to within the required tolerance, ϕ is approximately equivariant on
a reduced word t1 · · · tk where 1 ≤ k ≤ n and the tj alternate membership in Fn1 and Fn2 . Let
p ∈ P. Given a j ∈ {1, . . . , n}, the projection αtj+1···tk(p) lies in PK and hence when tj ∈ Fn1 we
have

‖Ad Ωtj ◦ ϕ(αtj+1···tk(p))− ϕ ◦ αtj (αtj+1···tk(p))‖2 < δ′′ ≤ δ′

while in the case tj ∈ Fn2 we use from (∗) the fact that U approximately commutes with
ϕ(αtj+1···tk(p)) to within 2δ′ in trace norm to obtain

‖Ad Ωtj ◦ ϕ(αtj+1···tk(p))− ϕ ◦ αtj (αtj+1···tk(p))‖2
= ‖Adω′tj (U

∗ϕ(αtj+1···tk(p))U)− U∗ϕ(αtj ···tk(p))U‖2
≤ ‖Adω′tj (U

∗ϕ(αtj+1···tk(p))U − ϕ(αtj+1···tk(p)))‖2
+ ‖Adω′tj (ϕ(αtj+1···tk(p))− ψ′(αtj+1···tk(p)))‖2
+ ‖Adω′tj ◦ ψ

′(αtj+1···tk(p))− ψ′ ◦ αtj (αtj+1···tk(p))‖2
+ ‖ψ′(αtj ···tk(p))− ϕ(αtj ···tk(p))‖2
+ ‖ϕ(αtj ···tk(p))− U∗ϕ(αtj ···tk(p))U‖2

< 2δ′ + δ′ + δ′′ + δ′ + 2δ′ ≤ 7δ′.

It follows that

‖Ad Ωt1···tk ◦ ϕ(p)− ϕ ◦ αt1···tk(p)‖2
= ‖Ad Ωt1 ◦ · · · ◦Ad Ωtk ◦ ϕ(p)− ϕ ◦ αt1 ◦ · · · ◦ αtk(p)‖2

≤
k∑
j=1

‖Ad Ωt1 ◦ · · · ◦Ad Ωtj−1(Ad Ωtj ◦ ϕ(αtj+1···tk(p))− ϕ ◦ αtj (αtj+1···tk(p)))‖2

< 7nδ′ < δ.

Since |tr`d ◦ϕ(p)−µ(p)| = δ′′ < δ for all p ∈ P(F1∪F2)n by virtue of the fact that (σ, ϕ) ∈ Y1, we
thus conclude that (Ω, ϕ) ∈ HA(F1 ∪ F2,P, n, δ, `d), as desired.

Note that Ω was obtained by combining in a free manner the maps σ and ω′′, where the latter
was obtained from ω by conjugating by W and then by U . Let γ > 0. The set Λd,σ,ϕ,ω,ψ of all
products UW such that U and W together do the required job has cardinality at least |Xd|/2 for
all d larger than some d0 not depending on (σ, ϕ) or (ω, ψ). Hence, by Stirling’s approximation,
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for all sufficiently large d we have

|Λd,σ,ϕ,ω,ψ| ≥
1

2
|Xd| =

1

2
d!` ≥ d`d(1−γ).

Writing S for the set of all U ∈ S`d such that (U · ω)|E2 = ω|E2 and (U · ψ)|Q2 = ψ|Q2 , we then
have

|S`d · (ω, ψ)|E2,Q2 =
|S`d|
|S|
≤ (`d)`d

|S|
·
|Λd,σ,ϕ,ω,ψ|
d`d(1−γ)

≤ ``dd`dγ
|Λd,σ,ϕ,ω,ψ|
|S|

≤ ``dd`dγ |Λd,σ,ϕ,ω,ψ · (ω, ψ)|E2,Q2 .

Take a set R of representatives for the action of S`d on Y2 modulo the relation under which
two pairs are equivalent if the first coordinates agree on E2 and the second coordinates agree
on Q2, and take an R′ ⊆ R which is a set of representatives for the action of S`d on Y2

modulo the relation under which two pairs are equivalent if their first coordinates agree on
E2. Note that |Y2|E2,Q2 =

∑
(ω,ψ)∈R |S`d · (ω, ψ)|E2,Q2 . Setting m = |(PK)(F 2n

2 )n |, for every

ω ∈ GA(F 2n
2 , n, δ′′, `d) there are at most m`d many homomorphisms ψ such that (ω, ψ) ∈ Y2,

so that for every (ω, ψ) ∈ Y2 we have

|Λd,σ,ϕ,ω,ψ · ω|E2 ≥ m−`d|Λd,σ,ϕ,ω,ψ · (ω, ψ)|E2,Q2

and every pair in R′ has the same first coordinate modulo agreement on E2 as at most m`d many
pairs in R. Assuming that each pair (ω, ψ) in R′ was chosen so as to maximize the quantity
|Λd,σ,ϕ,ω,ψ·(ω, ψ)|E2,Q2 over all pairs in R which share the same first coordinate modulo agreement
on E2, we then have∑

(ω,ψ)∈R′

|Λd,σ,ϕ,ω,ψ · ω|E2 ≥
∑

(ω,ψ)∈R′

m−`d|Λd,σ,ϕ,ω,ψ · (ω, ψ)|E2,Q2

≥ m−2`d
∑

(ω,ψ)∈R

|Λd,σ,ϕ,ω,ψ · (ω, ψ)|E2,Q2 .

Taking a set Y ′1 of representatives for the relation on Y1 under which two pairs are equivalent
if the first coordinates agree on E1 and the second agree on Q1, we thus obtain

|HA(F1 ∪ F2,P, n, δ, `d)|E1∪E2,Q1∪Q2

≥
∑

(σ,ϕ)∈Y ′1

∑
(ω,ψ)∈R′

|Λd,σ,ϕ,ω,ψ · ω|E2

≥ m−2`d
∑

(σ,ϕ)∈Y ′1

∑
(ω,ψ)∈R

|Λd,σ,ϕ,ω,ψ · (ω, ψ)|E2,Q2

≥ (m2`)−`dd−`dγ |Y1|E1,Q1

∑
(ω,ψ)∈R

|S`d · (ω, ψ)|E2,Q2

= (m2`)−`dd−`dγ |Y1|E1,Q1 |Y2|E2,Q2

= (m2`)−`dd−`dγ |HA(F 2n
1 ,PK , n, δ

′′, `d)|E1,Q1
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× |HA(F 2n
2 ,PK , n, δ

′′, `d)|E2,Q2

and hence, in view of Lemma 6.2,

lim inf
d→∞

1

`d log(`d)
log |HA(F1 ∪ F2,P, n, δ, `d)|E1∪E2,Q1∪Q2

≥ lim inf
d→∞

1

`d log(`d)
log |HA(F 2n

1 ,PK , n, δ
′′, `d)|E1,Q1

+ lim inf
d→∞

1

`d log(`d)
log |HA(F 2n

2 ,PK , n, δ
′′, `d)|E2,Q2 − γ

≥ sE1,Q1
(F 2n

1 ,PK) + sE2,Q2
(F 2n

2 ,PK)− γ.
Since n was an arbitary positive integer and δ and γ arbitrary positive numbers, it follows that

sE1∪E2,Q1∪Q2
(F1 ∪ F2,P) ≥ sE1,Q1

(G1, X) + sE2,Q2
(G2, X)

and hence, using Theorem 2.11 and Proposition 5.2,

s(G1 ∗G2, X) = s(G1 ∪G2,R)

≥ sE1∪E2,Q1∪Q2
(G1 ∪G2,R)

≥ sE1∪E2,Q1∪Q2
(F1 ∪ F2,P)− η

≥ sE1,Q1
(G1, X) + sE2,Q2

(G2, X)− η
≥ s(G1, X) + s(G2, X)− 3η.

Since η was an arbitrary positive number this yields the result. �

Combining Lemmas 6.1 and 6.3 yields the following.

Theorem 6.4. Let G1 and G2 be countable discrete groups and α be a measure-preserving action
of G1 ∗ G2 on (X,µ) whose restrictions to G1 and G2 are approximation regular. Then α is
approximation regular and

s(G1 ∗G2, X) = s(G1, X) + s(G2, X).

Corollary 6.5. Let r ∈ N and let Fr y (X,µ) be a measure-preserving action. Then s(Fr, X) =
s(Fr, X) = r.

Proof. Repeatedly apply Theorem 6.4 using the fact that the action Z y (X,µ) obtained by
restricting to any one of the standard generators of Fr satisfies s(Z, X) = s(Z, X) = 1 by
Theorem 5.7. �

The above corollary implies that, for distinct r1, r2 ∈ N, given for each i = 1, 2 a measure-
preserving action Fri y (X,µ), the associated groupoids are nonisomorphic. From this we
recover both the fact that Fr1 and Fr2 are not isomorphic when r1 6= r2 and Gaboriau’s result that
for r1 6= r2 there are no free ergodic measure-preserving actions Fr1 y (X,µ) and Fr2 y (X,µ)
which are orbit equivalent [8].

By combining the techniques of this section with the quasitiling arguments of Section 4 one
could likely generalize the formula of Theorem 6.4 to allow for amalgamation over a common
amenable subgroup on which the action is free. We have refrained from attempting this given
that the technical details appear formidable and the equivalence relation approach of [5] already
gives the desired formula under the hypothesis that the action of the amalgamated free product
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is free. Ultimately one would like to have a general groupoid version of the free product formula
in this amalgamated setting that would specialize to actions without any freeness assumptions.
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