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Abstract. Working within the framework of free actions of countable amenable groups
on compact metrizable spaces, we show that the small boundary property is equivalent to
a density version of almost finiteness, which we call almost finiteness in measure, and that
under this hypothesis the properties of almost finiteness, comparison, and m-comparison
for some nonnegative integer m are all equivalent. The proof combines an Ornstein–Weiss
tiling argument with the use of zero-dimensional extensions which are measure-isomorphic
over singleton fibres. These kinds of extensions are also employed to show that if every
free action of a given group on a zero-dimensional space is almost finite then so are all
free actions of the group on spaces with finite covering dimension. Combined with re-
cent results of Downarowicz–Zhang and Conley–Jackson–Marks–Seward–Tucker-Drob on
dynamical tilings and of Castillejos–Evington–Tikuisis–White–Winter on the Toms–Winter
conjecture, this implies that crossed product C∗-algebras arising from free minimal actions
of groups with local subexponential growth on finite-dimensional spaces are classifiable in
the sense of Elliott’s program. We show furthermore that, for free actions of countably
infinite amenable groups, the small boundary property implies that the crossed product has
uniform property Γ, which confirms the Toms–Winter conjecture for such crossed products
in the minimal case.
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1. Introduction

A fundamental feature of the theory of amenability for groups is the connection it es-
tablishes between approximate invariance and tiling properties. This connection was made
clear in the work of Ornstein and Weiss [37], who showed that the approximate invariance
that characterizes amenability via the Følner property can be leveraged through a recursive
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procedure to produce tilings with approximately invariant shapes and almost full coverage,
not only within the group itself but also in its probability-measure-preserving actions. In
the latter dynamical setting, these tilings (or tower decompositions, to use the more cus-
tomary terminology for actions) can be translated in a direct way into matrix subalgebras of
the von Neumann algebra crossed product and thereby be used to produce a simple proof of
hyperfiniteness when the action is free. In particular, this shows that all free ergodic measure-
preserving actions of countably infinite amenable groups on atomless standard probability
spaces give rise to the unique hyperfinite II1 factor.1

The attempt to similarly determine the structure of the C∗-crossed products arising from
actions of countably infinite amenable groups on compact metrizable spaces has, like the
general Elliott classification program for simple separable nuclear C∗-algebras, been forced to
contend with obstructions of a topological nature that are conditioned by the phenomenon
of higher-dimensionality. Although the precise technical connections are still not so well
understood, these obstructions at the C∗-algebra level are closely related to Gromov’s notion
of mean dimension [18], which is an entropy-like invariant in topological dynamics that
provides a measure of asymptotic dimension growth. Giol and the first author showed in
[14] that the cubical subshifts constructed by Lindenstrauss and Weiss in [33] as examples
of minimal actions that have nonzero mean dimension also produce crossed products which,
for similar structural reasons, fail to behave well from the purview of Elliott’s program.

Despite the complications in the C∗-picture caused by such obstacles, it has become ap-
parent over the last several years that, from the viewpoint of both structure and classification
theory, hyperfiniteness does have a veritable analogue in the C∗-realm, namely the conjunc-
tion of nuclearity and Z -stability. For a simple separable unital nuclear C∗-algebra A, the
property of Z -stability can be expressed as the existence of order-zero completely positive
contractive maps ϕ from matrix algebras into A such that the image of ϕ is approximately
central and 1 − ϕ(1) is small in the sense of Cuntz subequivalence [23].2 The most recent
affirmation of this analogy is the work of Castillejos, Evington, Tikuisis, White, and Winter
on the Toms–Winter conjecture [4], which shows that Z -stability can be substituted for fi-
nite nuclear dimension as the regularity hypothesis in the C∗-counterpart to the classification
of hyperfinite von Neumann algebras, which itself was only recently clinched in [12, 15, 43]
after several decades of effort by many researchers (see Corollary D and the accompanying
discussion in [43]).

This parallel between the measure-theoretic and topological worlds passes moreover to
the dynamical level: in [25] it was shown that a topological version of the Ornstein–Weiss
tower decomposition called almost finiteness plays the role of Z -stability in a dynamical
version of the Toms–Winter conjecture and, when the action is free and minimal, implies
that the crossed product is Z -stable.3 The main difference between almost finiteness and
the Ornstein–Weiss decomposition is that the smallness of the remainder in the former is
expressed using dynamical subequivalence instead of a probability measure. While towers

1The first proof of this fact was given by Connes as an application of his celebrated result [7] that injectivity
implies hyperfiniteness, whose full force is still needed to prove hyperfiniteness of the group von Neumann
algebra itself.

2Whether or not this subequivalence is itself implemented in an approximately central way is roughly what
separates Z -stability from its specialization to the nuclear setting.

3Nuclearity is automatic in this case since the acting group is amenable.
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and tower decompositions have long played an important role in unraveling the structure of
C∗-crossed products, notably in the case of Z-actions [39, 31, 30, 44, 13] and in the various
theories of dimension for group actions [19, 41, 42, 25], the novelty in the concept of almost
finiteness is its dovetailing of topology with measure-theoretic phenomena within the general
setting of amenability. Indeed almost finiteness not only relates to the Ornstein–Weiss tower
theorem via analogy but also naturally calls for the direct application of Ornstein–Weiss
tiling methods towards C∗-algebraic ends, as illustrated by the proof of Z -stability in the
free minimal case [25]. This commingling of the measure-theoretic with the topological is very
much in line with the kind of C∗-application of von Neumann algebra technology that was
pioneered by Matui and Sato in their groundbreaking work on the Toms–Winter conjecture
[35, 36].

One of the main aims of the present paper is to push this technical connection between
measure and topology further at the dynamical level. Our work begins with the observation
(Theorem 3.13) that the Ornstein–Weiss tiling argument, as presented in [6], applies equally
well to free actions of countable amenable groups on zero-dimensional spaces so as to produce
a disjoint collection of towers with clopen levels and Følner shapes such that the part of the
space that remains uncovered is small in upper density (or, equivalently, uniformly small on
all invariant Borel probability measures). This motivates the concept of almost finiteness
in measure for free actions on general compact metrizable spaces, which asks for the same
kind of tower decomposition with remainder of small upper density but only requires the
levels to be open, as is natural for the purpose of accommodating spaces of higher dimension
(Definition 3.5). Almost finiteness in measure differs from almost finiteness in replacing
the sense in which the remainder is required to be small, from a topological one based on
dynamical subequivalence to a measure-theoretic one based on density. In this respect it is
similar to the topological Rokhlin property for Zd-actions introduced by Gutman in [20].

By leveraging the above topological version of the Ornstein–Weiss tower theorem via the
use of extensions which are measure-isomorphic over singleton fibres, whose basic theory is
developed in Section 4, we prove in Theorem 5.6 that, for free actions on compact metrizable
spaces, almost finiteness in measure is equivalent to the small boundary property, i.e., the
existence of a basis of open sets whose boundaries are null for every invariant Borel proba-
bility measure. The small boundary property has its origins in work of Shub and Weiss that
initiated an investigation into the problem of when a given dynamical system possesses fac-
tors with lower entropy [40]. It is known to imply mean dimension zero, and is conjecturally
equivalent to it under freeness, as well as to the decomposability of the action into an inverse
limit of finite entropy actions. The equivalence of these three properties for extensions of
minimal Z-actions was established in [33, 32] and was recently shown in [21] to hold for Z-
actions with the marker property and more generally in [22] for Zd-actions with the marker
property. As a consequence of Theorem 5.6, we obtain the following as our first main result:

Theorem A (Theorem 6.1). Let G be a countably infinite amenable group. For a free
action Gy X, the following are equivalent:

(i) the action is almost finite,
(ii) the action has the small boundary property and comparison,
(iii) the action has the small boundary property and m-comparison for some m ≥ 0.
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This yields the corollary that, for free minimal actions on compact metrizable spaces of finite
covering dimension, finite tower dimension implies almost finiteness (Corollary 6.2).

The type of extensions employed in the proof of Theorem 6.1 are similarly mobilized to
show the following reduction theorem.

Theorem B (Corollary 7.7). Let G be a countably infinite amenable group. Suppose that
every free action of G on a zero-dimensional compact metrizable space is almost finite. Then
it follows that every free action of G on a finite-dimensional compact metrizable space is
almost finite.4

Recently Downarowicz and Zhang have verified the hypothesis of Theorem B for groups
G whose finitely generated subgroups all have subexponential growth [11]. Conley, Jackson,
Marks, Seward, and Tucker-Drob also independently established this fact, in unpublished
work, by observing that it follows from a clopen version of the tiling argument in [6] (see
the introduction to Section 8). Together with the Z -stability theorem from [25], work of
Castillejos–Evington–Tikuisis–White–Winter [4], and the classification results from [12, 15,
43], this allows us to deduce our main result about C∗-crossed products:

Theorem C (Theorems 8.1 and 8.2). Let G be a countably infinite group for which all
finitely generated subgroups have subexponential growth. Then every free action Gy X on
a compact metrizable finite-dimensional space is almost finite. As a consequence, the crossed
products arising from minimal such actions are classified by the Elliott invariant (ordered
K-theory paired with tracial states) and are simple ASH algebras of topological dimension
at most 2.

This classification theorem was known in the case of finitely generated groups G having
polynomial growth (which is equivalent to virtual nilpotence by Gromov’s theorem [17]) as a
consequence of [42, 1], in which it was verified directly that the associated crossed products
have finite nuclear dimension. In the polynomial growth setting one can also give a simpler
proof of almost finiteness, and hence of Z -stability, as we explain in Section 8. The more
general hypothesis of subexponential growth encompasses groups of intermediate growth
such as the Grigorchuk group [16].

A companion paper to [4] shows that the Toms–Winter conjecture holds under the addi-
tional hypothesis that the C∗-algebra satisfies a C∗-version of Murray and von Neumann’s
property Γ, called uniform property Γ [5]. That is, for nonelementary simple separable unital
nuclear C∗-algebras satisfying uniform property Γ, the properties of finite nuclear dimension,
Z -stability, and strict comparison are equivalent. Since Z -stability implies uniform prop-
erty Γ, this yields the implication from Z -stability to finite nuclear dimension (the reverse
implication had been previously established by Winter in [46]). To round out the paper we
prove the following about C∗-crossed products within the general context of amenable acting
groups:

Theorem D (Theorem 9.4 and Corollary 9.5). LetG be a countably infinite amenable group.
Let X be a compact metrizable space and G y X a free action with the small boundary
property. Then the crossed product C(X) o G has uniform property Γ. In particular, the
Toms–Winter conjecture holds for such crossed products when the action is also minimal.

4In fact, this is more generally proved for actions satisfying the so-called topological small boundary
property, which is known to be automatic for free actions on finite-dimensional spaces by Theorem 3.8 of [41].
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Our expectation is that the conditions in the Toms–Winter conjecture (i.e., finite nuclear
dimension, Z -stability, and strict comparison) are in fact automatic for crossed products
of free minimal actions of countably infinite amenable groups under the assumption of the
small boundary property. This is indeed what happens for G = Z by a theorem of Elliott and
Niu [13]. Their argument relies crucially on the recursive topological structure one obtains
by generating tower decompositions via recurrence, which is only available for Z, and so
it appears that new methods will be required to tackle the case of Z2 and other amenable
groups.
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2. General terminology and notation

Throughout the paper G denotes a countable group. We are mainly interested in the case
when G is amenable and will make this a blanket assumption in Section 3 while explicitly
inserting it as a hypothesis elsewhere when appropriate.

Given a finite set K ⊆ G and a δ > 0, we say that a finite set F ⊆ G is (K, δ)-invariant
if |KF∆F | < δ|F |. The existence of (K, δ)-invariant finite sets for every finite K ⊆ G and
δ > 0 is the Følner characterization of amenability for G. The notions of upper and lower
(Banach) density for a subset A of an amenable G, written D(A) and D(A), are reviewed at
the beginning of the next section.

For a compact metrizable space X we write M(X) for the set of Borel probability measures
on X equipped with the weak∗ topology, under which it is compact.

A group action G y X will be expressed using the concatenation (s, x) 7→ sx except in
some instances involving extensions where it will be convenient to give it a name, such as α,
with the transformation x 7→ sx of X for a given s ∈ X sometimes written αs.

Actions on compact metrizable spaces are always assumed to be continuous. For an action
Gy X on a compact metrizable space we write MG(X) for the weak∗ closed subset of M(X)
consisting of all G-invariant Borel probability measures on X.

Let α : G y Z and β : G y X be actions of G on compact metrizable spaces. A map
π : Z → X is a factor map if it is continuous and surjective and satisfies π(sz) = sπ(x) for
all s ∈ G and z ∈ Z (equivariance). We sometimes write π : (Z,α)→ (X,β) to indicate the
precise roles of the actions. The map π is also called an extension. One also refers to β as a
factor of α and to α as an extension of β.

For the remainder of this section we let Gy X be a free action on a compact metrizable
space. A tower is a pair (V, S) consisting of a subset V of X and a finite subset S of G such
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that the sets sV for s ∈ S are pairwise disjoint. The set V is the base of the tower, the set
S is the shape of the tower, and the sets sV for s ∈ S are the levels of the tower. The tower
(V, S) is open if V is open and clopen if V is clopen. A castle is a finite collection of towers
{(Vi, Si)}i∈I such that the sets SiVi for i ∈ I are pairwise disjoint. The remainder of the
castle is the set X \

⋃
i∈I SiVi. The castle is open if each of the towers is open, and clopen if

each of the towers is clopen.
Let m ≥ 0 and A,B ⊆ X. Write A ≺m B if for every closed set C ⊆ A there is a finite

collection U of open subsets of X which cover C, an sU ∈ G for each U ∈ U , and a partition
U = U0 t · · · t Um such that for each i = 0, . . . ,m the sets sUU for U ∈ Ui are pairwise
disjoint and contained in B. When m = 0 we also write A ≺ B, in which case we say that
A is subequivalent to B. The action G y X has m-comparison if A ≺m B for all nonempty
open sets A,B ⊆ X satisfying µ(A) < µ(B) for every µ ∈ MG(X). In the case m = 0 we
also simply say that the action has comparison.

The action G y X is said to be almost finite if for every n ∈ N, finite set K ⊆ G, and
δ > 0 there are

(i) an open castle {(Vi, Si)}i∈I whose shapes are (K, δ)-invariant and whose levels have
diameter less than δ,

(ii) sets S′i ⊆ Si such that |S′i| < |Si|/n and

X \
⊔
i∈I

SiVi ≺
⊔
i∈I

S′iVi.

When X is zero-dimensional this agrees with Matui’s original notion of almost finiteness for
second countable étale groupoids with compact zero-dimensional unit spaces [34]. In this
case one can equivalently require that the levels of the tower be clopen and partition X, so
that condition (ii) can be dispensed with. See Section 10 of [25].

3. Almost finiteness in measure and a topological Ornstein–Weiss tower
theorem

The proof of the Ornstein–Weiss tower theorem as presented in [6] shows, by substitut-
ing clopenness for measurability, that every free action of an amenable group on a zero-
dimensional compact metrizable space is almost finite in measure (Definition 3.5). For the
convenience of the reader we will briefly reconstruct the argument as it applies to establish
the clopen version, which we record as Theorem 3.13. Along the way we will also establish
a couple of facts (Propositions 3.3 and 3.4) that will be useful in later sections.

Throughout the section we assume G to be amenable.
Let Gy X be an arbitrary action on a set.

Definition 3.1. For a set A ⊆ X we define

D(A) = sup
F

inf
x∈X

1

|F |
∑
s∈F

1A(sx) and D(A) = inf
F

sup
x∈X

1

|F |
∑
s∈F

1A(sx)

where F ranges over the nonempty finite subsets of G in both cases. These two quantities
are called the lower and upper (Banach) densities of A.

Observe that D(A) = 1−D(X \A) and D(sA) = D(A) for all s ∈ G.
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The following is a dynamical version of Lemma 2.9 in [10] and can be established by the
same argument.

Lemma 3.2. Let (Fn)n be a Følner sequence for G. Then

D(A) = lim
n→∞

inf
x∈X

1

|Fn|
∑
s∈Fn

1A(sx) and D(A) = lim
n→∞

sup
x∈X

1

|Fn|
∑
s∈Fn

1A(sx).

Proposition 3.3. Let Gy X be a continuous action on a compact metrizable space and A
a subset of X. If A is closed, then

D(A) = sup
µ∈MG(X)

µ(A),

while if A is open then

D(A) = inf
µ∈MG(X)

µ(A).

Proof. By the observation following Definition 3.1, we need only prove the first assertion.
Suppose then that A is closed. By Lemma 3.2 there are a Følner sequence (Fn)n for G and
a sequence {xn} in X such that

D(A) = lim
n→∞

1

|Fn|
∑
t∈Fn

1A(txn).

Take a weak∗ cluster point µ of the sequence µn := |Fn|−1
∑

t∈Fn δtxn in M(X), where δtxn
denotes the point mass at txn. Then for every f ∈ C(X) and s ∈ G we have, writing sf for
the function x 7→ f(s−1x) and abbreviating integration with respect to µ and µn as µ(·) and
µn(·),

|µ(sf)− µ(f)| ≤ |µ(sf)− µn(sf)|+ |µn(sf)− µn(f)|+ |µn(f)− µ(f)|

≤ |µ(sf)− µn(sf)|+ |s
−1Fn∆Fn|
|Fn|

‖f‖+ |µn(f)− µ(f)|

→ 0

as n→∞, showing that µ is G-invariant. Moreover, the portmanteau theorem yields

µ(A) ≥ lim sup
n→∞

µn(A) = lim
n→∞

1

|Fn|
∑
t∈Fn

1A(txn) = D(A)

and hence D(A) ≤ supµ∈MG(X) µ(A).

For the reverse inequality, it suffices to observe that for every µ ∈MG(X) and nonempty
finite set F ⊆ G we have

µ(A) =
1

|F |
∑
t∈F

∫
X

1t−1A dµ =

∫
X

1

|F |
∑
t∈F

1t−1A dµ

≤
∥∥∥∥ 1

|F |
∑
t∈F

1t−1A

∥∥∥∥ = sup
x∈X

1

|F |
∑
t∈F

1A(tx).

so that µ(A) ≤ D(A). �
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Proposition 3.4. Let X be a compact metrizable space with compatible metric d and let A
be a closed subset of X. Then for every ε > 0 there exists a δ > 0 such that the set

A+ = {x ∈ X : d(x,A) ≤ δ}

satisfies D(A+) ≤ D(A) + ε.

Proof. Suppose to the contrary that there is an ε > 0 for which no suitable δ exists. Then
by Proposition 3.3 we can find, for every n ∈ N, a µn ∈MG(X) such that the set

An = {x ∈ X : d(x,A) ≤ 1/n}

satisfies µn(An) > D(A) + ε/2. Since MG(X) is compact in the weak∗ topology there is
a subsequence (µnk)k of (µn)n which weak∗ converges to some µ ∈ MG(X). For integers
k ≥ j ≥ 1 we have

µnk(Anj ) ≥ µnk(Ank) > D(A) + ε/2,

and so for a fixed j the portmanteau theorem yields, since Anj is closed,

µ(Anj ) ≥ lim sup
k→∞

µnk(Anj ) ≥ D(A) + ε/2.

Since A is equal to the decreasing intersection of the sets Anj for j ∈ N, we deduce that

µ(A) = lim
j→∞

µ(Anj ) ≥ D(A) + ε/2.

On the other hand µ(A) ≤ D(A) by Proposition 3.3, producing a contradiction. �

For the rest of this section we will assume that the action G y X is free. Under this
assumption, we can write the sum appearing in Definition 3.1 as a cardinality via the equation∑

t∈F
1A(tx) = |A ∩ Fx|

for all x ∈ X, A ⊆ X and finite subsets F ⊆ G.

Definition 3.5. A free action Gy X on a compact metric space is said to be almost finite
in measure if for every finite set K ⊆ G and δ, ε > 0 there is an open castle {(Vi, Si)}i∈I
with levels of diameter less than δ such that

(i) each shape Si is (K, δ)-invariant,
(ii) D(

⊔
i∈I SiVi) ≥ 1− ε.

Definition 3.6. Let K be a finite subset of G and δ > 0. A set A ⊆ X is said to be
(K, δ)∗-invariant if there exists a finite set F ⊆ G such that

|(KA∆A) ∩ Fx| < δ|A ∩ Fx|

for all x ∈ X.

Definition 3.7. Let ε > 0. A collection {Ai}i∈I of finite subsets of G is said to be ε-disjoint
if for every i ∈ I there is a subset A′i ⊆ Ai with |A′i| ≥ (1− ε)|Ai| such that the sets A′i for
i ∈ I are pairwise disjoint.

One can establish the following in the same way as Lemma 3.2.
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Lemma 3.8. Let K be a finite subset of G and δ > 0. Let (Fn)n be a Følner sequence for
G. Then a set A ⊆ X is (K, δ)∗-invariant if and only if A ∩ Fnx 6= ∅ for all x ∈ X and
sufficiently large n and

lim
n→∞

sup
x∈X

|(KA∆A) ∩ Fnx|
|A ∩ Fnx|

< δ.

The following is Lemma 3.1 from [6].

Lemma 3.9. Let K and F be finite subsets of G and let ε, δ > 0. Let C be a subset of
X and for each c ∈ C let Fc be a (K, δ(1 − ε))-invariant subset of F so that the collection
{Fcc : c ∈ C} is ε-disjoint and D(

⋃
c∈C Fcc) > 0. Then

⋃
c∈C Fcc is (K, δ)∗-invariant.

The following is Lemma 3.2 from [6].

Lemma 3.10. Let T be a finite subset of G and let ε, δ > 0 be such that ε(1 + δ) < 1. Let
B be a (T−1, δ)∗-invariant subset of X, and let A be a subset of X with B ⊆ A such that
|A ∩ Tx| ≥ ε|T | for all x ∈ X. Then

D(A) ≥ (1− ε(1 + δ))D(B) + ε.

Lemma 3.11. Let X be a zero-dimensional compact metrizable space and G y X a free
action. Let Y be a clopen subset of X and S a finite subset of G. Let 0 < ε < 1

2 and δ > 0.
Then there is a clopen castle {(Vi, Si)}ni=1 with levels of diameter less than δ such that

(i) Si ⊆ S and |Si| ≥ (1− ε)|S| for every i = 1, . . . , n,
(ii) the set A =

⊔n
i=1 SiVi satisfies Y ∩A = ∅, Y ∪A = Y ∪

⋃n
i=1 SVi, and |Y ∪A∩Sx| ≥

ε|S| for all x ∈ X.

Proof. By freeness and zero-dimensionality we can find a clopen partition {V1, . . . , Vm} of
X such that for each i = 1, . . . ,m the pair (Vi, S) is a tower whose levels all have diameter
less than δ. Write T for the set of all T ⊆ S such that |T | ≥ (1 − ε)|S|. Set A0 = Y . We
will recursively construct sets A1, . . . , Am and clopen castles {(Vi,T , T )}T∈T for i = 1, . . . ,m,
with some of the sets Vi,T possibly being empty, such that Ai is the disjoint union of Ai−1

and
⊔
T∈T TVi,T for each i = 1, . . . ,m.

Let 1 ≤ i ≤ m and suppose that we have constructed the sets A1, . . . , Ai−1 and (in the case
i > 1) clopen castles {(Vj,T , T )}T∈T for j = 1, . . . , i − 1 satisfying the required properties.
For each T ∈ T define the clopen set

Vi,T = Vi ∩
( ⋂
s∈S\T

s−1Ai−1

)
∩
( ⋂
s∈T

(X \ s−1Ai−1)

)
.

The sets Vi,T are pairwise disjoint, and so {(Vi,T , T )}T∈T is a clopen castle such that Ai−1 and⊔
T∈T TVi,T are disjoint. PutAi = Ai−1t

⊔
T∈T TVi,T to complete the recursive construction.

Set A =
⊔m
i=1

⊔
T∈T TVi,T . Then Y ∩ A = ∅ and Y ∪ A = Y ∪

⋃m
i=1

⋃
T∈T SVi,T . Let

x ∈ X. Then there is an 1 ≤ i ≤ m such that x ∈ Vi. If x ∈ Vi,T for some T ∈ T then
Tx ⊆ Ai ⊆ Y ∪A and hence

|Y ∪A ∩ Sx| ≥ |Tx| = |T | ≥ (1− ε)|S| ≥ ε|S|.
On the other hand, if x /∈ Vi,T for all T ∈ T then the set of all s ∈ S such that sx ∈ Ai has
cardinality at least ε|S| and hence |Y ∪ A ∩ Sx| ≥ |Ai ∩ Sx| ≥ ε|S|. Thus the clopen castle
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{(Vj,T , T )}1≤j≤m,T∈T satisfies condition (ii) in the lemma statement. Condition (i) is built
into the construction. �

The following is a simple (and well-known) exercise.

Lemma 3.12. Let K be a finite subset of G and δ > 0. Then there is an ε > 0 such that
if F is a (K, ε)-invariant finite subset of G then every set F ′ ⊆ F with |F ′| ≥ (1 − ε)|F | is
(K, δ)-invariant.

Theorem 3.13. A free action G y X on a zero-dimensional compact metrizable space is
almost finite in measure.

Proof. Let K be a finite subset of G and δ > 0. Let ε > 0 be such that ε(1 + δ) < 1 and also
such that it satisfies the conclusion of Lemma 3.12 with respect to K and δ. Take an n ∈ N
such that (1− ε)n < ε.

Fix a β > 0 such that (1 + β)−1(1 − (1 − (1 + β)ε)n) > 1 − ε and take nonempty
(K, ε)-invariant finite sets F1, . . . , Fn ⊆ G such that for all 1 ≤ j < i ≤ n the set Fi is
(F−1

j , β(1 − ε))-invariant. By a recursive procedure we will construct, for each i running

from n down to 1, a clopen castle {(Vi,k, Fi,k)}kik=1 with levels of diameter less than δ and

Fi,k ⊆ Fi and |Fi,k| ≥ (1 − ε)|Fi| for k = 1, . . . , ki so that the sets Ai =
⊔ki
k=1 Fi,kVi,k are

pairwise disjoint and satisfy

n⋃
j=i

Aj =

n⋃
j=i+1

Aj ∪
ki⋃
k=1

FiVi,k

and

D(Ai ∪Ai+1 ∪ · · · ∪An) ≥ 1

1 + β
(1− (1− ε(1 + β))n+1−i).

Since each Fi,k will be (K, δ)-invariant by our choice of ε, this will establish the theorem.
For the first stage of the construction, apply Lemma 3.11 with Y = ∅ and S = Fn to

obtain a clopen castle {(Vn,k, Fn,k)}knk=1 with levels of diameter less than δ such that

(i) Fn,k ⊆ Fn and |Fn,k| ≥ (1− ε)|Fn| for every k = 1, . . . , kn,

(ii) the set An =
⊔kn
k=1 Fn,kVn,k satisfies An =

⋃kn
k=1 FnVn,k and |An ∩ Fnx| ≥ ε|Fn| for

all x ∈ X.

Apply Lemma 3.10 with B = ∅ and A = An to obtain D(An) ≥ ε.
Now let 1 ≤ i < n and suppose that we have carried out the stages of the construction

from n down to i+1. Apply Lemma 3.11 with Y =
⊔n
j=i+1Aj and S = Fi to obtain a clopen

castle {(Vi,k, Fi,k)}kik=1 with levels of diameter less than δ such that

(i) Fi,k ⊆ Fi and |Fi,k| ≥ (1− ε)|Fi| for every k = 1, . . . , ki,

(ii) the set Ai =
⊔ki
k=1 Fi,kVi,k satisfies Ai∩(Ai+1∪· · ·∪An) = ∅,

⊔n
j=iAj =

⊔n
j=i+1Aj∪⋃ki

k=1 FiVi,k, and |
⊔n
j=iAj ∩ Fix| ≥ ε|Fi| for all x ∈ X.

By Lemma 3.9 the set
⊔n
j=i+1Aj is (F−1

i , β)∗-invariant and so we can apply Lemma 3.10

with B =
⊔n
j=i+1Aj and A =

⊔n
j=iAj to obtain

D(Ai ∪ · · · ∪An) ≥ (1− ε(1 + β))D(Ai+1 ∪ · · · ∪An) + ε
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≥ 1

1 + β
(1− ε(1 + β)− (1− ε(1 + β))n+1−i + ε(1 + β))

=
1

1 + β
(1− (1− ε(1 + β))n+1−i),

completing the ith stage of the construction. �

4. Extensions measure-isomorphic over singleton fibres

The proofs of Theorems 5.5 and 7.3 will hinge on the use of extensions which are measure-
isomorphic over singleton fibres (Definition 4.2), about which we develop some basic facts
here.

Let Z and X be compact metrizable spaces and π : Z → X a continuous surjection. Write
Sπ for the set of all x ∈ X such that π−1(x) is a singleton. Then Sπ is a Gδ set, for if
we fix a compatible metric on X then we can write Sπ as the intersection of the open sets
{x ∈ X : diam(π−1(x)) < 1/n} for n ∈ N.

Proposition 4.1. For µ ∈M(Z) the following are equivalent:

(i) π∗µ(Sπ) = 1,
(ii) there is a basis B for the topology on Z such that for every U ∈ B one has

π∗µ(π(U) ∩ π(Z \ U)) = 0,
(iii) for every open set U ⊆ Z one has π∗µ(π(U) ∩ π(Z \ U)) = 0,
(iv) for every pair of disjoint closed sets C1, C2 ⊆ Z one has π∗µ(π(C1) ∩ π(C2)) = 0,
(v) for every closed set C ⊆ Z one has π∗µ(π(C)) = µ(C),

(vi) for every open set U ⊆ Z one has π∗µ(π(U)) = µ(U).

Proof. (i)⇒(vi). For every open set U ⊆ Z we have π−1(Sπ ∩ π(U)) = π−1(Sπ) ∩ U and
hence, using (i),

µ(U) ≤ π∗µ(π(U)) = π∗µ(Sπ ∩ π(U)) = µ(π−1(Sπ) ∩ U) = µ(U).

(vi)⇒(v). Let C be a closed subset of Z. Take a decreasing sequence U1 ⊇ U2 ⊇ . . . of
open subsets of Z such that C =

⋂∞
n=1 Un. Then π(C) is equal to the intersection of the

decreasing sequence

π(U1) ⊇ π(U2) ⊇ . . .
and so (vi) yields

π∗µ(π(C)) = lim
n→∞

π∗µ(π(Un)) = lim
n→∞

µ(Un) = µ(C).

(v)⇒(iv). Let C1 and C2 be disjoint closed subsets of Z. Then since π(C1) ∪ π(C2) =
π(C1 ∪ C2) we can apply (v) to obtain

π∗µ(π(C1) ∩ π(C2)) = π∗µ(π(C1)) + π∗µ(π(C2))− π∗µ(π(C1) ∪ π(C2))

= µ(C1) + µ(C2)− µ(C1 ∪ C2) = 0.

(iv)⇒(iii). Let U be an open subset of Z. Take an increasing sequence C1 ⊆ C2 ⊆ . . . of
closed subsets of Z such that U =

⋃∞
n=1Cn. By (iv), for every n we have

π∗µ(π(Cn) ∩ π(X \ U)) = 0.
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Thus

π∗µ(π(U) ∩ π(X \ U)) = π∗µ

(( ∞⋃
n=1

π(Cn)

)
∩ π(X \ U)

)

= π∗µ

( ∞⋃
n=1

(π(Cn) ∩ π(X \ U))

)
= lim

n→∞
π∗µ(π(Cn) ∩ π(X \ U)) = 0,

yielding (iii).
(iii)⇒(ii). Trivial.
(ii)⇒(i). Let B be as in (ii). Fix a compatible metric d on X. Given an n ∈ N, we define

the set Wn = {z ∈ Z : diam(π−1(π(z))) ≥ 1/n}, which is readily seen to be closed. By
compactness we can find open sets U1, . . . , Ukn ∈ B of diameter at most 1/(2n) whose union
contains Wn. Then for each j = 1, . . . , kn we have π(Uj) ∩ π(Wn) ⊆ π(Z \ Uj), and since by
(ii) we have π∗µ(π(Uj) ∩ π(Z \ Uj)) = 0 we deduce that π∗µ(π(Uj) ∩ π(Wn)) = 0 and hence
µ(Uj ∩Wn) = 0. Therefore

µ(Wn) ≤
kn∑
j=1

µ(Uj ∩Wn) = 0.

It follows that µ(
⋃∞
n=1Wn) = limn→∞ µ(Wn) = 0. Since

⋃∞
n=1Wn is equal to Z \ π−1(Sπ),

we conclude that π∗µ(Sπ) = 1. �

Now let Gy Z and Gy X be actions on compact metrizable spaces and let π : Z → X be
a factor map. Note that the Gδ set Sπ defined at the beginning of the section is G-invariant
in this case.

Definition 4.2. The extension π is measure-isomorphic if for every µ ∈ MG(Z) the map
π induces a measure conjugacy between the measure-preserving actions G y (Z, µ) and
G y (X,π∗µ), i.e., π restricts to an equivariant measure isomorphism between some G-
invariant conull subsets of Z and X. The extension π is measure-isomorphic over singleton
fibres if π∗µ(Sπ) = 1 for every µ ∈MG(Z).

Note that if π is measure-isomorphic over singleton fibres then it is measure-isomorphic,
as π restricts to a G-equivariant Borel isomorphism π−1(Sπ) → Sπ ([24], Corollary 15.2).
The converse is false, as examples in [9] demonstrate.

The following is immediate from Proposition 4.1.

Proposition 4.3. For the extension π : Z → X the following are equivalent:

(i) π is measure-isomorphic over singleton fibres,
(ii) there is a basis B for the topology on Z such that for every U ∈ B one has

π∗µ(π(U) ∩ π(Z \ U)) = 0 for all µ ∈MG(Z),
(iii) for every open set U ⊆ Z one has π∗µ(π(U) ∩ π(Z \ U)) = 0 for all µ ∈MG(Z),
(iv) for every pair of disjoint closed sets C1, C2 ⊆ Z one has π∗µ(π(C1)∩π(C2)) = 0 for

all µ ∈MG(Z),
(v) for every closed set C ⊆ Z one has π∗µ(π(C)) = µ(C) for all µ ∈MG(Z),

(vi) for every open set U ⊆ Z one has π∗µ(π(U)) = µ(U) for all µ ∈MG(Z).
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Note that if G is amenable then one has π∗(MG(Z)) = MG(X) as a consequence of the
Hahn–Banach theorem. To be more precise, we can view a given measure ν in MG(X) as a
G-invariant state σ on the C∗-algebra C(X) and, regarding C(X) as a C∗-subalgebra of C(Z)
under the embedding given by composition with π, we can extend σ by the Hahn–Banach
theorem to a state σ̃ on C(Z). Using compactness of the state space, we may then take a
weak∗ cluster point of a sequence of averaged states given by f 7→ |Fn|−1

∑
s∈Fn σ̃(s−1f) over

a Følner sequence {Fn} of G, which yields a G-invariant state on C(Z) restricting to σ on
C(X). By the Riesz representation theorem, such a state corresponds to a unique measure
in MG(Z) that maps to ν under (the push-forward of) π.

In particular, one can replace “π∗µ” and “for all µ ∈ MG(Z)” with “ν” and “for all ν ∈
MG(X)”, respectively, in each of the conditions (ii), (iii), and (iv) in the above proposition.

5. Equivalence of the small boundary property and almost finiteness in
measure

Our goal in this section is to establish Theorem 5.6 equating almost finiteness in measure
with the small boundary property under the assumption of freeness. Below X is assumed to
be a compact metrizable space.

Let us begin by recalling the small boundary property. This concept originated in the
work of Shub and Weiss (Section 1 of [40]) and later appeared in the context of actions with
mean dimension zero [33].

Definition 5.1. An action G y X is said to have the small boundary property if there
is a basis for the topology on X consisting of open sets U such that µ(∂U) = 0 for every
µ ∈MG(X).

When G is amenable, the condition on U above can be rephrased as D(∂U) = 0 in view
of Proposition 3.3.

Recall that a set C ⊆ X is said to be regular closed if C = int(C).

Definition 5.2. A finite collection P of subsets of X is called a regular closed partition if
all of its members are regular closed, X =

⋃
P, and C1 ∩ C2 ⊆ ∂C1 ∩ ∂C2 for all distinct

elements C1, C2 ∈P. In this case we define the boundary of P by

∂P =
⋃
C∈P

∂C ⊆ X.

If α is some homeomorphism from X to itself, then α(P) will denote the regular closed
partition given by the family {α(C) | C ∈ P}. In other words, we identify α with its
induced bijection on the set of all regular closed partitions on X.

A regular closed partition is not a genuine partition in general, but can be viewed as a
partition modulo a set which is both closed and nowhere dense and hence topologically small
in a manner of speaking.

Remark 5.3. Let P1 and P2 be two regular closed partitions of X. As for open covers,
we say that P1 refines P2 if there exists a map r : P1 → P2 such that C ⊆ r(C) for all
C ∈ P1. We refer to such a map as a refinement map. Unlike for open covers, it follows
easily from the definition of a regular closed partition that such a refinement map, if it exists,
is unique.
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Definition 5.4. Let P1 and P2 be two regular closed partitions of X. We define their
common refinement by

P1 ∨P2 = {int(C1 ∩ C2) | C1 ∈P1, C2 ∈P2},
which is easily seen to be another regular closed partition.

The main thrust of the following theorem lies in the construction proving the implication
(i)⇒(ii), which draws inspiration from a similar construction in [29] carried out for G = Z
in a slightly different context.

Theorem 5.5. Suppose that G is amenable. Let α : G y X be an action on a compact
metric space. The following are equivalent:

(i) α has the small boundary property,
(ii) there exists an extension π : (Z, γ) → (X,α) which is measure-isomorphic over

singleton fibres such that Z is zero-dimensional,
(iii) for every ε > 0 there exists a finite collection O of pairwise disjoint open subsets of

X of diameter at most ε such that D(
⋃

O) = 1,
(iv) for every ε > 0 there exists a finite collection O of pairwise disjoint open subsets of

X of diameter at most ε such that D(
⋃

O) ≥ 1− ε.
(v) for every ε > 0 and every pair of open sets U, V ⊆ X with U ⊆ V there exists an

open set U0 with U ⊆ U0 ⊆ V such that D(∂U0) ≤ ε.

Proof. (i)⇒(ii). Let us fix a compatible metric d on X for the course of the proof. Given
an n ∈ N we may find an open cover {U1, . . . , Um} of X such that for each j the set Uj has
diameter at most 1/n and ν(∂Uj) = 0 for all ν ∈MG(X). By recursively defining

C1 = U1, Ck+1 = Uk+1 \
( k⋃
j=1

Ck

)
for k < m, we obtain a regular closed partition Pn = {C1, . . . , Cm} of X. By our choice of
the sets Uj , each Cj has diameter at most 1/n and ν(∂Pn) = 0 for all ν ∈MG(X)

Now let F1 ⊆ F2 ⊆ . . . be an increasing sequence of finite subsets of G with e ∈ Fn = F−1
n

and G =
⋃∞
n=1 Fn. Recursively define a sequence of regular closed partitions Qn of X by

Q1 = P1, Qk+1 = Pk+1 ∨
∨
s∈Fk

αs(Qk).

Given k ∈ N and s ∈ Fk, the partition αs(Qk+1) refines Qk by definition, and we let
rsk : αs(Qk+1)→ Qk be the refinement map sending each member of αs(Qk+1) to the member
of Qk which contains it. For brevity, write r1

k = rk. By the uniqueness of refinement maps
between regular closed partitions, we may observe that

(1) rstk ◦ αst ◦ rk+1 = rsk ◦ αs ◦ rtk+1 ◦ αt
whenever s, t ∈ G and k are such that all of these maps are defined.

We define a compact metrizable space as the inverse limit

Z = lim
←−
{Qk, rk} =

{
(Ck)k≥1 ∈

∏
k≥1

Qk | Ck = rk(Ck+1) for all k ≥ 1
}
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and denote by r∞,k : Z → Qk the natural projection map for each k. Clearly Z is zero-
dimensional, and in fact the collection

B = {r−1
∞,k(A) | k ≥ 1, A ∈ Qk}

is a canonical basis for the topology consisting of clopen sets. Note that each sequence
(Ck)k ∈ Z is uniquely determined by any one of its cofinite tails, which we will use without
further mention.

Given an element z = (Ck)k ∈ Z, we observe that the intersection
⋂∞
k=1Ck is nonempty

by compactness and can only contain one element because its diameter is at most

inf
k∈N

diam(Ck) ≤ inf
k∈N

1/k = 0.

Thus we may define a map π : Z → X by declaring π
(
(Ck)k

)
to be the unique element in

the intersection
⋂∞
k=1Ck.

It is easy to check that π is continuous, for if z1, z2 ∈ Z are both contained in the clopen
set r−1

∞,k(A) for some k ≥ 1 and A ∈ Qk, then by definition of π this means π(z1), π(z2) ∈ A,

which by construction of Qk implies d(π(z1), π(z2)) ≤ 1/k.
The surjectivity of π holds because (Qk)k is a sequence of successively finer regular closed

partitions: if x ∈ X then there is some C1 ∈ Q1 with x ∈ C1. Inductively, if we have a finite
sequence

C1 ⊇ C2 ⊇ · · · ⊇ Ck0 3 x such that Cj ∈ Qj , 1 ≤ j ≤ k0,

then we can find some Ck0+1 ∈ Qk0+1 with x ∈ Ck0+1 ⊆ Ck0 . This gives us some sequence
(Ck)k = z ∈ Z such that x = π(z).

Let us now define a G-action γ on Z. Let s ∈ G. Then there is a k0 ∈ N such that s ∈ Fk0 .
We define γs : Z → Z via the assignment

(Ck)k>k0 7→ (rsk(αs(Ck+1)))k≥k0 .

Then γs is a well-defined map on Z. It is also continuous: if two elements z1, z2 ∈ Z agree
on their first j + 1 components as sequences for j > k0, then it follows from the definition
of γs that γs(z1) and γs(z2) agree on their first j components. As Z is equipped with the
product topology coming from

∏
Qk, this yields continuity.

It is clear that γe is the identity map. To show that γ is an action ofG by homeomorphisms,
we only need to show that the assignment s 7→ γs is multiplicative in G with respect to
composition. So let s, t ∈ G and suppose that s, t, st ∈ Fk0 for some k0 ∈ N. Then

γst
(
(Ck)k>k0

)
= (rstk (αst(Ck+1)))k≥k0

= (rstk (αst(rk+1(Ck+2))))k≥k0
(1)
= rsk(αs(r

t
k+1(αt(Ck+2))))k≥k0

= γs
(
(rtk+1(αt(Ck+2)))k≥k0

)
= (γs ◦ γt)

(
(Ck)k>k0

)
.

This verifies that γ is an action.
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The map π : Z → X is then G-equivariant: for s ∈ G, k0 ∈ N as above and arbitrary
z = (Ck)k ∈ Z, we have

αs(π(z)) ∈ αs
( ∞⋂
k=1

Ck

)
=

∞⋂
k≥k0

αs(Ck+1) ⊆
⋂
k≥k0

rsk(αs(Ck+1)) 3 π(γs(z)).

Since the intermediate sets above are one-point sets, this yields αs(π(z)) = π(γs(z)) for all
z ∈ Z and s ∈ G.

To show that the extension π : (Z, γ) → (X,α) is measure-isomorphic over singleton
fibres it suffices to check that π satisfies condition (ii) in Proposition 4.3 with respect to
the canonical basis B defined above. Let W ∈ B be an element in this basis. Then there
are k ≥ 1 and A ∈ Qk such that W = r−1

∞,k(A). The complement is given by Z \ W =⊔
C∈Qk, C 6=A r

−1
∞,k(C). By the definition of the map π, we see that π(W ) = A and π(Z \W ) =⋃

{C | C ∈ Qk, C 6= A} ⊆ X. As Qk is a regular closed partition the intersection of these
two sets lies inside ∂Qk, which has vanishing upper density by construction. Therefore
D(π(W ) ∩ π(Z \W )) = 0 for all W ∈ B, which finishes the proof of (ii).

(ii)⇒(iii). Let π : (Z, γ)→ (X,α) be an extension as in (ii). Let ε > 0 be given. Let δ > 0
be small enough so that sets of diameter at most δ are mapped under π to sets of diameter
at most ε. Choose a clopen partition P of Z consisting of sets with diameter at most δ. Let
us consider

O = {π(W ) \ π(Z \W ) |W ∈P}.
By design, the members of O are pairwise disjoint and have diameter at most ε. For every
W ∈P we have X \ π(W ) ⊆ π(Z \W ) and hence ∂π(W ) ⊆ π(W )∩π(Z \W ), showing that
the members of O are open.

For each W ∈ P, since Z \ W is closed we have ν(π(W ) ∩ π(Z \ W )) = 0 for every
ν ∈ MG(X) by Proposition 4.3(iv). As X is covered by the images of the members of P
under π, we have

X \
⋃

O ⊆
⋃
{π(W ) ∩ π(Z \W ) |W ∈P}

This implies that D(
⋃

O) = 1−D(X \
⋃

O) = 1 and thus yields (iii).
(iii)⇒(iv). Trivial.
(iv)⇒(v). Let U, V ⊆ X be open sets with U ⊆ V . Let ε > 0 be given, and assume without

loss of generality that it is small enough so that the ε-neighbourhood of U is contained in
V . By (iv) there is a finite collection O of pairwise disjoint open subsets of X with diameter
less than ε such that D(

⋃
O) ≥ 1− ε. Set

U0 = U ∪
⋃
{W ∈ O |W ∩ ∂U 6= ∅}.

Then clearly U ⊆ U0 ⊆ V . By construction we have ∂U0 ⊆ X \
⋃

O and thus D(∂U0) ≤ ε,
as desired.

(v)⇒(i). Let U, V ⊆ X be open sets such that U ⊆ V . We will find an open set W ⊆ X
with U ⊆ W ⊆ V such that D(∂W ) = 0. Choose a sequence (εn)n of strictly positive real
numbers such that εn → 0.

Apply (v) to obtain an open set W1 with U ⊆ W1 ⊆ W 1 ⊆ V and D(∂W1) ≤ ε1/2.
By Proposition 3.4 there is a closed neighbourhood Z1 of ∂W1 such that Z1 ⊆ V and
D(Z1) ≤ ε1. Apply (v) again to obtain an open set W2 with W1 ⊆ W2 ⊆ W 2 ⊆ W1 ∪ Z1



ALMOST FINITENESS AND THE SMALL BOUNDARY PROPERTY 17

and D(∂W2) ≤ ε2/2. By Proposition 3.4 there is a closed neighbourhood Z2 of ∂W2 such
that Z2 ⊆ Z1 and D(Z2) ≤ ε2. Carry on recursively like this to generate for each n an
open set Wn and a closed neighbourhood Zn of ∂Wn such that U ⊆ Wn ⊆ V , Wn ⊆ Wn+1,
Zn+1 ⊆ Zn, Wn+1 ⊆Wn ∪ Zn, and D(Zn) ≤ εn. Set

W =
⋃
n∈N

Wn.

Then U ⊆ W ⊆ V . We also have ∂W ⊆
⋂
n∈N Zn and hence D(∂W ) = 0. This proves that

α has the small boundary property. �

Theorem 5.6. Suppose that G is amenable. Then a free action α : G y X on a compact
metrizable space has the small boundary property if and only if it is almost finite in measure.

Proof. The “if” part follows from (iv)⇒(i) of Theorem 5.5. Let us show the “only if” part.
Applying (i)⇒(ii) of Theorem 5.5, there exists an extension π : (Z, γ)→ (X,α) such that Z
is zero-dimensional and which is measure-isomorphic over singleton fibres. Since α is free,
so is γ. Fix compatible metrics on Z and X.

Let K be a finite subset of G and ε > 0. By Theorem 3.13 the action γ is almost finite in
measure, and so there exists a clopen castle {(Vi, Si)}i∈I with (K, ε)-invariant shapes such
that D(

⋃
i∈I SiVi) ≥ 1− ε. Choose a δ > 0 small enough so that subsets of Z of diameter at

most δ are mapped under π to subsets of X of diameter at most ε. By partitioning each Vi
into smaller clopen sets and relabeling, we may assume that the levels of our castle all have
diameter at most δ. For each i ∈ I set

Wi = π(Vi) \ π(Z \ Vi)

and note that sWi = π(sVi)\π(Z \sVi) for each s ∈ Si. Then {(Wi, Si)}i∈I is an open castle.
The shapes of this castle are (K, ε)-invariant, and its levels have diameter at most ε by our
choice of δ. Also, since D(π(sVi) ∩ π(Z \ sVi)) = D(π(Vi) ∩ π(Z \ Vi)) = 0 for every i ∈ I
and s ∈ Si by Propositions 4.3 and 3.3, we have

D

(⋃
i∈I

SiWi

)
= D

(⋃
i∈I

SiVi

)
≥ 1− ε.

This finishes the proof. �

Corollary 5.7. Suppose that G is infinite and amenable. Let G y X be a free action on
a compact metrizable space which is almost finite in measure. Then the action has mean
dimension zero.

Proof. By Theorem 5.6, the action has the small boundary property. This in turn implies
mean dimension zero by Theorem 5.4 of [33].5 �

5The arguments there are carried out for G = Z but the authors make a point that they also apply more
generally to all amenable groups.
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6. Comparison and almost finiteness

In Theorem 6.1 below we strengthen Theorem 9.2 of [25] using almost finiteness in measure
via Theorem 5.6. The novelty is the implication (iii)⇒(i) under the hypothesis of the small
boundary property, which generalizes the corresponding implication in Theorem 9.2 of [25]
and is established below in the same way, only this time using Theorem 5.6 instead of the
original form of the Ornstein–Weiss tower theorem.

Recall the definitions of almost finiteness and m-comparison from Section 2. By Theo-
rem 9.2 of [25], almost finiteness implies comparison, and from this it is readily seen that
the action Gy X is almost finite if and only if it is almost finite in measure (Definition 3.5)
and has comparison.

Theorem 6.1. Suppose that G is amenable. Let G y X be a free action on a compact
metrizable space. Then the following are equivalent:

(i) the action is almost finite,
(ii) the action has the small boundary property and comparison,

(iii) the action has the small boundary property and m-comparison for some m ≥ 0.

Proof. The implications (i)⇒(ii)⇒(iii) are part of Theorem 9.2 of [25], with the small bound-
ary property coming from Theorem 5.6. Let us prove then (iii)⇒(i).

Note first that if G is finite then the small boundary property implies that X is totally
disconnected, in which case the freeness of the action implies that one has an equivariant
decomposition X ∼= Y × G, where Y ⊆ X is a clopen subset and G acts trivially on the
first component and by left translation on the second component. In this case the action is
obviously almost finite. We may thus assume that G is infinite.

By hypothesis the action has m-comparison for some m ≥ 0. Let K be a finite subset of
G, δ > 0, and n ∈ N. Set q = (m+ 1)n. Since G is infinite there are a finite set K ′ ⊆ G with
K ⊆ K ′ and a δ′ > 0 with δ′ ≤ δ such that every nonempty (K ′, δ′)-invariant finite set F ⊆ G
is large enough so that there exists a set S ⊆ F satisfying |F |/(2q) < |S| < |F |/q. Since
the action has the small boundary property, by Theorem 5.6 it is almost finite in measure,
and so we can find an open castle {(Vi, Ti)}i∈I with (K ′, δ′)-invariant shapes such that the
remainder A = X \

⊔
i∈I TiVi satisfies D(A) < 1/(2q + 1). By our choice of K ′ and δ′ we

can find pairwise disjoint sets Si,0, . . . , Si,m ⊆ Ti such that each has the same cardinality κ
satisfying |Ti|/(2q) < κ < |Ti|/q. Set T ′i = Si,0 t · · · t Si,m and note that

|T ′i | = (m+ 1)κ <
m+ 1

q
|Ti| =

1

n
|Ti|.(2)

Next set B =
⊔
i∈I Si,0Vi. By Proposition 3.3, for every µ ∈ MG(X) we have µ(A) ≤

D(A) < 1/(2q + 1) and hence

µ(B) ≥
∑
i∈I

|Si,0|
|Ti|

µ(TiVi) >
1

2q
µ

(⊔
i∈I

TiVi

)
=

1

2q
(1− µ(A)) > µ(A).

Therefore A ≺m B by our hypothesis of m-comparison, and so there exist a finite collection
U of open subsets of X covering A, an sU ∈ G for every U ∈ U , and a partition U =
U0 ∪ · · · ∪Um such that for every i = 0, . . . ,m the sets sUU for U ∈ Ui are pairwise disjoint
and contained in B.
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For every i ∈ I and j = 0, . . . ,m choose a bijection ϕi,j : Si,0 → Si,j . For U ∈ U , i ∈ I,

and t ∈ Si,0, write WU,i,t = U ∩ s−1
U tVi. Note that each fixed U is partitioned by the open

sets WU,i,t for i ∈ I and t ∈ Si,0. Also, if for each U we write jU for the j such that U ∈ Uj ,
then the sets ϕi,jU (t)t−1sUWU,i,t for U ∈ U , i ∈ I, and t ∈ Si,0 are pairwise disjoint and
contained in

⊔
i∈I T

′
iVi. We have consequently verified that A ≺

⊔
i∈I T

′
iVi. In conjunction

with (2), this establishes almost finiteness. �

Recalling the notion of tower dimension for actions from Definition 4.3 of [25], we obtain
the following strengthening of Theorem 7.2 in [25]. Note that the assumption of finite
covering dimension cannot be removed, as Example 12.5 in [25] illustrates.

Corollary 6.2. Suppose that G is amenable and that X is a compact metrizable space with
finite covering dimension. Let Gy X be a free minimal action with finite tower dimension.
Then the action is almost finite.

Proof. Finite tower dimension and the finite-dimensionality of X together imply, by Theo-
rem 7.2 of [25], that the the action has m-comparison for some integer m ≥ 0. Since the
action has the small boundary property in view of the finite-dimensionality of X (as fol-
lows for example from Theorem 3.8 of [41]), we can then apply Theorem 6.1 to obtain the
conclusion. �

7. Almost finiteness and the topological small boundary property

In Section 4 we studied extensions which are measure-isomorphic over singleton fibres and
used them in Section 5 to establish the equivalence between almost finiteness in measure and
the small boundary property. Here we apply such extensions in the more purely topological
setting of the so-called topological small boundary property to obtain a result about almost
finiteness (Theorem 7.6) that sets the stage for Theorems 8.1 and 8.2 in the next section.

Definition 7.1. Let G y X be an action. A set A ⊆ X is said to be topologically small if
there exists a constant L ∈ N such that whenever s0, . . . , sL are distinct elements of G one
has s0A∩ · · · ∩ sLA = ∅. We say that the action has the topological small boundary property
if there is a basis for the topology on X consisting of open sets the boundaries of which are
topologically small.

Remark 7.2. It is clear from the definition that every topologically small set has vanishing
upper density when G is infinite. In particular, the topological small boundary property
implies the small boundary property for actions of infinite groups. Note also that the union
of finitely many topologically small sets is again topologically small, a fact which will be
used without further mention.

By closely examining the proof of (i)⇒(ii) in Theorem 5.5 one sees that an analogous
construction can be used to obtain the following. Since the proof is very similar to before,
we omit the details.

Theorem 7.3. Let α : G y X be an action with the topological small boundary property.
Then there exists an extension π : (Z, γ)→ (X,α) which is measure-isomorphic over single-
ton fibres such that Z is totally disconnected and for all disjoint clopen sets W1,W2 ⊆ Z the
intersection π(W1) ∩ π(W2) is topologically small.
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Lemma 7.4. Suppose that G is infinite and amenable. Let Gy X be a free action with the
small boundary property. Let U ⊆ X be an open set with D(U) > 0. Then for every m ∈ N
and η > 0 there exist pairwise disjoint open sets U1, . . . , Um ⊆ U satisfying

D(Ui) ≥
1

m
D(U)− η

for all i = 1, . . . ,m.

Proof. Let m ≥ 2 and η > 0 be given with η < D(U). Setting θ = D(U) − η/2, by
Proposition 3.4 (taking A = X \U there) we may find an open set W with W ⊆ U such that

(3) D(W ) ≥ θ.

Let δ > 0 be so small that the open δ-neighbourhood of W is contained in U . As G is
infinite, by our choice of W we may find an ε > 0 and a finite set K ⊆ G such that every
(K, ε)-invariant finite set S ⊆ G has cardinality greater than 4m(1 + η)/(θη) and satisfies

inf
x∈X

|Sx ∩W |
|S|

≥ θ

1 + η
,

in which case

inf
x∈X
|Sx ∩W | ≥ θ

1 + η
|S| ≥ 4m

η
.

Since the action is almost finite in measure by Theorem 5.6, we can find an open castle
consisting of towers (Vj , Sj) for j = 1, . . . , N such that the shapes Sj are (K, ε)-invariant,
the levels all have diameter less than δ, and such that

(4) D
( N⊔
j=1

SjVj
)
≥ 1− η/4.

It follows from the diameter condition that every level of the castle is either disjoint from W
or lies entirely in U . Set

(5) S′j = {s ∈ Sj : sVj ∩W 6= ∅}

and observe that

|S′j | ≥ inf
x∈X
|Sjx ∩W | ≥

4m

η
.

We may then find a partition

S′j = S′j,1 t · · · t S′j,m
with |S′j,i| ≥ b|S′j |/mc, so that

|S′j,i|
|S′j |

≥ 1

|S′j |

( |S′j |
m
− 1
)
≥ 1

m
− η

4

for each i = 1, . . . ,m. Set

Ui =

N⊔
j=1

⊔
s∈S′j,i

sVj .
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By construction, we have for all i = 1, . . . ,m and µ ∈MG(X) that

µ(Ui) =
N∑
j=1

|S′j,i|µ(Vj) =
N∑
j=1

|S′j,i|
|S′j |
|S′j |µ(Vj)

≥
( 1

m
− η

4

) N∑
j=1

|S′j |µ(Vj)

(5),(4)

≥
( 1

m
− η

4

)(
µ(W )− η

4

)
.

Appealing to Proposition 3.3 we thus conclude that

D(Ui) ≥
( 1

m
− η

4

)(
D(W )− η

4

) (3)

≥
( 1

m
− η

4

)(
D(U)− 3η

4

)
≥ 1

m
D(U)− η. �

Lemma 7.5. Suppose that G is amenable. Let G y X be a free action with the small
boundary property. Let U ⊆ X be an open set with D(U) > 0 and let C ⊆ X be a closed set
which is topologically small. Then C ≺ U .

Proof. Let L ∈ N be the smallness constant for C as in Definition 7.1. We will prove the
assertion by induction in L. First suppose that L = 1, which means that the images of C
under the action of G are pairwise disjoint. As D(U) > 0, there exists some finite set F ⊆ G
with

⋃
s∈F sU = X. We may assume that F = F−1 by replacing F with F ∪ F−1. Choose

an open neighbourhood V of C such that the sets sV for s ∈ F are pairwise disjoint. Then
define Vs = sU ∩ V for s ∈ F , which yields an open cover of C with the property that the
sets s−1Vs for s ∈ F are pairwise disjoint and contained in U . This verifies C ≺ U for the
base step in the induction.

Now assume that the assertion holds for sets with smallness constant at most some given
L ∈ N and let us show that it holds for sets with smallness constant L+ 1. Let C ⊆ X be a
closed topologically small set with smallness constant L+ 1.

Applying Lemma 7.4 repeatedly, we find pairwise disjoint open sets Us ⊂ U indexed by
s ∈ G with D(Us) > 0 for all s. For every s 6= e, the set C ∩ sC is clearly topologically small
with constant L, and so by the induction hypothesis we have C ∩ sC ≺ Us for all s 6= e.
For every s 6= e take an open neighbourhood Vs of C ∩ sC such that Vs ≺ Us, for example
the union of a collection of open sets covering C ∩ sC which witness the subequivalence
C ∩ sC ≺ Us.

We note that the complement C \
⋃
s∈G\{e} sC is topologically small with constant L = 1,

and so the same is true of the closed set C \
⋃
s∈G\{e} Vs, which it contains. It follows by the

base case of the induction hypothesis that C \
⋃
s∈G\{e} Vs ≺ Ue. Since

C =
( ⋃
s∈G\{e}

C ∩ sC
)
∪
(
C \

( ⋃
s∈G\{e}

sC
))

⊆
( ⋃
s∈G\{e}

Vs

)
∪
(
C \

⋃
s∈G\{e}

Vs

)
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we conclude using the compactness of C that C ≺
⋃
s∈G Us ⊆ U . �

Theorem 7.6. Suppose that G is amenable, and that every free action of G on a zero-
dimensional compact metrizable space is almost finite. Then every free action of G with the
topological small boundary property is almost finite.

Proof. Let X be a compact metrizable space and α : Gy X a free action with the topological
small boundary property. We apply Theorem 7.3 to obtain an extension π : (Z, γ) →
(X,α) which is measure-isomorphic over singleton fibres such that Z is zero-dimensional and
π(W1) ∩ π(W2) is topologically small for all pairs of disjoint clopen sets W1,W2 ⊆ Z.

As α is free, it is clear that γ is free. By assumption, γ is almost finite. Since Z is zero-
dimensional, it follows by the comments in the last paragraph of Section 2 that given an
ε > 0 and a finite set K ⊆ G we can find a clopen castle in Z consisting of towers (Vj , Sj) for
j = 1, . . . ,m so that each shape Sj is (K, ε)-invariant and the castle partitions Z. Without
loss of generality, we may assume that e ∈ Sj for all j. Choose δ > 0 small enough so that
sets of diameter at most δ in Z are mapped under π to sets of diameter at most ε in X. By
subdividing the castle if necessary, we may assume that all of the tower levels have diameter
at most δ.

Define
Bj = π(Vj) \ π(Z \ Vj).

Then (Bj , Sj) is an open tower in X for the action α, and together these towers form a castle
whose levels have diameter at most ε. The remainder of the castle is contained in the closed
set

R =
m⋃
j=1

⋃
s∈Sj

π(sVj) ∩ π(Z \ sVj),

which by our choice of π is topologically small. Since π is measure-isomorphic over singleton
fibres, by Proposition 3.3 and the fact that every G-invariant Borel probability measure on
Z assigns the levels of an open tower the same values we obtain

D
( m⋃
j=1

Bj

)
= D

( m⋃
j=1

Vj

)
≥ min

1≤j≤m

1

|Sj |
> 0,

so that R ≺
⋃m
j=1Bj by Lemma 7.5. Thus α is almost finite. �

Corollary 7.7. Suppose that G is amenable, and that every free action of G on a zero-
dimensional compact metrizable space is almost finite. Then every free action of G on a
finite-dimensional compact metrizable space is almost finite.

Proof. This is a consequence of Theorem 7.6 and Theorem 3.8 of [41]. �

8. Applications to classifiability

Recently in [11] Downarowicz and Zhang showed that if every finitely generated subgroup
of G has subexponential growth then every free action of G on a zero-dimensional compact
metrizable space is almost finite, i.e., there exist clopen castles which have Følner shapes
and partition the space (see the last paragraph of Section 2). Conley, Jackson, Marks,
Seward, and Tucker-Drob also observed independently that the tiling argument of [6] can be
adapted to the topological setting to establish this fact. In this case one first notes, using
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the clopen version of the Ornstein–Weiss tower theorem (Theorem 3.13), that the problem
can be reduced to a matching argument on a bipartite graph. The graph is constructed
from a clopen Ornstein–Weiss castle by using a fixed symmetric Følner set to connect points
in the leftover part of the space, whose Banach density d is taken to be extremely small,
to points in some proportionally small collection of tower levels whose union has Banach
density at least 2d. With this graph one can progressively build better and better matchings
through a process of simultaneously flipping a given matching along a pairwise disjoint
collection of augmenting paths. Since subexponential growth implies that there is a uniform
upper bound on the length of (minimal) augmenting paths, this process will terminate after
finitely many steps, resulting in a clopen matching. One thus obtains a clopen castle which
partitions the space, with the apppoximate invariance of the shapes of the original castle
being approximately preserved due to the proportional smallness of the collection of tower
levels used to build the bipartite graph.

Combined with Corollary 7.7, this result on almost finiteness yields the following theorem.
Note that the conclusion is still valid if we replace the hypothesis dim(X) < ∞ with the
weaker assumption that the action has the topological small boundary, as we can appeal to
Theorem 7.6 instead.

Theorem 8.1. Suppose that every finitely generated subgroup of G has subexponential growth.
Let X be a compact metrizable space with finite covering dimension. Then every free action
Gy X is almost finite.

For a free minimal action Gy X on a compact metrizable space, almost finiteness implies
that C(X) o G is Z -stable by Theorem 12.4 of [25] and hence that C(X) o G has finite
nuclear dimension by Theorem A of [4]. In this case C(X) o G, given that it satisfies the
UCT [45], falls under the scope of the classification theorem recorded as Corollary D in
[43]. This gives us the following result, which again applies equally well if one assumes the
topological small boundary property on the action instead of dim(X) <∞. The reader may
compare this result to Theorem 8.8 of [42].

Theorem 8.2. The crossed products of free minimal actions G y X where X is a com-
pact metrizable space with finite covering dimension and G is such that each of its finitely
generated subgroups has subexponential growth are classified by the Elliott invariant (ordered
K-theory paired with tracial states) and are simple ASH algebras of topological dimension at
most 2.

In the case that G is finitely generated and has polynomial growth, one can alternatively
establish Theorem 8.1 by substituting the following simpler proof of almost finiteness for free
actions on zero-dimensional compact metrizable spaces. We first observe, by considering the
word-length metric with respect to a fixed finite generating set and using balls of sufficiently
large radius, that such a G satisfies the following property:

(∗) there is a constant c > 0 such that for every finite set K ⊆ G and δ > 0 there exists
a nonempty finite set F ⊆ G with |F−1F | ≤ c|F | such that both F and F−1F are
(K, δ)-invariant.

It then suffices to combine the following two lemmas to obtain the desired conclusion.
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Lemma 8.3. Suppose that G has property (∗) with constant c > 0. Let G y X be a free
action on a zero-dimensional compact metrizable space. Then for all clopen sets A,B ⊆ X
satisfying cD(A) < D(B) one has A ≺ B.

Proof. Let G y X be a free action on a zero-dimensional compact metrizable space and
let A and B be clopen subsets of X satisfying cD(A) < D(B). Choose an ε > 0 such that
c(D(A) + ε) < D(B)− ε.

Take a finite set K ⊆ G and δ > 0 such that for every (K, δ)-invariant finite set E ⊆ G
one has D(A)+ε ≥ supx∈X |A∩Ex|/|E| and D(B)−ε ≤ infx∈X |B∩Ex|/|E|. By our choice
of c, there is a nonempty finite set F ⊆ G such that |F−1F | ≤ c|F | and both F and F−1F
are (K, δ)-invariant. Fix an enumeration s1, . . . , sn of the elements of F . Set A1 = A∩ s−1

1 B
and for k = 2, . . . , n recursively define

Ak = (A \ (A1 ∪ · · · ∪Ak−1)) ∩ s−1
k (B \ (s1A1 ∪ · · · ∪ sk−1Ak−1)).

Note that the sets A1, . . . , Ak are clopen, pairwise disjoint, and contained in A.
We claim that the union of the sets A1, . . . , Ak is equal to A. Suppose to the contrary

that there exists an x ∈ A \
⊔n
k=1Ak. Set I = {1 ≤ i ≤ n : six ∈ B}. Then

|I| = |Fx ∩B| ≥ (D(B)− ε)|F |(6)

Since x does not belong to any of the sets A1, . . . , An, for every i ∈ I there is a ki ∈
{1, . . . , i− 1} and an xi ∈ Aki such that six = skixi, which we can also write as xi = s−1

ki
six.

Since the points s1x, . . . , snx are distinct by freeness and the sets A1, . . . , An are pairwise
disjoint, the points xi for i ∈ I are distinct, which implies that the group elements s−1

ki
si for

i ∈ I are distinct. Thus

|I| ≤ |A ∩ F−1Fx| ≤ (D(A) + ε)|F−1F |
≤ (D(A) + ε)c|F |
< (D(B)− ε)|F |,

contradicting (6). We must therefore have A =
⊔n
k=1Ak. Since the sets s1A1, . . . , snAn are

pairwise disjoint and contained in B, we have thus shown that A ≺ B. �

Lemma 8.4. Suppose that G is amenable. Let Gy X be a free action on a zero-dimensional
compact metrizable space. Suppose that there exists a c > 0 such that for all clopen sets
A,B ⊆ X satisfying cD(A) ≤ D(B) one has A ≺ B. Then the action is almost finite.

Proof. It is clear that the hypothesis in the theorem statement can be substituted for m-
comparison in the proof of (iii)⇒(i) in Theorem 6.1 given that the castle there can be taken
to be clopen, as the proof of Theorem 3.13 demonstrates. �

Remark 8.5. Finally we point out that, for finitely generated groups, property (∗) is actually
equivalent to polynomial growth. Indeed for finitely generated groups polynomial growth
is equivalent to virtual nilpotence by Gromov’s theorem [17], and property (∗) (or even a
weaker version of it, known as the Tempelman condition, which does not require F−1F to
be (K, δ)-invariant) implies virtual nilpotence by Corollary 11.2 in [3]. This corollary shows
that if G is a finitely generated group for which there is a b > 0 such that for every finite
set E ⊆ G there exists a finite set F ⊆ G satisfying |F−1F | ≤ b|F | and E ⊆ F , then G is
virtually nilpotent (the corollary is stated in [3] with F 2 in place of F−1F , but the authors’
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application of their Corollary 1.7 in the proof works equally well in the latter case). While
the containment condition E ⊆ F for a given E does not appear in the definition of property
(∗), we can arrange for the set F in the definition to satisfy this condition, for if F is (E, δ)-
invariant for a sufficiently small δ > 0 then it contains Es for some s ∈ G, as is easy to check,
in which case Fs−1 contains E and satisfies |(Fs−1)−1Fs−1| = |F−1F | and |Fs−1| = |F |.

9. Crossed products and the Toms–Winter conjecture

The Toms–Winter conjecture asserts the equivalence of the following three conditions for
simple separable infinite-dimensional unital nuclear C∗-algebras:

(i) finite nuclear dimension,
(ii) Z -stability,
(iii) strict comparison.

Recently in [5] the conjecture was settled in the case that the C∗-algebra has uniform property
Γ, as defined below. Since Z -stability implies uniform property Γ this yields the implication
(ii)⇒(i) in full generality. As finite nuclear dimension was known to imply Z -stability [46]
one thereby obtains the equivalence of (i) and (ii).

Definition 9.1. A unital C∗-algebra A with nonempty tracial state space is said to have
uniform property Γ if for every finite set Ω ⊆ A and ε > 0 there are two orthogonal positive
contractions e1, e2 ∈ A such that for all a ∈ Ω and k = 1, 2 one has

(i) ‖eka− aek‖ < ε, and
(ii) |τ(eka)− 1

2τ(a)| < ε for every tracial state τ on A.

In condition (i) above one can equivalently use the uniform trace norm ‖ · ‖2,u (the supre-
mum of the trace norms over all tracial states), as follows for example from Propositions 4.5
and 4.6 in [28].

Making use of tiling techniques as in the proofs of Theorem 5.3 in [6] and Theorem 12.4
in [25] we will verify uniform property Γ for crossed products of free actions with the small
boundary property, i.e., which are almost finite in measure. The basic tool is the following
disjointified version of the Ornstein–Weiss quasitiling theorem. We say that a set E ⊆ G is
tiled by a collection T of subsets of G if E can be partitioned into sets of the form Tc where
T ∈ T and c ∈ G.

Lemma 9.2. Suppose that G is amenable. Let K be a finite subset of G and δ > 0. Let
0 < ε < 1

2 . Then there are a finite set K ′ ⊆ G, a δ′ > 0, and a finite collection T of
(K, δ)-invariant finite subsets of G such that for every (K ′, δ′)-invariant finite set E ⊆ G
there is a set E′ ⊆ E such that |E′| ≥ (1− ε)|E| and E′ can be tiled by T .

Proof. As is simple to check, there exists an η > 0 such that for every (K, η)-invariant
finite set T ⊆ G and every T ′ ⊆ T with |T ′| ≥ (1 − η)|T | the set T ′ is (K, δ)-invariant.
By shrinking ε if necessary we may assume that ε ≤ η. By the Ornstein–Weiss quasitiling
theorem (see Theorem 4.36 of [26]), there are a finite set K ′ ⊆ G, a δ′ > 0, and (K, η)-
invariant finite sets T1, . . . , Tm ⊆ G such that for every (K ′, δ′)-invariant finite set E ⊆ G
there exist C1, . . . , Cm ⊆ G and pairwise disjoint sets Ti,c ⊆ Ti with |Ti,c| ≥ (1 − η)|Ti| for
i = 1, . . . ,m and c ∈ Ci such that

(i)
⋃m
i=1 TiCi is a subset of E with cardinality at least (1− ε)|E|, and



26 DAVID KERR AND GÁBOR SZABÓ

(ii)
⊔m
i=1

⊔
c∈Ci Ti,cc =

⋃m
i=1 TiCi.

By our choice of η, each of the sets Ti,c is (K, δ)-invariant. We can thus take T to be the union
of all sets T ⊆ G for which there is an 1 ≤ i ≤ n such that T ⊆ Ti and |T | ≥ (1− η)|Ti|. �

Lemma 9.3. Let X be a compact metrizable space and G y X a free action which is
almost finite in measure. Let P be a finite regular closed partition of X whose boundary
∂P (Definition 5.2) has zero upper density. Let K be a finite subset of G and δ > 0. Then
there is an open castle {(Vi, Si)}i∈I such that

(i) each shape Si is (K, δ)-invariant,
(ii) each level of the castle is contained in the interior of some member of P and has

boundary of upper density zero,
(iii) D(

⊔
i∈I SiVi) ≥ 1− ε.

Proof. By almost finiteness in measure there is an open castle {(Vi, Si)}i∈I such that each
shape Si is (K, δ)-invariant and D(

⊔
i∈I SiVi) ≥ 1− ε. The proof of Theorem 5.6 shows that

we may assume that the boundary of each level of the castle has upper density zero, which
is equivalent to saying that D(∂

⊔
i∈I SiVi) = 0. Write the interiors of the members of P

as A1, . . . , An. Set A0 = X \ (A1 t · · · t An). Then the sets A0, . . . , An partition X. Let
i ∈ I. For each x ∈ Vi consider the function σx ∈ {0, . . . , n}Si such that sx ∈ Aσx(s) for every

s ∈ Si. Write Σi = {1, . . . , n}Si . For every σ ∈ Σi define the set Vi,σ = {x ∈ Vi : σx = σ},
which is open because the sets A1, . . . , An are open. The pairs (Vi,σ, Si) for σ ∈ Σi thus
form an open castle each of whose levels belongs to the interior of some member of P,
and the complement SiVi \

⊔
σ∈Σi

SiVi,σ has upper density zero given that it is contained

in SiS
−1
i ∂P. Having done this for each i ∈ I, we obtain an open castle {(Vi,σ, Si) : i ∈

I, σ ∈ Σi} such that the complement of the union of its levels is contained in the union of
X \

⊔
i∈I SiVi and

⋃
i∈I SiS

−1
i ∂P, and since the latter has upper density zero we deduce

that D(
⊔
i∈I
⊔
σ∈Σi

SiVi,σ) = D(
⊔
i∈I SiVi) ≥ 1 − ε. Finally, since the boundary of the set⊔

i∈I
⊔
σ∈Σi

SiVi,σ is contained in the union of ∂
⊔
i∈I SiVi and

⋃
i∈I SiS

−1
i ∂P, it must have

upper density zero, so that the boundary of each level of the castle we have constructed has
upper density zero. Our requirements are thus fulfilled. �

In the proof of the following theorem we will abuse notation and use the same symbol µ
to denote a measure and the integral of a function with respect to that measure, as well as
the induced tracial state on the crossed product.

Theorem 9.4. Suppose that G is infinite and amenable. Let X be a compact metrizable
space and G y X a free action with the small boundary property. Then C(X) o G has
uniform property Γ.

Proof. To prove the theorem we will show that for all finite sets Ω ⊆ C(X) o G and ε > 0
there exist positive contractions f1, f2 ∈ C(X) with disjoint supports such that

|µ(fka)− 1
2µ(a)| < ε(7)

for all k = 1, 2, a ∈ Ω, and µ ∈MG(X), and

‖fka− afk‖ < ε(8)

for all k = 1, 2 and a ∈ Ω.
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First of all, we claim that it is enough to show that for every finite regular closed partition
P of X whose boundary has upper density zero (Definition 5.2), every finite set L ⊆ G, and
every ε > 0 we can find positive contractions f1, f2 ∈ C(X) with disjoint supports such that

|µ(fk1A)− 1
2µ(A)| < ε(9)

for all k = 1, 2, A ∈ P, and µ ∈ MG(X), and, denoting by us the canonical unitary in
C(X) oG associated to a given group element s,

‖fkus − usfk‖ < ε(10)

for all k = 1, 2 and s ∈ L.
Indeed first note that to verify (7) it is enough that Ω be a subset of C(X), for if E denotes

the canonical conditional expectation from C(X) oG onto C(X) then given any f ∈ C(X)
and a ∈ C(X) oG we have µ(fa) = µ(E(fa)) = µ(fE(a)). Note next that by Theorem 5.5
there is an extension G y Z of G y X which is measure-isomorphic over singleton fibres
such that Z is zero-dimensional. Accordingly we can view C(X) as a G-invariant unital
C∗-subalgebra of C(Z) and C(X) o G as a unital C∗-subalgebra of C(Z) o G. By zero-
dimensionality, for every finite collection of functions in C(Z), and in particular for every
finite collection of functions in C(X), there is a clopen partition P of Z such that each
function in the collection is approximately equal in norm, to within a prescribed tolerance,
to a linear combination of the indicator functions of the members of P. Given that the
factor map Z → X induces a bijection MG(Z) → MG(X) via its push-forward, a simple
approximation argument then shows that to verify (7) we may in fact go outside of C(X)
within the larger algebra C(Z) and instead quantify Ω over the collections {1A : A ∈ P}
where P ranges over the clopen partitions of Z. But this then means that it is enough to
verify (9) with P ranging, as in the claim, over the finite regular closed partitions of X
whose boundaries have upper density zero, for under the factor map Z → X the image of
every clopen partition of Z is a regular closed partition of X whose boundary has upper
density zero, as the proof of Proposition 5.5(ii)⇒(iii) shows. Finally, given that C(X) is a
commutative C∗-algebra one can replace (8) by (10) via a simple approximation argument,
thereby establishing the claim.

So now let P be a regular closed partition of X with D(∂P) = 0, L a finite symmetric
subset of G, and 0 < ε < 1. Choose an integer Q > 1/ε. By amenability there are a
finite set K ⊆ G and a δ > 0 such that every (K, δ)-invariant finite set E ⊆ G satisfies
|
⋂
s∈LQ sE| ≥ (1 − ε/4)|E|. By Lemma 9.2 there are a finite set K ′ ⊆ G, a δ′ > 0, and a

finite collection T = {T1, . . . , TJ} of (K, δ)-invariant finite subsets of G such that for every
(K ′, δ′)-invariant finite set E ⊆ G there is a set E′ ⊆ E such that |E′| ≥ (1 − ε/6)|E| and
E′ can be tiled by T . Set M = max1≤j≤J |Tj |.

By Theorem 5.6, the action Gy X is almost finite in measure, so by Lemma 9.3 there is
an open castle {(Vi, Si)}i∈I such that

(i) each shape Si is (K ′, δ′)-invariant,
(ii) each level of the castle is contained in the interior of some member of P and has

boundary of upper density zero, and
(iii) D(

⊔
i∈I SiVi) ≥ 1− ε/6.

As G is infinite, we may demand even stronger approximate invariance in (i) so as to addi-
tionally force each of the shapes Si to have cardinality at least 6JM |P|M/ε.
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Let i ∈ I. By our invocation of Lemma 9.2, there is a set S′i ⊆ Si with |S′i| ≥ (1− ε/6)|Si|
and sets Ci,1, . . . , Ci,J ⊆ G such that the collection {Tjc : 1 ≤ j ≤ J, c ∈ Ci,j} partitions S′i.

Let 1 ≤ j ≤ J . For each c ∈ Ci,j write σc for the element of PTj such that tcVi ⊆ σc(t)
for all t ∈ Tj . This element is unique by (ii) and the fact that the interiors of the members
of P are pairwise disjoint by the definition of regular closed partition. For each σ ∈ PTj

write Ci,j,σ for the set of all c ∈ Ci,j such that σc = σ, and choose two disjoint subsets C
(1)
i,j,σ

and C
(2)
i,j,σ of Ci,j,σ with equal cardinality such that the complement of their union in Ci,j,σ,

which we denote by C
(0)
i,j,σ, is either empty or a singleton, depending on the parity of the

cardinality of Ci,j,σ.
Set Tj,Q =

⋂
s∈LQ sTj , and note that, by our choice of K and δ,

|Tj,Q| ≥ (1− ε/4)|Tj |.(11)

Next recursively define, for q = 0, . . . , Q− 1,

Tj,q = LQ−qTj,Q \ LQ−q−1Tj,Q.

The sets Tj,q for q = 0, . . . , Q are pairwise disjoint and contained in Tj , and for s ∈ L we
have

sTj,Q ⊆ Tj,Q−1 ∪ Tj,Q(12)

and, for q = 1, . . . , Q,

sTj,q ⊆ Tj,q−1 ∪ Tj,q ∪ Tj,q+1(13)

Let i ∈ I, 1 ≤ j ≤ J , and c ∈ Ci,j be given. Since the boundaries of our towers have
upper density zero, by Proposition 3.4 there is an η > 0 such that the set Bi,j,c := {x ∈ cVi :
d(x,X \ cVi) < η} satisfies

µ(Bi,j,c) <
ε

4
∑

i∈I
∑J

j=1 |Ci,j |
(14)

for all µ ∈ MG(X). Set Wi,j,c = cVi \ Bi,j,c, which is closed. By Urysohn’s lemma there is
a continuous function gi,j,c : X → [0, 1] which is zero on the complement of cVi and one on
Wi,j,c. Given 1 ≤ j ≤ J and c ∈ Ci,j and writing αt for the automorphism of C(X) that
composes functions with the transformation x 7→ t−1x, we then define the function

g̃i,j,c =

Q∑
q=0

∑
t∈Tj,q

q

Q
αt(gi,j,c).

Now set

f1 =
∑
i∈I

J∑
j=1

∑
c∈C(1)

i,j,σ

g̃i,j,c, f2 =
∑
i∈I

J∑
j=1

∑
c∈C(2)

i,j,σ

g̃i,j,c.

For every s ∈ L we have

usg̃i,j,cu
−1
s − g̃i,j,c =

Q∑
q=0

∑
t∈Tj,q

q

Q
αst(gi,j,c)−

Q∑
q=0

∑
t∈Tj,q

q

Q
αt(gi,j,c)
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and so the function usg̃i,j,cu
−1
s − g̃i,j,c has norm at most 1/Q by (12) and (13). Since these

functions for different i, j and c have pairwise disjoint supports, we deduce that

‖usfku−1
s − fk‖ ≤

1

Q
< ε

for k = 1, 2, verifying the requirement (10).
Finally, we check (9). For k = 1, 2 we set

Zk =
⊔
i∈I

J⊔
j=1

⊔
σ∈PTj

⊔
c∈C(k)

i,j,σ

TjcVi, Z̃k =
⊔
i∈I

J⊔
j=1

⊔
σ∈PTj

⊔
c∈C(k)

i,j,σ

TjcWi,j,c.

Let A ∈P, µ ∈MG(X), and k ∈ {1, 2}. Note first that µ(A ∩ Z1) = µ(A ∩ Z2) as we chose

the sets C
(1)
i,j,σ and C

(2)
i,j,σ to always have equal cardinality. Thus

µ(fk1A) ≤ µ(A ∩ Zk) =
1

2
µ(A ∩ (Z1 t Z2)) ≤ 1

2
µ(A).(15)

Next set R0 =
⊔
i∈I
⊔J
j=1

⊔
σ∈PTj

⊔
c∈C(0)

i,j,σ

TjcVi and observe that for every i ∈ I we have

∣∣∣∣ J⊔
j=1

⊔
σ∈PTj

⊔
c∈C(0)

i,j,σ

Tjc

∣∣∣∣ ≤ JM |P|M ≤ ε

6
|Si|

and hence µ(R0) ≤ ε/6. Therefore

µ(X \ (Z1 t Z2)) ≤ µ(R0) + µ
(⊔
i∈I

(Si \ S′i)Vi
)

+ µ
(
X \

⊔
i∈I

SiVi

)
≤ ε

6
+
ε

6
+
ε

6
≤ ε

2

and so

µ(A ∩ Zk) =
1

2
µ(A ∩ (Z1 t Z2)) ≥ 1

2
µ(A)− ε

2
.

Since the set Rk =
⊔
i∈I
⊔J
j=1

⊔
σ∈PTj

⊔
c∈C(k)

i,j,σ

(Tj \ Tj,Q)cVi satisfies µ(Rk) ≤ ε/4 by (11),

and we have µ(Zk \ Z̃k) < ε/4 by (14), it follows that

µ(fk1A) ≥ µ((A ∩ Z̃k) \Rk) ≥ µ(A ∩ Zk)− µ(Zk \ Z̃k)− µ(Rk)

≥ 1

2
µ(A)− ε.

Combined with (15) this yields |µ(fk1A) − 1
2µ(A)| < ε, verifying (9). This finishes the

proof. �

In view of [5] we deduce the following corollary.

Corollary 9.5. The Toms–Winter conjecture holds for the simple crossed product C∗-algebras
in the statement of Theorem 9.4.
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We expect that the conditions in the Toms–Winter conjecture are actually satisfied by all
of the simple crossed products in the statement of Theorem 9.4. This is known to be the
case when G = Z by the work of Elliott and Niu [13].

Remark 9.6. It is worth pointing out that the proof of Theorem 9.4 verifies a version of
uniform property Γ for the Cartan pair given by the inclusion C(X) ⊆ C(X) oG. In other
words, the elements witnessing uniform property Γ for the crossed products in Theorem 9.4
are actually coming from the diagonal subalgebra C(X).

Stuart White has pointed out to us that the analogous property for Cartan pairs in von
Neumann algebras has been studied before, and in fact played a crucial role in the first
example of a II1-factor with two nonconjugate Cartan subalgebras, due to Connes and Jones
[8]. In particular, it is known in the von Neumann algebra context that property Γ for a
Cartan pair can fail even if the ambient algebra itself has property Γ.

This gives rise to the speculation that uniform property Γ for the C∗-algebraic Cartan
pair C(X) ⊆ C(X) o G may be closely tied to the small boundary property of the action,
whereas we would expect that uniform property Γ for the crossed product C∗-algebra alone
may hold without any assumptions on the action used to construct it besides freeness.
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