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JULIEN GIOL AND DAVID KERR

Abstract. We demonstrate that the perforative phenomena shown to occur among
simple amenable C∗-algebras by Villadsen and Toms can be realized within a dynamical
framework. More specifically, we construct a minimal homeomorphism for which the K0

group of the crossed product fails to be weakly unperforated, and a minimal homeomor-
phism for which the crossed product has the same Elliott invariant as an AT-algebra but
has Cuntz semigroup which fails to be almost unperforated.

1. Introduction

Topological dynamics has long been an important source of examples and motivation for
the classification theory of amenable C∗-algebras [21, 8]. The circle algebra decompositions
of Putnam for crossed products of minimal Z-systems on the Cantor set [20] and of Elliott
and Evans for irrational rotation algebras [7] provided great impetus for the development
of classification theory in the 1990s. Giordano, Putnam, and Skau’s K-theoretic study
of minimal Z-systems on the Cantor set showed that the crossed products of two such
systems are isomorphic precisely when the systems are strong orbit equivalent [9]. For
crossed products of minimal diffeomorphisms of compact smooth manifolds, Q. Lin and
Phillips obtained a direct limit decomposition into recursive subhomogeneous C∗-algebras
with no dimension growth [16, 17]. H. Lin and Phillips proved in [15] that, for a minimal
homeomorphism of an infinite compact metrizable space X with finite covering dimension
such that the image of K0(C(X) o Z) in the space of affine functions on the tracial state
space of C(X)oZ is dense, the crossed product C(X)oZ has tracial rank zero and hence
is amenable to K-theoretic classification and is a simple AH algebra with no dimension
growth and real rank zero.

As reflected by these connections to dynamics in the stably finite case, Elliott’s classifi-
cation program for amenable C∗-algebras in its K-theoretic formulation has enjoyed some
spectacular successes. Over the last several years, however, the classification program has
had to come to terms with examples of Villadsen [29, 30], Rørdam [22], and Toms [26]
that have pointed toward the need for regularity assumptions like Z-stability or the use of
invariants of a finer type [8]. Villadsen’s pioneering work [29] showed that the perforation
that can be observed in the ordered K0 group of certain manifolds like T4 can be built
into a simple AH algebra by propagating an Euler class obstruction across the building
blocks. A necessary condition for this obstruction to survive along the entire sequence is
a nonzero lower bound on the asymptotic ratio of the dimension of the base space to the
matrix size. As a consequence of the perforation in K0, Villadsen’s C∗-algebra fails to
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be Z-stable [10]. Using the Euler class argument of Villadsen, Toms constructed in [26] a
simple AH algebra A whose tensor product with the universal UHF algebra is a simple AI
algebra that has the same Elliott invariant (ordered K-theory paired with traces) as A but
is not isomorphic to A. The distinguishing feature of Toms’s example is the failure of its
Cuntz semigroup to be almost unperforated, which means that, like Villadsen’s example,
it lies outside the class of Z-stable C∗-algebras [23].

In light of these examples and the above results involving topological dynamics, one
might ask whether all crossed products of minimal Z-systems exhibit sufficiently regular
behaviour to fall within the scope of classification theorems based on the Elliott invariant.
The aim of this note is to demonstrate that the noncommutative perforative effects of
Euler class obstructions in the work of Villadsen and Toms can be recast in a dynamical
framework. More precisely, using a recursive blocking procedure as in the proof of Propo-
sition 3.5 in [18], we first construct in Section 2 a minimal subshift (X,T ) which gives rise
to a simple crossed product C(X) o Z whose Cuntz semigroup is not almost unperforated
such that

(K0(C(X) o Z),K0(C(X) o Z)+, [1]) ∼= (Q,Q+, 1), K1(C(X) o Z) ∼= Z.

It follows by [28] that there is a simple AT-algebra with the same Elliott invariant as
C(X) o Z but not isomorphic to C(X) o Z. We in fact show that one can produce such
crossed products with arbitrarily large radius of comparison [27]. We don’t know however
whether the radius of comparison is ever finite within this class of systems. Secondly,
in parallel with Villadsen’s example from [29], we construct in Section 3 a minimal sub-
shift (X,T ) for which K0(C(X) o Z) is not weakly unperforated. Like the C∗-algebras
of Villadsen and Toms, all of these crossed products fail to be Z-stable on account of
perforation.

The basic principle behind our approach is the following. Let Y be a compact Hausdorff
space and consider the shift action on Y Z. Since the translates of a single factor Y are
independent from each other (in any of the various possible senses), the algebraic effects
of any topological phenomenon residing within one of the factors might be expected to
survive upon embedding C(Y Z) into the crossed product. Thus if K0(Y ) has perforation
on account of an Euler class obstruction we might expect that K0(C(Y Z)oZ) does as well.
However the shift on Y Z is far from being minimal, and so if we desire a simple crossed
product exhibiting perforation we should look for a subshift that is “small” enough to
be minimal but “large” enough to sustain the Euler class obstruction, which can easily
be destroyed by noncommutativity. Largeness in this case will mean that, in the finite
blocks which will be used to recursively define the subshift, the factor Y will appear with
asymptotically nonzero density, in analogy with the asymptotically nonzero dimension-
rank ratio in the examples of Villadsen and Toms. This nonzero density is reflected in
nonzero values of mean dimension, which is an entropy-like invariant for dynamical systems
that provides a measure of dimension growth (see [18]).

Since the full and reduced crossed products coincide for Z-actions on compact metrizable
spaces, our crossed product notation will be tagless throughout.

Acknowledgements. The second author was partially supported by NSF grant DMS-
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simple crossed product with perforated K0 group, asked whether perforation could be ar-
ranged in the Cuntz semigroup of a simple crossed product so as to produce classification
counterexamples as in the first part of [26]. We also thank Andrew Toms, Hanfeng Li,
and the referee for helpful comments.

2. Subshifts and perforation in the Cuntz semigroup

Let Y be a compact metrizable space which contains more than one point. Denote
by I the closed unit interval. Write T for the shift (xk)k 7→ (xk+1)k on (Y × I)Z with
the product topology. Let ρ be a compatible metric on Y × I such that Y × I has ρ-
diameter at most one and ρ((y, z), (y, z′)) ≤ |z − z′| for all y ∈ Y and z, z′ ∈ I. Setting
d(x,w) =

∑
k∈Z 2−|k|ρ(xk, wk) for all x = (xk)k and w = (wk)k in (Y × I)Z we obtain a

compatible metric on (Y × I)Z.
We will construct our minimal subsystem of ((Y × I)Z, T ) by a recursive blocking pro-

cedure of the type used in the proof of Proposition 3.5 in [18]. By a block we mean a
subset of (Y × I)l for some positive integer l that has the form D1 × · · · × Dl for some
closed subsets D1, . . . , Dl of Y × I. For a block B ⊆ (Y × I)l and an i ∈ {1, . . . , l} we
write XB,i for the set of all (xk)k ∈ (Y × I)Z such that (xi+sl, xi+sl+1, . . . , xi+sl+l−1) ∈ B
for every s ∈ Z. Thus XB,i represents the set of points which can be blocked off by B
with a certain phase as described by i. Note that T cyclically permutes the sets XB,i,
with XB,i = T−i+j+slXB,j for all i, j = 1, . . . , l and s ∈ Z. We define XB to be the closed
T -invariant subset

⋃l
i=1XB,i of (Y × I)Z. In general the sets XB,1, . . . , XB,l need not be

pairwise disjoint (i.e., it might be possible to block off a sequence by B in more than one
way), but here we will want to arrange for this to be the case in order for the K0 group of
the crossed product to be isomorphic to the rationals. This is the reason for the second
factor in Y × I, which will serve as a spacing device.

Let ω be the continuous injection B → XB defined by specifying the sl+ i coordinate of
the image of a point (x1, . . . , xl) ∈ B to be equal to xi for s ∈ Z and i = 1, . . . , l. Note that
the image of ω is the set of l-periodic sequences in XB,1. Writing {ei,j}i,j for matrix units
and u for the canonical unitary in C(XB)oZ implementing the action via ufu∗ = f ◦T−1

for f ∈ C(XB), by the universal property of the full crossed product there exists a ∗-
homomorphism ϕ : C(XB) o Z→Ml ⊗ C(B) such that ϕ(f) =

∑l
i=1 ei,i ⊗ (f ◦ T 1−i ◦ ω)

for f ∈ C(XB) and ϕ(u) = el,1+
∑l−1

i=1 ei,i+1, as it is easily checked with these prescriptions
that ϕ(u)ϕ(f)ϕ(u)∗ = ϕ(f ◦ T−1).

Let 0 < d < 1. We will recursively construct a decreasing sequence X1 ⊇ X2 ⊇ . . . of
closed T -invariant subsets of (Y × I)Z such that for each n ∈ N the set Xn is defined as
XBn for a block Bn ⊆ (Y × I)ln of a certain length ln and of the form (Yn,1× In,1)× · · · ×
(Yn,ln × In,ln) where ln divides ln+1 and

(1) for all x,w ∈ Xn there is a k ∈ Z such that d(T kx,w) ≤ 2−n+3,
(2) In,1, . . . , In,ln are pairwise disjoint closed subintervals of I each with nonempty

interior and length at most 2−n−2,
(3) Yn,i = Y for all i in a subset of {1, . . . , ln} of cardinality greater than dln, and Yn,i

is a singleton for all other i, and
(4) n divides ln.
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Thus d is a lower bound on the density of the appearance of Y in the first components of
the factors of a block. The block Bn+1 will be constructed as a subset of Bln+1/ln

n by taking
a large number of copies of Bn, trimming these by shrinking the subintervals in the second
factor at each coordinate, and then forming the product of the resulting blocks together
with a bunch of sets of the form {y}×J where J is a small subinterval of I. The presence
of the latter sets with a singleton in the first factor is necessary to arrange condition (1),
which will guarantee minimality on the intersection of the Xn. For brevity we will write
Xn,i for XBn,i. Condition (2) implies that the sets Xn,1, . . . , Xn,ln are pairwise disjoint.
In conjunction with condition (4) this will have the consequence that the system (X,T )
will act like the universal odometer at the level of K-theory, as we will demonstrate after
describing the construction.

We start with l1 = 1, I1,1 = I, B1 = Y × I, and X1 = (Y × I)Z. Suppose then
that we have constructed ln and Bn = (Yn,1 × In,1) × · · · × (Yn,ln × In,ln) such that (1),
(2), (3), and (4) are satisfied, with Xn defined as XBn . Take an x̃ = (x̃k)k ∈ Xn,1

which contains as a substring the concatenation of a finite collection of 3ln-tuples in
Bn × Bn × Bn that is sufficiently dense to ensure the existence of an integer b ≥ 2 such
that for all w = (wk)k ∈ Xn there are an s ∈ {1, . . . , b− 2} and a j ∈ {1, . . . , ln} for which
ρ(x̃sln+j+k, wk) ≤ 2−n−3 for all k in the interval En = {−ln,−ln + 1, . . . , ln}. Writing
x̃k = (ỹk, z̃k) ∈ Y × I for each k ∈ Z, we may assume by perturbing as necessary that
z̃k 6= z̃k′ when k 6= k′, since each In,i contains no isolated points. We will use x̃ to define
singleton factors in the construction of Bn+1 so as to arrange the approximate density of
all orbits in Xn+1.

Let a be a positive integer whose size will be specified in a moment. Since the intervals
In,1, . . . , In,ln are pairwise disjoint and the coordinates of x̃ are all distinct, we can find
pairwise disjoint closed subintervals In+1,1, . . . , In+1,ln+1 of I each with nonempty interior
and length at most 2−n−3 such that In+1,sln+i ⊆ In,i for all s = 0, . . . , a + b − 1 and
i = 1, . . . , ln and z̃sln+i ∈ In+1,(a+s)ln+i for all s = 0, . . . , b − 1 and i = 1, . . . , ln. Set
Yn+1,sln+i = Yn,i for s = 0, . . . , a − 1 and i = 1, . . . , ln, and Yn+1,(a+s)ln+i = {ỹsln+i} for
s = 0, . . . , b−1 and i = 1, . . . , ln, and then put ln+1 = (a+b)ln, Bn+1 = (Yn+1,1×In+1,1)×
· · ·× (Yn+1,ln+1 × In+1,ln+1), and Xn+1 = XBn+1 . Now we observe that by choosing a large
enough relative to b we can ensure that condition (3) holds for Yn+1,1, . . . , Yn+1,ln+1 given
that it holds for Yn,1, . . . , Yn,ln . Moreover, to ensure that condition (4) holds we may
increase a so that n+ 1 will divide a+ b.

It remains to verify condition (1). Let x = (xk)k and w = (wk)k be elements of
Xn+1. Since w is contained in Xn there exist an s ∈ {1, . . . , b − 2} and a j ∈ {1, . . . , ln}
for which ρ(x̃sln+j+k, wk) ≤ 2−n−3 for every k ∈ En. Since x lies in one of the sets
Xn+1,1, . . . , Xn+1,ln+1 there is an integer m such that xm+sln+j+k ∈ Yn+1,(a+s)ln+j+k ×
In+1,(a+s)ln+j+k for all k ∈ En. For k ∈ En the set Yn+1,(a+s)ln+j+k is equal to the
singleton {ỹsln+j+k}, and so by our choice of ρ the distance ρ(xm+sln+j+k, x̃sln+j+k) is at
most the length of the interval In+1,(a+s)ln+j+k, which is bounded above by 2−n−3. Thus,
since ln ≥ n and Y × I has ρ-diameter at most one, we have

d(Tm+sln+jx,w) ≤
∑
k∈En

2−|k|
(
ρ(xm+sln+j+k, x̃sln+j+k) + ρ(x̃sln+j+k, wk)

)
+

∑
k∈Z\En

2−|k|
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≤ 3 · 2−n−2 + 2 · 2−ln ≤ 2−n+2,

as desired. This completes the recursive construction.
Set X =

⋂∞
n=1Xn, which is a closed T -invariant subset of (Y × I)Z. The restriction of

T to X will again be denoted by T . It follows from condition (1) that the system (X,T ) is
minimal. It is also free, since it is clear from the description of the Xn in terms of blocks
that X contains no periodic points. It follows that C(X) o Z is simple (see [6, Thm.
VIII.3.9]).

Suppose now that Y is contractible. Then for a given n ∈ N the sets Xn,1, . . . , Xn,ln are
contractible, and since they are pairwise disjoint by (2) it follows that K1(Xn) = 0 and

K0(Xn) ∼= K0(Xn,1)⊕ · · · ⊕K0(Xn,ln) ∼= Zln .

Assuming these isomorphisms to be the canonical ones (so that the unit in C(Xn,i) is
associated to 1 in the ith factor of Zln), the map K0(Xn) → K0(Xn+1) arising from the
inclusion Xn+1 ⊆ Xn can be described by k 7→ (k, . . . , k) ∈ (Zln)ln+1/ln ∼= Zln+1 , and we
have

K0(X) ∼= lim−→K0(Xn) ∼= lim−→Zln .

Let ι : C(X) ↪→ C(X) o Z be the canonical embedding. We write α for the ∗-
automorphism of C(X) given by α(f) = f ◦ T−1. The Pimsner-Voiculescu exact sequence
for α reads

K∗(X)
id−α∗ // K∗(X)

ι∗zzvvv
vv

vv
vv

K∗(C(X) o Z)

ddHHHHHHHHH

Since K1(X) = lim−→K1(Xn) = 0, we have the exact sequence

0 // K1(C(X) o Z) // K0(X)
id−α∗ // K0(X)

ι∗ // K0(C(X) o Z) // 0.

Notice that, since for each n the sets Xn,1, . . . , Xn,ln are pairwise disjoint and are cycli-
cally permuted by T and n divides ln, the system (X,T ) is an extension of the universal
odometer, which can be viewed as addition of (1, 0, 0, . . . ) with carry over to the right
on the sequence space W =

∏∞
n=1{1, . . . , ln+1/ln} with the product topology (see Sec-

tion VIII.4 of [6]). Moreover, since for each n the sets Xn,1, . . . , Xn,ln are contractible, the
above exact sequence is identical to that associated to the universal odometer and hence
of the type arising in Giordano, Putnam, and Skau’s K-theoretic classification of minimal
Cantor systems up to strong orbit equivalence [9]. The map α∗ acts on K0(X) ∼= lim−→Zln
by cyclically permuting the summands in each Zln and the kernel of id−α∗ is isomorphic
to Z.

To compute the K0 group of the crossed product of the universal odometer system
(W,S), one uses the identification of K0(W ) with the additive group C(W,Z) of Z-valued
continuous functions on W to obtain

K0(C(W ) o Z) ∼= C(W,Z)/{f − f ◦ S−1 : f ∈ C(W,Z)}
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by the Pimsner-Voiculescu sequence. By unique ergodicity one shows that the equiv-
alence class of a function in C(W,Z) is determined by the value of f on the unique
S-invariant state µ, which arises as the product of uniform probability measures on the
factors {1, . . . , ln+1/ln} (see Section 2 of [9]). Since µ(C(W,Z)) = Q, it follows that the
K0 groups of the crossed products of the universal odometer and of the system (X,T ) can
both be identified with Q, with the set of projections in matrix algebras over the crossed
product in each case having image Q+ in K0. We thus have

(K0(C(X) o Z),K0(C(X) o Z)+, [1]) ∼= (Q,Q+, 1), K1(C(X) o Z) ∼= Z.

We point out that by dropping condition (4) in the construction of (X,T ) and alternatively
arranging for the numbers ln to have suitable prime factorizations, we could have actually
produced any given odometer as a factor and hence any triple of the form (G,G+, 1) for
a dense subgroup G ⊆ Q as the K0 data of the crossed product.

We will show at the end of the section that if Y is infinite then the tracial state space
of C(X)oZ has infinitely many extreme points and consequently C(X)oZ does not have
real rank zero. Note in contrast that the crossed product of the universal odometer has a
unique tracial state.

Adapting the argument from [26], we now proceed to show that the Cuntz semigroup of
C(X) o Z is not almost unperforated for certain Y . In fact we will obtain nonzero lower
bounds on the radius of comparison of C(X) o Z when Y has the form I3q with q ∈ N.
By Corollary 4.6 of [23], in the case of simple unital stably finite exact C∗-algebras, which
includes all of our crossed products, the Cuntz semigroup can only be almost unperforated
if the radius of comparison is zero.

The following lemma is well known but we have not been able to find a reference. We
thank Hanfeng Li for indicating the injectivity argument in the proof.

Lemma 2.1. Let (X1, T ) be a topological dynamical system and let X2 ⊇ X3 ⊇ . . . be
closed T -invariant subsets of X1. Set X =

⋂∞
n=1Xn. Let

C(X1) o Z ϕ1−→ C(X2) o Z ϕ2−→ C(X3) o Z ϕ3−→ . . .

be the inductive system with connecting maps induced from the quotients C(Xn)→ C(Xn+1)
via the universal property of the full crossed product, and let γ : lim−→C(Xn)oZ→ C(X)oZ
be the map arising from the maps γn : C(Xn) o Z → C(X) o Z induced by the univer-
sal property of the full crossed product from the quotients C(Xn) → C(X). Then γ is a
∗-isomorphism.

Proof. Write u for the canonical unitary in C(X) o Z and un for the canonical unitary
in C(Xn) o Z. Given a finite sum

∑
k∈I fku

k ∈ C(X) o Z where each fk is a function
in C(X), for every k ∈ I we can find by Tietze’s extension theorem a gk ∈ C(X1) with
gk|X = fk. Then for each n ≥ 1 we have γn(an) =

∑
k∈I fku

k and ϕn(an) = an+1 where
an =

∑
k∈I(gk|Xn)ukn. Thus

∑
k∈I fku

k lies in the image of γ, and since such finite sums
are norm dense in C(X) o Z and the image of γ is closed we conclude that γ is surjective.

It remains to demonstrate that γ is injective. Note that C(X) can be expressed as the
inductive limit lim−→C(Xn). On each of our crossed products we have the dual action of the
circle [19, Prop. 7.8.3], which is given on the canonical unitary by (λ, u) 7→ λu and has
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the canonical commutative C∗-subalgebra as its fixed point subalgebra. The dual actions
on the crossed products C(Xn) o Z also induce a circle action on lim−→C(Xn) o Z.

Now suppose that we are given a positive element a in the kernel of γ. Since γ intertwines
the circle actions, integrating the orbit of a over the circle yields a positive element b
which lies in both the fixed point subalgebra of lim−→C(Xn) o Z and the kernel of γ. Since
integration with respect to the dual action is faithful, to conclude that a = 0 and hence
that γ is injective it is enough to show that b = 0. Given an ε > 0, we can find an m ∈ N
and a c ∈ C(Xm) o Z such that ‖γm(c) − b‖ < ε. By integrating with respect to the
dual action we may assume that c ∈ C(Xm). Then γm(c) lies in lim−→C(Xn) viewed as a
C∗-subalgebra of lim−→C(Xn) o Z, and so

‖b‖ ≤ ‖γm(c)‖+ ε = ‖γ(γm(c)− b)‖+ ε < 2ε.

Since ε is arbitrary it follows that b = 0, as desired. �

We next recall the definitions of the Cuntz semigroup [5] (see also [23, 26]) and the radius
of comparison [27]. Let A be a C∗-algebra. For elements a, b in M∞(A)+ =

⋃∞
n=1Mn(A)+

(viewing Mn(A)+ as an upper left-hand corner in Mm(A)+ for m > n), we write a - b
if there is a sequence {tk}k in Mm,n(A) such that limk→∞ t

∗
kbtk = a, and a ∼ b if a - b

and b - a. Set W (A) = M∞(A)+/ ∼ and write 〈a〉 for the equivalence class of a. For
a ∈ Mn(A)+ and b ∈ Mm(A)+ we set 〈a〉 + 〈b〉 = 〈a ⊕ b〉 where a ⊕ b = diag(a, b) ∈
Mn+m(A)+, and declare that 〈a〉 ≤ 〈b〉 when a - b. This endows W (A) with the structure
of a positively ordered Abelian semigroup.

Associated to a quasitrace τ on A is the lower semicontinuous map sτ : M∞(A)+ → R+

given by sτ (a) = limn→∞ τ(a1/n). The value sτ (a) depends only on the Cuntz equivalence
class of a, and so sτ can be regarded as a state on W (A). Such states are called lower
semicontinuous dimension functions. When A is exact, which is the case for all of our
crossed products, the states on W (A) can be identified with the quasitraces on A [2] and
hence with the tracial states on A [12, 13].

The radius of comparison for a unital stably finite C∗-algebra A was introduced in [27]
as an abstract version of dimension-rank ratio. We say that A has r-comparison if for all
a, b ∈M∞(A)+ we have 〈a〉 ≤ 〈b〉 whenever s(〈a〉)+r < s(〈b〉) for all lower semicontinuous
dimension functions s on W (A). The radius of comparison of A is defined as the infimum
of the set of all r ∈ R+ for which A has r-comparison, unless this set is empty, in which
case it is defined to be ∞.

In the proof of the following theorem we use the notation θr for the trivial bundle of
rank r over whatever space is in question and ξ×r for the r-fold Cartesian product of a
given bundle ξ.

Theorem 2.2. Let q ≥ 2 and suppose that 1− 1/q < d < 1. Then for Y = I3q the radius
of comparison of C(X) o Z is bounded below by q − 1.

Proof. Let ξ be a line bundle on S2 with nonzero Euler class. Fix a continuous embedding
ε of (S2 × [0, 1])q into Y . Take a function f ∈ C(Y ) that takes the constant value one
on ε((S2 × {1

2})
q) and is zero outside of ε((S2 × (0, 1))q). Let π : S2 × [0, 1]→ S2 be the

projection onto the first coordinate. Regarding bundles as projections, we define a and b
to be the positive elements θ1 and (1− f)θq + fπ∗(ξ)×q, respectively, of M2q(C(Y )).
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Given an n ∈ N, let ψn be the composition C(Y ) → C(Xn) ↪→ C(Xn) o Z where
the second ∗-homomorphism is the canonical embedding and the first ∗-homomorphism
arises from the surjective composition Xn → Y × I → Y where the first map is the
projection onto the zeroeth coordinate and the second map is the projection onto the first
coordinate. Write E for the set of all k ∈ {1, . . . , ln} such that Yn,k = Y . Fix a point
(zk)1≤k≤ln ∈

∏ln
k=1 In,k. Let γn : C(Bn) → C(((S2)q)E) be the ∗-homomorphism induced

from the continuous embedding ((S2)q)E → Bn under which the kth coordinate of the
image of (xj)j∈E ∈ ((S2)q)E is (ε(xk, 1

2), zk) if k ∈ E and (yk, zk) otherwise, where in the
latter case yk is the unique point contained in Yn,k. Let ϕn : C(Xn) o Z→Mln ⊗ C(Bn)
be the ∗-homomorphism defined via periodic sequences and the universal property of the
crossed product as described at the beginning of the section.

Set an = (idM2q ⊗ ψn)(a) and bn = (idM2q ⊗ ψn)(b). Consider the map ζn given by the
composition

C(Y )
ψn−→ C(Xn) o Z ϕn−→Mln ⊗ C(Bn)

id⊗γn−→ Mln ⊗ C(((S2)q)E).

Viewing bundles as projections in matrix algebras, we have (idM2q ⊗ ζn)(a) = θln and
(idM2q ⊗ ζn)(b) = ξ×q|E| ⊕ θq(ln−|E|). Since ξ has nonzero Euler class and q(ln − |E|) ≤
qln(1−d) < ln by our hypothesis on d, by Lemma 1 of [29] the trivial bundle θln on ((S2)q)E

is not subequivalent to ξ×q|E|⊕θq(ln−|E|). It follows by Lemma 2.1 of [26] that ‖t∗(ξ×q|E|⊕
θq(ln−|E|))t− θln‖ ≥ 1/2 for all t ∈M2q ⊗Mln ⊗C(((S2)q)E). Since ∗-homomorphisms are
contractive, we thus obtain ‖t∗bnt− an‖ ≥ 1/2 for all t ∈M2q ⊗ (C(Xn) o Z).

Now let λ be the ∗-homomorphism C(Y ) → C(X) o Z arising from the surjective
composition X → Y × I → Y where the first map is the projection onto the zeroeth
coordinate and the second map is the projection onto the first coordinate. Consider the
elements a∞ = (idM2q ⊗λ)(a) and b∞ = (idM2q ⊗λ)(b) in M2q⊗ (C(X)oZ). Note that for
each n ≥ 1 the elements an and bn map to a∞ and b∞, respectively, under the canonical
quotient M2q⊗ (C(Xn) o Z)→M2q⊗ (C(X) o Z). In view of the previous paragraph and
Lemma 2.1 we therefore have ‖t∗b∞t− a∞‖ ≥ 1/2 for all t ∈M2q⊗ (C(X) o Z) and hence
〈a∞〉 6≤ 〈b∞〉.

Finally, note that by the minimality of (X,T ) the tracial states on C(X) o Z are
precisely the compositions of the canonical conditional expectation C(X) o Z → C(X)
with α-invariant states on C(X) (see Section VIII.3 in [6]). We thus see that s(〈a∞〉) = 1
and s(〈b∞〉) ≥ q for every state s on W (C(X) o Z). It follows that C(X) o Z fails to have
r-comparison for every 0 ≤ r < q − 1, and so the radius of comparison of C(X) o Z is at
least q − 1, as desired. �

The final goal of this section is to show that if Y is infinite then C(X) o Z does not
have real rank zero.

Note that by minimality the tracial state space of C(X) o Z can be identified with the
space Sα(C(X)) of α-invariant states on C(X) and hence also with the space of T -invariant
Borel probability measures on X (see Section VIII.3 in [6]).

Lemma 2.3. Suppose that Y is infinite. Then the tracial state space of C(X) o Z has
infinitely many extreme points.
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Proof. We will prove the result by showing that Sα(C(X)) has infinitely many extreme
points. Consider the closed subset W =

⋂∞
n=1Xn,1 of X. Then W can be expressed as∏

k∈ZDk where for all k in a set L ⊆ N of density greater than d the set Dk is of the
form Y × {z} and for all k ∈ Z \ L the set Dk is a singleton. Let γ : C(X) → C(Y )
be the ∗-homomorphism arising from the embedding Y → W ⊆ X determined by setting
the first element in the pair describing the kth coordinate of the image of y to be y
for each k ∈ L. For each y ∈ Y take a weak∗ limit point σy of the sequence of states
{ 1
m

∑m−1
j=0 δy ◦ γ ◦ αj}∞m=1 where δy is point evaluation at y. Then each σy is α-invariant.

Let ψ : C(Y )→ C(X) be the map induced by the restriction to X of the projection of
(Y × I)Z onto the first factor of the zeroeth coordinate. To complete the proof it suffices
to show that the compact convex subset K = {σ ◦ ψ : σ ∈ Sα(C(X))} of the state space
of C(Y ) has infinitely many extreme points. Notice that the lower bound d on the density
of the set L in N means that for each y ∈ Y and nonnegative f ∈ C(Y ) we will have
(σy ◦ ψ)(f) ≥ d ·f(y), so that σy ◦ ψ, viewed as a probability measure on Y , has an atom
at y with weight at least d. By the Krein-Milman theorem, for every y ∈ Y we can find
an extreme point ωy of K which has an atom at y with weight at least d. Since each ωy
has total weight one and Y is infinite, the set {ωy : y ∈ Y } must be infinite, completing
the proof. �

Proposition 2.4. Suppose that Y is infinite. Then C(X) o Z does not have real rank
zero.

Proof. Recall that real rank zero implies that the linear span of projections is norm dense
and hence that K0 separates tracial states [4]. Since K0(C(X) o Z) has a unique state,
we obtain the conclusion by Lemma 2.3. �

The proof of Lemma 2.3 also shows that if Y is uncountable then the tracial state space
of C(X) o Z has uncountably many extreme points. When Y has nonzero topological
dimension the system (X,T ) has nonzero mean dimension (see Section 3 of [18]), and in
this case the uncountability of the set of extreme points also follows from the fact that
Z-systems with nonzero mean dimension do not possess the small boundary property [18,
Thm. 5.4] and hence cannot have only countably many extreme invariant states [25].

3. Subshifts and perforation in K0

Here we will show how to produce perforation in the ordered K0 group of a crossed
product arising from a minimal subshift.

Let Y be a compact metric space and let T be the shift (xk)k 7→ (xk+1)k on Y Z. Let
0 < d < 1. As in Section 2 but without the extra spacing factor I in the seed space
(cf. the proof of Proposition 3.5 in [18]), we recursively construct a decreasing sequence
X1 ⊇ X2 ⊇ . . . of closed T -invariant subsets of Y Z such that for each n ∈ N the set Xn is
defined as XBn for a block Bn = Dn,1 × · · · ×Dn,ln ⊆ Y ln of a certain length ln where

(1) for all x,w ∈ Xn there is a k ∈ Z such that d(T kx,w) ≤ 2−n+2, and
(2) Dn,i = Y for all i in a subset of {1, . . . , ln} of cardinality greater than dln, and

Dn,i is a singleton for all other i.
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Thus d is a lower bound on the density of the appearance of Y in the factors of a
block. As in Section 2, we will write Xn,i for the set of all (xk)k ∈ Y Z such that
(xi+sln , xi+sln+1, . . . , xi+sln+ln−1) ∈ Bn for every s ∈ Z.

Set X =
⋂∞
n=1Xn, which is a closed T -invariant subset of Y Z, and denote the restriction

of T to X again by T . The system (X,T ) is minimal by condition (1), and it is free since
X contains no periodic points by the definition of the Xn in terms of blocks. As the
argument in Section 3 of [18] demonstrates, if d > 0 then the mean dimension of (X,T ) is
nonzero.

As before θr denotes the trivial bundle of rank r over whatever space is in question and
ξ×r denotes the r-fold Cartesian product of a given bundle ξ.

Theorem 3.1. Suppose that Y = Z×Z where Z is a finite CW-complex admitting a line
bundle ξ for which no tensor power of the Euler class is zero (for example, S2). Then
K0(C(X) o Z) is not weakly unperforated.

Proof. We will first describe the situation relative to a fixed blocking as described at the
beginning of Section 2, to which we refer the reader for notation and terminology. Let
B = D1 × · · · × Dl ⊆ Y l be a block. Let ϕ : C(XB) o Z → Ml ⊗ C(B) be the ∗-
homomorphism defined via periodic sequences and the universal property of the crossed
product as described at the beginning of Section 2. Denote by ψ the composition C(Y )→
C(XB) ↪→ C(XB) o Z where the first map is composition with the restriction to XB of
the projection of Y Z onto the zeroeth coordinate and the second map is the canonical
embedding. Set γ = ϕ ◦ ψ : C(Y ) → Ml ⊗ C(B). For each i = 1, . . . , l let πi : B =
D1 × · · · ×Dl → Di be the projection onto the ith coordinate.

Viewing vector bundles as projections in a suitable matrix algebra and γ as also being
defined over matrices in the standard way, we have γ(ξ×2) =

∑l
i=1 ei,i ⊗ π∗i (ξ×2), so that

as bundles γ(ξ×2) ∼= π∗1(ξ×2)⊕ · · · ⊕ π∗l (ξ×2). Let E be the set of i ∈ {1, . . . , l} such that
Di = Y , and suppose that Di is a singleton for all other i. Since ξ has rank one we have
γ(ξ×2) ∼= ξ×2|E| ⊕ θ2(l−|E|).

Put g = [ξ×2]− [θ1] ∈ K0(Y ). The image of this element under ψ∗ witnesses perforation
in K0(C(XB) o Z) granted that |E| > l/2. Indeed in this case we have

K0(γ)(g) = [ξ×2|E| ⊕ θ2(l−|E|)]− [θl] = [ξ×2|E|]− [θ2|E|−l] ≤ [ξ×2|E|]− [θ1]

so that K0(γ)(g) /∈ K0(B)+ by Lemma 1 of [29], and hence ψ∗(g) /∈ K0(C(XB) o Z)+.
On the other hand dim(Z)g ∈ K0(Y )+ by Theorem 8.1.2 of [14] and thus dim(Z)ψ∗(g) ∈
K0(C(XB) o Z)+.

Now we turn to the systems in our recursive construction. For each n ≥ 1 consider the
maps ϕn : C(Xn) o Z → Mln ⊗ C(Bn), ψn : C(Y ) → C(Xn) o Z, and γn = ϕn ◦ ψn :
C(Y ) → Mln ⊗ C(Bn) as defined in the previous paragraph with respect to Bn (with
everything here carrying a subscript n for specificity), where XBn has been abbbreviated
to Xn. Assuming that the lower density bound d is greater than 1/2, the number of
factors in Bn = D1 × · · · × Dln which are equal to Y is strictly greater than ln/2, and
so ψ∗n(g) /∈ K0(C(Xn) o Z)+. Let ψ∞ : C(Y ) → C(X) o Z be the composition of the
map C(Y ) → C(X) induced by the restriction to X of the projection of Y Z onto the
zeroeth coordinate with the canonical embedding C(X) ↪→ C(X) o Z. Then ψ∗n(g) is sent
to ψ∗∞(g) under the map induced by the canonical quotient C(Xn) o Z → C(X) o Z at
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the level of K0. It follows by Lemma 2.1 that ψ∗∞(g) /∈ K0(C(X) o Z)+. On the other
hand dim(Z)ψ∗∞(g) ∈ K0(C(X) o Z)+, showing that K0(C(X) o Z)+ fails to be weakly
unperforated. �

The proof of Lemma 2.3 shows that the tracial state space of C(X) o Z has infinitely
many extreme points when Y is infinite, and uncountably many extreme points when Y
is uncountable. However, for Y as in the above theorem the K0 group of C(X) o Z will
be much more complicated than the group of rationals that appeared in Section 2, and so
a separate argument is needed to conclude that C(X) o Z does not have real rank zero.
For this we will assume that Y has an infinite path component and K1(Y ) = 0, which is
the case for Y = S2 × S2.

Proposition 3.2. Suppose that Y has an infinite path component and K1(Y ) = 0. Then
C(X) o Z does not have real rank zero.

Proof. For each y ∈ Y we will define a tracial state σy on C(X) o Z as in the proof
of Lemma 2.3. Let W be the closed subset

⋂∞
n=1Xn,1 of X, which can be expressed

as
∏
k∈ZDk where Dk is equal to Y for all k in a set L ⊆ N of positive density and is a

singleton otherwise. Let ε : Y →W ⊆ X be the continuous map determined by setting the
kth coordinate of ε(y) to be y for all k ∈ L. Define the ∗-homomorphism γ : C(X)→ C(Y )
by γ(f) = f ◦ ε.

By hypothesis, Y has a path component containing a finite set F of cardinality greater
than 1/d. By a diagonal argument there is an increasing sequence {mj}∞j=1 of positive

integers such that 1
mj

∑mj−1
i=0 δy ◦ γ ◦ αi converges to some state σy on C(X) for every

y ∈ F , where δy is the point mass at y. Note that each σy is α-invariant.
Let ψ : C(Y ) → C(X) o Z be the composition of the map C(Y ) → C(X) induced by

restriction to X of the projection of Y Z onto the zeroeth coordinate with the canonical
embedding C(X) ↪→ C(X) o Z. Then the lower bound d on the density of the set L in
N implies that for each y ∈ Y and nonnegative f ∈ C(Y ) we have (σy ◦ ψ)(f) ≥ d ·f(y),
which means that the state σy ◦ψ, regarded as probability measure on Y , has an atom at
y with weight at least d. Since |F | > 1/d it follows that there exist y0, y1 ∈ F such that
σy0 6= σy1 . Since F lies in a path component we can connect y0 and y1 by a continuous path
g : [0, 1]→ Y . Then ε(y0) and ε(y1) can be connected by the continuous path g̃ : [0, 1]→ X
where the kth coordinate of g̃(t) is independent of t for k ∈ Z \ L and is equal to g(t) for
k ∈ L. This implies that the states 1

mj

∑mj−1
i=0 δy0 ◦ γ ◦ αi and 1

mj

∑mj−1
i=0 δy1 ◦ γ ◦ αi agree

on K0(X) for each j ∈ N and consequently that the states σy0 and σy1 agree on K0(X).
Let ι : C(X) ↪→ C(X) o Z be the canonical embedding and E : C(X) o Z→ C(X) the

canonical conditional expectation. Since K1(Y ) = 0 we have K1(X) = 0, which is clear if
for each n ≥ 1 the sets Xn,i for i = 1, . . . , ln are pairwise disjoint, and otherwise follows
from the Mayer-Vietoris sequence (see Section 21.2 of [1]). Thus ι∗(K0(X)) = K0(C(X)o
Z) by the Pimsner-Voiculescu exact sequence, and so no element of K0(C(X)oZ) separates
the tracial states σy0 ◦ E and σy1 ◦ E. Since real rank zero implies that the linear span
of projections is norm dense and hence that K0 separates tracial states [4], we obtain the
desired conclusion. �
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