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Abstract. We consider the topological entropy of state space and quasi-state space
homeomorphisms induced from C∗-algebra automorphisms. Our main result asserts
that, for automorphisms of separable exact C∗-algebras, zero Voiculescu-Brown entropy
implies zero topological entropy on the quasi-state space (and also more generally on the
entire unit ball of the dual). As an application we obtain a simple description of the
topological Pinsker algebra in terms of local Voiculescu-Brown entropy.

1. Introduction

Entropy is a numerical invariant measuring the complexity of a dynamical system.
For homeomorphisms of a compact metric space, topological entropy can be defined us-
ing either open covers [1] or separated and spanning sets [10, 5]. For automorphisms of
unital nuclear C∗-algebras, a notion of entropy based on approximation was introduced
by Voiculescu [29], and this was subsequently extended to automorphisms of exact C∗-
algebras by Brown [7]. By [29, Prop. 4.8] the topological entropy of a homeomorphism
T of a compact metric space X coincides with the Voiculescu-Brown entropy of the au-
tomorphism f 7→ f ◦ T of C(X). In other words, the Voiculescu-Brown entropy of an
automorphism of a separable unital commutative C∗-algebra coincides with the topo-
logical entropy of the induced homeomorphism on the pure state space. This paper is
principally aimed at examining the relationship between the Voiculescu-Brown entropy of
an automorphism of a general unital exact C∗-algebra and the topological entropy of the
induced homeomorphism on the state space (or quasi-state space if we drop the require-
ment that the algebra be unital) with the hope of being able to obtain information about
one from information about the other.

A basic problem in dynamics is to determine whether or not a given system has positive
entropy, i.e., whether or not it is “chaotic”. In [14] Glasner and Weiss proved that if a
homeomorphism of a compact metric space has zero topological entropy, then the induced
homeomorphism on the space of probability measures also has zero topological entropy.
We thus have in this case that zero Voiculescu-Brown entropy implies zero topological
entropy on the state space. Our main result (Theorem 3.3) shows that this implication
holds for automorphisms of any separable unital exact C∗-algebra, and moreover asserts
that, in the general separable exact setting, zero Voiculescu-Brown entropy implies zero
topological entropy on the unit ball of the dual (which is in fact equivalent to zero topo-
logical entropy on the quasi-state space—see Lemma 2.2 and the paragraph preceding
it). This has the particular consequence that if an automorphism α of a C∗-algebra
has positive topological entropy on the quasi-state space (for example, if α arises from a
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homeomorphism of a compact metric space with positive topological entropy), then any
automorphism of a separable exact C∗-algebra which can be obtained from α as a dynam-
ical extension will have positive Voiculescu-Brown entropy. Thus in many cases we can
obtain some information about the behaviour of Voiculescu-Brown entropy under taking
noncommutative dynamical extensions, about which little seems to be known in general
(it is unknown whether Voiculescu-Brown entropy can strictly decrease, or even become
zero, under taking dynamical extensions of a positive entropy system).

The main body of the paper is divided into three parts. In Section 2 we recall the
definition of topological entropy and show that, for an automorphism of a unital C∗-
algebra, the entropy of the induced homeomorphism on the state space is either zero or
infinity. As an example we demonstrate that the shift on the full group C∗-algebra C∗(F∞)
of the free group on countably many generators falls into the latter case. In Section 3 we
begin by recalling the definition of Voiculescu-Brown entropy and then proceed to the
proof of our main result, for which we develop a matrix version of an argument from [14]
that uses results from the local theory of Banach spaces. In our case the key geometric fact
concerns the relationship between n and k given an approximately isometric embedding
of `n1 into the space of k × k matrices with the p = ∞ Schatten norm. We round out
Section 3 with some applications and examples. In particular we show that the shift on
the reduced group C∗-algebra C∗r (F∞) has zero topological entropy on the state space
in contrast to its full group C∗-algebra counterpart. Finally, in Section 4 we apply our
main result (or rather a local version that follows from the same proof) to show that
the topological Pinsker algebra from topological dynamics admits a simple description in
terms of local Voiculescu-Brown entropy.
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the connection with the local theory of Banach spaces, and in particular for drawing my
attention to the references [12, 21, 22] and suggesting Lemma 3.2, which, superceding our
original lemma, captures the geometric phenomena underlying Theorem 3.3 in a general
Banach space framework.

2. Topological entropy and state space dynamics

To start with we recall the definition of topological entropy for a homeomorphism T
of a compact metric space (X, d) (see [9, 16, 23, 30] for general references). For an open
cover U of X we denote by N(U) the smallest cardinality of a subcover and set

htop(T,U) = lim
n→∞

1
n

logN(U ∨ T−1U ∨ · · · ∨ T−(n−1)U),

and we define the topological entropy of T by

htop(T ) = sup
U
htop(T,U)
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where the supremum is taken over all finite open covers U. We may equivalently express
the topological entropy in terms of separated and spanning sets as follows. A set E ⊂ X
is said to be (n, ε)-separated (with respect to T ) if for every x, y ∈ E with x 6= y there
exists a 0 ≤ k ≤ n− 1 such that d(T kx, T ky) > ε, and (n, ε)-spanning (with respect to T )
if for every x ∈ X there is a y ∈ E such that d(T kx, T ky) ≤ ε for each k = 0, . . . , n − 1.
Denoting by sepn(T, ε) the largest cardinality of an (n, ε)-separated set and by spnn(T, ε)
the smallest cardinality of an (n, ε)-spanning set, we then have

htop(T ) = sup
ε>0

lim sup
n→∞

1
n

log sepn(T, ε) = sup
ε>0

lim sup
n→∞

1
n

log spnn(T, ε).

Let A be a unital C∗-algebra. We denote by S(A) the state space of A, i.e., the convex
set of positive linear functionals φ on A with φ(1) = 1. We equip S(A) with the weak∗

topology, under which it is compact. Given a automorphism α of A we will denote by Tα
the homeomorphism of S(A) given by Tα(σ) = σ ◦ α for all σ ∈ S(A).

The following result is a generalization of the proposition on p. 422 of [26] (which treats
homeomorphisms of compact metric spaces), and in fact the same proof also works here.
For convenience we will give a version of the argument in our broader context.

Proposition 2.1. Let A be a separable unital C∗-algebra and α an automorphism of A.
Then either htop(Tα) = 0 or htop(Tα) =∞.

Proof. We define a metric d on the dual A∗ by taking a dense sequence x1, x2, x3, . . . in
the unit ball of A and setting

d(σ, ω) =
∞∑
i=1

2−i|σ(xi)− ω(xi)|.

The metric d is compatible with the weak∗ topology on bounded subsets of A∗.
Now suppose that htop(Tα) > 0. Then for some ε > 0 we have

lim sup
n→∞

1
n

log sepn(Tα, ε) > 0.

Fix an r ∈ N. Set θ = (1− λ)/(1− λr), and choose a λ > 0 with λ < min(1, 2−1θε), and
set

ε′ = θλr−1(ε− 2λθ−1) > 0.
For each n ∈ N let En ⊂ S(A) be an (n, ε)-separated set of largest cardinality, and consider
the subset

Ern =
{
θ

r∑
i=1

λi−1σi : σ1, . . . , σr ∈ En
}

of S(A). We will show that Ern is an (n, ε′)-separated set of cardinality |En|r.
Indeed suppose that (σ1, . . . , σr) and (ω1, . . . , ωr) are distinct r-tuples of elements in

En. Then for some 1 ≤ j ≤ r we have σi = ωi for each i = 1, . . . , j − 1 and σj 6= ωj . Since
En is (n, ε)-separated there is a 0 ≤ k ≤ n− 1 such that d(T kασj , T

k
αωj) > ε. Observe that

if j < r, then in view of the definition of the metric d we have

d
(
T kα

(
θ

r∑
i=j

λi−1σi

)
, T kα

(
θλj−1σj

))
= d
(
T kα

(
θ

r∑
i=j+1

λi−1σi

)
, 0
)
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≤ θ
r∑

i=j+1

λi−1

= λj
1− λr−j

1− λr
≤ λj

and similarly d
(
T kα
(
θ
∑r

i=j λ
i−1ωi

)
, T kα(θλj−1ωj)

)
≤ λj . Thus when j < r we have

d
(
T kα

(
θ

r∑
i=1

λi−1σi

)
, T kα

(
θ

r∑
i=1

λi−1ωi

))
= d
(
T kα

(
θ

r∑
i=j

λi−1σi

)
, T kα

(
θ

r∑
i=j

ωi−1σi

))
≥ d
(
T kα
(
θλj−1σj

)
, T kα

(
θλj−1ωj

))
− d
(
T kα

(
θ

r∑
i=j

λi−1σi

)
, T kα

(
θλj−1σj

))
− d
(
T kα

(
θ

r∑
i=j

λi−1ωi

)
, T kα

(
θλj−1ωj

))
≥ θλj−1d

(
T kασj , T

k
αωj

)
− 2λj

≥ θλj−1(ε− 2λθ−1)

> ε′,

while in the case j = r the first expression in this display is simply θλr−1d(T kασr, T
k
αωr),

which again is strictly greater than ε′. It follows that Ern is an (n, ε′)-separated set of
cardinality |En|r as we wished to show, and so

htop(Tα) ≥ lim sup
n→∞

1
n

log sepn(Tα, ε′) ≥ r lim sup
n→∞

1
n

log sepn(Tα, ε)

Since r was arbitrary we conclude that htop(Tα) =∞. �

We point out that the above argument can also be used to obtain the same dichotomy
for the values of topological entropy among continuous maps of state spaces induced by
positive unital linear maps of separable operator systems or order-unit spaces, as well
as among homeomorphisms of quasi-state spaces induced by automorphisms of general
separable C∗-algebras (see Section 3).

As an example we will show that, for the shift on the full group C∗-algebra C∗(F∞) of
the free group on countably many generators, the topological entropy on the state space is
infinite (Proposition 2.4). Although this is an immediate consequence of the fact that the
C∗-dynamical system arising from the topological 2-shift is a C∗-dynamical factor of the
shift on C∗(F∞) (see the paragraph following Proposition 2.4), we will give here a more
explicitly geometric proof in anticipation of the arguments in Section 3. In addition, the
following two lemmas which we will require are of use in other situations. For example,
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Lemma 2.2 implies that the values of topological entropy on the state space and quasi-
state space agree (see the second paragraph of Section 3), and its proof can also be used to
show that the values of topological entropy on the quasi-state space and on the unit ball
of the dual agree. Lemma 2.3, on the other hand, will be of convenience in Example 3.6.

Lemma 2.2. Let A be a separable unital C∗-algebra and α an automorphism of A. Let
Sα be the homeomorphism of the closed unit ball B1(A∗) of the dual of A (with the weak∗

topology) given by Sα(σ) = σ ◦ α. Then

htop(Sα) = htop(Tα).

Proof. Since Tα is the restriction of Sα to S(A), we have htop(Sα) ≥ htop(Tα). Thus,
in view of Proposition 2.1, we need only show that htop(Tα) = 0 implies htop(Sα) = 0.
Suppose then that htop(Tα) = 0. Let x1, x2, x3, . . . be a dense sequence in the unit ball of
A and define on A∗ the metric

d(σ, ω) =
∞∑
i=1

2−i|σ(xi)− ω(xi)|,

which is compatible with the weak∗ topology on bounded subsets of A∗. Let ε > 0, and
pick an integer r > ε−1. Let En ⊂ S(A) be an (n, ε)-spanning set (with respect to Tα) of
smallest cardinality. Now if τ ∈ B1(A∗) then we can write

τ = σ1 − σ2 + i(σ3 − σ4)

where each σj is a positive linear functional of norm at most 1 [17, Thm. 4.3.6 and Cor.
4.3.7]. Since En is (n, ε)-spanning, for each j = 1, 2, 3, 4 for which σj 6= 0 we can find an
ωj ∈ En such that

d
(
T kαωj , T

k
α(σj/‖σj‖)

)
≤ ε

for every k = 0, . . . , n − 1, and we can also find an mj ∈ {0, 1, . . . , r} such that
∣∣mj/r −

‖σj‖
∣∣ ≤ ε, so that, for every k = 0, . . . , n− 1,

d
(
Skα((mj/r)ωj), Skασj

)
≤ d
(
Skα((mj/r)ωj), Skα(‖σj‖ωj)

)
+ d
(
Skα(‖σj‖ωj), Skασj

)
≤
∣∣mj/r − ‖σj‖

∣∣+ ‖σj‖d
(
T kαωj , T

k
α(σj/‖σj‖)

)
≤ ε+ ‖σj‖ε
≤ 2ε.

For any j = 1, 2, 3, 4 for which σj = 0, let ωj be any bounded linear functional on A and
set mj = 0. Set τ ′ = (m1ω1 − m2ω2 + im3ω3 − im4ω4)/r. Then ‖τ ′‖ ≤ 4, and if S̃α
denotes the homeomorphism of the closed ball B4(A∗) = {σ ∈ A∗ : ‖σ‖ ≤ 4} given by
S̃α(σ) = σ ◦ α, then in view of the definition of the metric d we have

d
(
S̃kατ

′, S̃kατ
)
≤

4∑
i=1

d
(
Skα((mi/r)ωi), Skασi

)
≤ 8ε+ 8ε = 16ε

for all k = 0, . . . , n − 1. Let Fn be the subset of B4(A∗) consisting of all τ ′ which arise
in the above way with respect to some τ ∈ B1(A∗). We have thus shown that Fn is
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(n, 16ε)-spanning for B1(A∗) with respect to S̃α (in the obvious sense which relativizes the
definition of an (n, ε)-spanning set to a subset of the space—see Definition 14.14 of [9]),
and hence that the smallest cardinality spnn(S̃α, 16ε,B1(A∗)) of an (n, 16ε)-spanning set
for B1(A∗) with respect to S̃α is bounded above by |Fn|, which is in turn bounded above
by |En|4(r+1). Since r does not depend on n we therefore obtain

lim sup
n→∞

1
n

log spnn(S̃α, 16ε,B1(A∗)) ≤ 4(r + 1) lim sup
n→∞

1
n

log |En| = 0.

Now Proposition 14.15 of [9] shows that the supremum of the first expression in the above
display over all ε > 0 is in fact equal to the topological entropy of Sα = S̃α

∣∣
B1(A∗), and so

we conclude that htop(Sα) = 0, as desired. �

Lemma 2.3. Let A be a unital C∗-algebra and α an automorphism of A. Suppose
that there exists an x ∈ A and a K ≥ 1 such that, for each n ∈ N, the linear map
Γn : `n1 → span{x, α(x), . . . , αn−1(x)} which sends the ith standard basis element of `n1 to
αi−1(x) for each i = 1, . . . , n is an isomorphism whose inverse has norm at most K. Then
htop(Tα) =∞.

Proof. Let x ∈ A, K ≥ 1, and Γn for n ∈ N be as in the hypotheses. For each n ∈ N we
denote by Λn the collection of functions from {0, . . . , n− 1} to {−1, 1}. For each f ∈ Λn
we define the linear functional σf on span(x, α(x), . . . , αn−1(x)) by specifying

σf
(
αk(x)

)
= K−1f(k)

for each k = 0, . . . , n− 1. Since Γ−1
n has norm at most K, it follows that σf has norm at

most one. By the Hahn-Banach theorem we can extend σf to an element σ′f in the dual
A∗ of norm at most one. Let U be the open cover of the closed unit ball B1(A∗) consisting
of the two open sets

{σ ∈ B1(A∗) : |σ(x)−K−1| < 2K−1},
{σ ∈ B1(A∗) : |σ(x)−K−1| > K−1}.

Let Sα : B1(A∗) → B1(A∗) be the homeomorphism given by Sα(σ) = σ ◦ α. For every
n ∈ N, each element of U∨ S−1

α U∨ · · · ∨ S−(n−1)
α U contains precisely one linear functional

of the form σf for f ∈ Λn, from which it follows that

N(U ∨ S−1
α U ∨ · · · ∨ S−(n−1)

α U) = 2n.

Consequently

htop(Sα) ≥ lim
n→∞

1
n

logN(U ∨ S−1
α U ∨ · · · ∨ S−(n−1)

α U) = log 2,

and so htop(Tα) =∞ by Lemma 2.2 and Proposition 2.1. �

Let {ui}i∈Z be the set of canonical unitaries associated to the generators in the full group
C∗-algebra C∗(F∞). The shift α on C∗(F∞) is the automorphism defined by specifying
α(ui) = ui+1 for all i ∈ Z.

Proposition 2.4. For the shift α on C∗(F∞) we have

htop(Tα) =∞.
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Proof. For each n ∈ N, the linear map from span(u0, . . . , un−1) to `n1 which sends ui to
the ith standard basis element of `n1 is an isometry, as pointed out in [24, Sect. 8]. This
follows from the observation that, for any scalars c0, . . . , cn−1,∥∥∥∥∥

n−1∑
i=0

ciui

∥∥∥∥∥ = sup

∥∥∥∥∥
n−1∑
i=0

civi

∥∥∥∥∥
where the supremum is taken over all unitaries v0, . . . , vn−1 ∈ B(`2). We can thus appeal
to Lemma 2.3 to obtain the result. �

Proposition 2.4 can also be established by observing that if T is the left shift on X =
{−1, 1}Z and β is the automorphism of C(X) defined by β(f) = f ◦ T for all f ∈ C(X),
then β is a C∗-dynamical factor of α. Indeed if we consider for each n ∈ N the function
gn ∈ C(X) given by

gn((ak)k∈Z) = an

for all (ak)k∈Z ∈ X, then we can define a ∗-homomorphism γ : C∗(F∞) → C(X) by
specifying γ(un) = gn for each n ∈ N. By the Stone-Weierstrass theorem γ is surjective,
and evidently γ ◦ α = β ◦ γ. It follows that Tα contains a subsystem conjugate to Tβ and
hence has infinite entropy by Proposition 2.1.

In contrast we will show in Proposition 3.7 that, for the corresponding shift on the
reduced group C∗-algebra C∗r (F∞), the topological entropy on the state space is zero.

3. Zero Voiculescu-Brown entropy implies zero topological entropy on
the unit ball of the dual

We begin this section by recalling the definition of Voiculescu-Brown entropy, which is an
extension to exact C∗-algebras [7] of the approximation-based entropy for automorphisms
of unital nuclear C∗-algebras introduced in [29]. Let A be an exact C∗-algebra, and let
π : A → B(H) be a faithful representation. For a finite set Ω ⊂ A and δ > 0 we
denote by CPA(π,Ω, δ) the collection of triples (φ, ψ,B) where B is a finite-dimensional
C∗-algebra and φ : A → B and ψ : B → B(H) are contractive completely positive linear
maps such that ‖(ψ ◦ φ)(x) − π(x)‖ < δ for all x ∈ Ω. This collection is non-empty
by nuclear embeddability [19]. We define rcp(Ω, δ) to be the infimum of rankB over
all (φ, ψ,B) ∈ CPA(π,Ω, δ), where rank refers to the dimension of a maximal Abelian
C∗-subalgebra. As the notation indicates, this infimum is independent of the particular
faithful representation π, as demonstrated in the proof of Proposition 1.3 in [7]. For an
automorphism α of A we set

ht(α,Ω, δ) = lim sup
n→∞

1
n

log rcp(Ω ∪ αΩ ∪ · · · ∪ αn−1Ω, δ),

ht(α,Ω) = sup
δ>0

ht(α,Ω, δ),

ht(α) = sup
Ω
ht(α,Ω)

with the last supremum taken over all finite sets Ω ⊂ A. We refer to ht(α) as the
Voiculescu-Brown entropy of α.



8 DAVID KERR

For any C∗-algebra A, the quasi-state space Q(A) of A is defined as the convex set
of positive linear functionals φ on A with ‖φ‖ ≤ 1. Equipped with the weak∗-topology,
Q(A) is compact. Given an automorphism α of A we denote by T̃α the homeomorphism
σ 7→ σ ◦ α of Q(A). As in the previous section, when A is unital we denote by Tα the
homeomorphism σ 7→ σ ◦ α of the state space S(A), (i.e., the restriction of T̃α to S(A)),
and for general A we denote by Sα the homeomorphism σ 7→ σ ◦ α of the closed unit ball
B1(A∗) of the dual of A with the weak∗ topology. Note that, since Q(A) is a subset of
the unit ball of the dual A∗, by Lemma 2.2 we have htop(T̃α) = htop(Tα) in the separable
unital case. The argument in the proof of Lemma 2.2 can also be used to show that
htop(Sα) = htop(T̃α) in the general separable case.

Before coming to the statement of our main result we establish two lemmas. These
involve problems of a typical nature in the local theory of Banach spaces and will be
proved using methods from this theory. For the basic background we refer the reader
to [20] and [27]. Here we may take our Banach spaces to be over either the real or
complex numbers, but it is the complex case which is relevant for our applications. For
1 ≤ p ≤ ∞ we denote by Ckp the Schatten p-class, i.e., the space of k × k matrices with
norm ‖x‖p = Tr(|x|p)1/p in the case 1 ≤ p < ∞ (where Tr is the trace taking value 1
on minimal projections), or the operator norm (with the matrices operating on `k2) in the
case p =∞. Given isomorphic Banach spaces X and Y and K ≥ 1, we say that X and Y
are K-isomorphic if the Banach-Mazur distance

d(X,Y ) = inf{‖Γ‖‖Γ−1‖ : Γ : X → Y is an isomorphism}
is no greater than K.

The following lemma and its proof were communicated to me by Nicole Tomczak-
Jaegermann.

Lemma 3.1. Let X be an n-dimensional subspace of Ck∞ which is K-isomorphic to `n1 .
Then

n ≤ aK2 log k
where a > 0 is a universal constant.

Proof. The idea, which is standard in the local theory of Banach spaces, is to compare
(Rademacher) type 2 constants. It can be seen from the proof of Theorem 3.1(ii) in [28]
that the type 2 constant of the Schatten p-class for 2 ≤ p <∞ satisfies

T2(Ckp ) ≤ C√p

where C is a universal constant. Thus, since the Banach-Mazur distance d(Ck∞, C
k
p ) is

equal to k1/p for 2 ≤ p <∞ [27, Thm. 45.2], we have

T2(Ck∞) ≤ d(Ck∞, C
k
p )T2(Ckp ) ≤ Ck1/p√p

for every 2 ≤ p <∞. Setting p = log k we obtain for sufficiently large k the bound

T2(Ck∞) ≤ Ce
√

log k,

and since the type 2 constant for `n1 satisfies T2(`n1 ) ≥
√
n (see §4 in [27]) it follows that

√
n ≤ T2(`n1 ) ≤ KT2(X) ≤ KT2(Ck∞) ≤ KCe

√
log k,
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yielding the assertion of the lemma. �

The next lemma is a matrix analogue of Proposition 2.1 of [14]. I thank one of the
referees for suggesting its formulation as a general Banach space result. The main part
of its proof is concerned with symmetric convex subsets of the unit cube which contain
many ε-separated points, and was first established by Elton [12] in the real case and
Pajor [21, 22] in the complex case. Our general line of argument follows [14], with the
part involving almost Hilbertian sections of unit balls being replaced in our case with an
appeal to Lemma 3.1. As is our convention, for a Banach space X we write Br(X) to refer
to the closed ball {x ∈ X : ‖x‖ ≤ r}.

Lemma 3.2. Given ε > 0 and λ > 0 there exists a µ > 0 such that, for all n ≥ 1, if
φ : Crn1 → `n∞ is a contractive linear map such that φ(B1(Crn1 )) contains an ε-separated
set of cardinality at least eλn, then rn ≥ eµn.

Proof. It is well known in Banach space theory that for every ε > 0 and λ > 0 there exist
d > 0 and δ > 0 such that the following holds for all n ≥ 1: if S ⊂ B1(`n∞) is a symmetric
convex set which contains an ε-separated set F of cardinality at least eλn then there is a
subset In ⊂ {1, 2, . . . , n} with cardinality at least dn such that

Bδ(`In∞) ⊂ πn(S)

where πn : `n∞ → `In∞ is the canonical projection. In the real case this is implicit in
the argument on p. 117 in [12], while in the complex case it follows immediately from
Théorème 5 of [22] (take t = ε/2; then, with K = B1(`n∞), the cubes x + tK for x ∈ F
have pairwise disjoint interiors, whence Vol(S + tK) ≥ tn2neλn, yielding the conclusion
with, e.g., δ = (eλ − 1)ε/4, assuming ε ≤ 1/2). Thus taking S = φ(B1(Crn1 )) we obtain

Bδ(`In∞) ⊂ πn(φ(B1(Crn1 ))).

Hence the dual map (πn ◦φ)∗ from (`In∞)∗ ∼= `In1 to (Crn1 )∗ ∼= Crn∞ is an embedding of norm
at most 1 whose inverse has norm at most 1/δ. Since these bounds do not depend on n,
by Lemma 3.1 there is a c > 0 such that, for all n ≥ 1,

|In| ≤ c log rn

and hence dn ≤ c log rn. Setting µ = d/c we obtain the assertion of the lemma. �

Theorem 3.3. Let A be a separable exact C∗-algebra and α an automorphism of A.
Then ht(α) = 0 implies htop(Sα) = 0, and hence also htop(T̃α) = 0 and (when A is unital)
htop(Tα) = 0.

Proof. Let K be any compact subset of the unit ball of A whose linear span is dense in
A (for example, we may take K = {k−1xk}k∈N where {xk}k∈N is a dense sequence in the
unit ball of A). The metric d on B1(A∗) defined by

d(σ, ω) = sup
x∈K
|σ(x)− ω(x)|

for all σ, ω ∈ B1(A∗) is readily seen to give rise to the weak∗ topology. Now suppose
htop(Sα) > 0. Then there exist an ε > 0, a λ > 0, and an infinite set J ⊂ N such that
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for all n ∈ J there is an (n, 4ε)-separated set En ⊂ B1(A∗) of cardinality at least eλn. By
compactness there is a finite set Ω ⊂ K such that, for all σ, ω ∈ B1(A∗),

d(σ, ω) ≤ sup
x∈Ω
|σ(x)− ω(x)|+ ε.

We will show that ht(α,Ω, ε) > 0.
Let π : A → B(H) be any faithful representation. For each n ∈ J , let (φn, ψn, Bn)

be an element in CPA(π,Ω ∪ · · · ∪ αn−1Ω, ε) with Bn of smallest possible rank, and set
rn = rankBn. Writing Ω = {x1, . . . , xm} we define a map Γn from the Schatten class Crn1
to (`n∞)m ∼= `nm∞ by

Γn(h) = ((Tr(hφn(αk(xi))))n−1
k=1)mi=1

for all h ∈ Crn1 , where Tr is the trace on Mrn(C) taking value 1 on minimal projections and
Bn is considered as a C∗-subalgebra of Mrn(C) under some fixed embedding. Note that
Γn is contractive, since Ω ∪ αΩ ∪ · · · ∪ αn−1Ω lies in the unit ball of A, φn is contractive,
and |Tr(hx)| ≤ Tr(|h|)‖x‖ for all h ∈ Crn1 and x ∈ Bn.

For each σ ∈ B1(A∗) we can extend σ ◦ π−1 on π(A) to a contractive linear functional
σ′ on B(H) by the Hahn-Banach theorem. Now if σ and ω are distinct elements of En
then there is a k with 0 ≤ k ≤ n− 1 such that d(T kασ, T

k
αω) > 4ε. Then

sup
x∈Ω

∣∣(σ ◦ αk)(x)− (ω ◦ αk)(x)
∣∣ > 3ε,

and since for every x ∈ Ω we have

‖(ψn ◦ φn)(αk(x))− π(αk(x))‖ < ε

it follows by the triangle inequality that

sup
x∈Ω

∣∣(σ′ ◦ ψn)(φn(αk(x)))− (ω′ ◦ ψn)(φn(αk(x)))
∣∣ > ε.

Taking a conditional expectation P : Mrn(C)→ Bn and isometrically identifying a linear
functional on Mrn(C) with its density matrix in Crn1 , we thus have that the image of the
subset {σ′ ◦ ψn ◦ P : σ ∈ En} of B1(Crn1 ) under Γn is an ε-separated set with cardinality
at least eλn. Since m does not depend on n, by Lemma 3.2 there is a µ > 0 such that
rn ≥ eµn for all n ∈ J , and so ht(α,Ω, ε) ≥ µ > 0, yielding the result. �

Remark 3.4. Notice that in the proof of Theorem 3.3 we made no use of the order
structure. In fact Pop and Smith have shown in [25] that Voiculescu-Brown entropy can
be alternatively defined using completely contractive linear maps.

The following corollary is an immediate consequence of Theorem 3.3 and the fact that
topological entropy does not increase under taking factors or restrictions to closed invariant
subsets.

Corollary 3.5. Let A and B be separable exact C∗-algebras and α : A→ A and β : B →
B automorphisms with htop(Sα) > 0. Suppose that there exists a surjective contractive
linear map γ : B → A such that α ◦ γ = γ ◦ β, or an injective contractive linear map
ρ : A → B such that β ◦ ρ = ρ ◦ α. Then ht(β) > 0. This conclusion also holds more
generally if α can be obtained from β via a finite chain of intermediary automorphisms
intertwined in succession by maps of the same form as γ or ρ.
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Example 3.6. Using Theorem 3.3 we can exhibit positive Voiculescu-Brown entropy in
a large class of systems constructed in a operator-theoretic fashion as demonstrated by
the following examples. Let f ∈ {−1, 0, 1}Z be a sequence in which every finite string of
−1’s and 1’s is represented. For each i = −1, 0, 1 we set Ei = {k ∈ Z : f(k) = i}. Let
x ∈ B(`2(E−1 ∪ E1)) be the operator obtained by specifying by

xξk = f(k)ξk
on the set {ξk : k ∈ E−1∪E1} of standard basis elements. Let y be any self-adjoint operator
in B(`2(E0)) of norm at most 1 and set a = (x, y) ∈ B(`2(E−1 ∪ E1)) ⊕ B(`2(E0)) ⊂
B(`2(Z)). Let u be the shift uξk = ξk+1 on B(`2(Z)) with respect to the canonical basis
{ξk : k ∈ Z}, and let A ⊂ B(`2(Z)) be the C∗-algebra generated by {unau−n}n∈Z. By
restricting Adu to A we obtain an automorphism α of A. By our assumption on f , for
every g ∈ {−1, 1}{0,...,n−1} we can find a j ∈ Z such that for each k = 0, . . . , n− 1 we have
aξj−k = g(k)ξj−k and hence

αk(a)ξj = g(k)ξj .
As a consequence, for each n ∈ N the real linear map which sends the kth standard basis
element of `n1 over the real scalars to αk(a) for each k = 0, . . . , n − 1 is an isometry, and
the complexification of this map is an isomorphism of norm at most 2 with inverse of norm
at most 2. Lemma 2.3 then yields htop(Tα) =∞, and so it follows from Theorem 3.3 that
ht(α) > 0 whenever A is exact (this can in fact also be deduced directly from Lemma 3.1—
see Remark 3.10). In the case that a is a diagonal operator with respect to the canonical
basis of `2(Z), the C∗-algebra A is commutative and the topological entropy of the induced
homeomorphism of the pure state space coincides with ht(α) by Proposition 4.8 of [29] and
hence is positive (as can also be seen from Theorem A of [14]). The main point of these
examples is to demonstrate that positive Voiculescu-Brown entropy can be established in
many systems without having either to relate the given system to a topological dynamical
system which is known a priori to have positive topological entropy or to rely on measure-
theoretic dynamical invariants like CNT or Sauvageot-Thouvenot entropy. It is sufficient,
for example, that the eigenspaces of the iterates of an operator of norm 1 corresponding
to the respective eigenvalues ±1 are sufficiently mixed along their intersection.

Using Theorem 3.3 we can also show that, for the shift on the reduced crossed product
C∗r (F∞) of the free group on countably many generators, the topological entropy on the
state space is zero (cf. Proposition 2.4):

Proposition 3.7. With α the shift on C∗r (F∞) we have

htop(Tα) = 0.

Proof. By [11] or [8] the Voiculescu-Brown entropy of α is zero, and so we can apply
Theorem 3.3. �

We don’t know whether or not the converse of Theorem 3.3 holds. As a test case
for this problem we might consider the class of automorphisms of rotation C∗-algebras
arising from a matrix in SL(2,Z) with eigenvalues off the unit circle [31, 6]. By [18]
such a noncommutative 2-toral automorphism has positive Voiculescu-Brown entropy, but
the arguments in [18] using opposite maps and tensor products give no clue about the
value of topological entropy on the state space, which we have been unable to determine
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in the case of irrational rotation parameters. Note that for rational rotation parameters
the topological entropy on the state space is infinite since we obtain the corresponding
commutative 2-toral automorphism as a subsystem by restricting to the centre of the
C∗-algebra.

We conclude this section with three remarks.

Remark 3.8. To show in the proof of Proposition 4.8 in [29] that the Voiculescu(-Brown)
entropy dominates the topological entropy on the pure state space in the separable com-
mutative setting, Voiculescu applies the classical variational principle along with several
properties of the Connes-Narnhofer-Thirring entropy. It has been a problem to find a
proof of this inequality that does not involve measure-theoretic entropies. In this regard
Theorem 3.3 at least gives a geometric picture of why positive topological entropy on the
pure state space yields positive Voiculescu-Brown entropy at the C∗-algebra level.

Remark 3.9. As a corollary to Theorem 3.3 we recover the result of Glasner and Weiss
asserting that if a homeomorphism of a compact metric space has zero topological en-
tropy then the induced homeomorphism on the space of probability measures also has
zero topological entropy [14]. To obtain this corollary we merely need the fact that the
topological entropy of a homeomorphism dominates the Voiculescu-Brown entropy of the
induced C∗-algebra automorphism, and this can be established by a straightforward par-
tition of unity argument (see the proof of Proposition 4.8 in [29]). Now in the geometric
approach of [14] the construction of the key Banach space map is most easily managed
in the zero-dimensional situation, and indeed an auxiliary reduction result is invoked to
handle the general case. Thus by adopting a C∗-algebraic viewpoint we have obtained a
functional-analytically more streamlined geometric proof of Glasner and Weiss’s result.

Remark 3.10. Lemma 3.1 also yields a means for obtaining lower bounds for Voiculescu-
Brown entropy directly at the completely positive approximation level, and is particularly
useful when dealing with dynamical extensions. To illustrate, let Ω = {x1, . . . , xn} be
a subset of the unit ball of an exact C∗-algebra A, and suppose that the linear map
Γ : `n1 → span Ω which sends the ith standard basis element of `n1 to xi for each i = 1, . . . , n
is an isomorphism whose inverse is bounded in norm by some K ≥ 1. Since Γ is necessarily
contractive, it is a K-isomorphism, i.e., ‖Γ‖‖Γ−1‖ ≤ K. Now if (φ, ψ,B) ∈ CPA(π,Ω, δ)
for some faithful representation π : A → B(H) and 0 < δ < K−1, then for any linear
combination

∑
cixi of the elements of Ω we have∥∥∥∑ cixi

∥∥∥ ≤ ∥∥∥π(∑ cixi

)
− (ψ ◦ φ)

(∑
cixi

)∥∥∥+
∥∥∥(ψ ◦ φ)

(∑
cixi

)∥∥∥
≤ δ

∑
|ci|+

∥∥∥φ(∑ cixi

)∥∥∥
≤ Kδ

∥∥∥∑ cixi

∥∥∥+
∥∥∥φ(∑ cixi

)∥∥∥
so that

∥∥φ(∑ cixi
)∥∥ ≥ (1−Kδ)

∥∥∑ cixi
∥∥, and since φ is contractive it follows that φ|span Ω

is a (1 −Kδ)−1-isomorphism onto its image. Hence the Banach-Mazur distance between
`n1 and the image of span Ω under φ is at most K(1 − Kδ)−1, and so by Lemma 3.1 we
conclude that

log rcp(Ω, δ) ≥ na−1K−2(1−Kδ)2
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where a > 0 is a universal constant. Thus if α is an automorphism of A and x is an
element of A such that there exists a K ≥ 1 such that for every n ∈ N the linear map
which sends the ith standard basis element of `n1 to αi−1(x) for each i = 1, . . . , n is an
isomorphism whose inverse has norm at most K, then

ht(α) ≥ sup
δ>0

ht(α, {x}, δ) ≥ sup
δ∈(0,K−1)

a−1K−2(1−Kδ)2 = a−1K−2.

This lower bound for entropy also applies to any automorphism β of an exact C∗-algebra
D such that there exists a surjective ∗-homomorphism γ : D → A with γ ◦ β = α ◦ γ,
for in such a case we can lift x under γ to a element y ∈ D of the same norm, and the
linear map sending the ith standard basis element of `n1 to βi(y) for each i = 1, . . . , n is
an isomorphism with inverse of norm at most K, as is easily checked. More generally, we
also obtain ht(β) > 0 for any automorphism β of a separable exact C∗-algebra such that
α can obtained from β via a finite chain of intermediary automorphisms intertwined in
succession by contractive linear surjections or linear isometries in the reverse direction (cf.
Corollary 3.5).

4. A description of the topological Pinsker algebra in terms of local
Voiculescu-Brown entropy

Let T : X → X be a homeomorphism of a compact metric space and αT the automor-
phism of C(X) given by αT (f) = f ◦ T for all f ∈ C(X). We recall from [2] that a pair
(x, y) ∈ X×X\∆ (with ∆ denoting the diagonal) is called an entropy pair if htop(T,U) > 0
for every two-element open cover U = {U, V } with x ∈ int(X \ U) and x ∈ int(X \ V ).
We denote by EX the set of entropy pairs in X × X. The topological Pinsker factor is
defined as the quotient system arising from the closed T -invariant equivalence relation on
X generated by the collection of entropy pairs [4] (here we have adopted the terminology
of [13]). This translates at the C∗-algebra level as the αT -invariant C∗-subalgebra PX,T of
C(X) consisting of all f ∈ C(X) satisfying f(x) = f(y) for every entropy pair (x, y). Note
that PX,T is indeed αT -invariant because EX is invariant under T ×T by Proposition 3 of
[2]. We refer to PX,T as the topological Pinsker algebra. It is an analogue of the Pinsker
σ-algebra in ergodic theory (see [30]).

The main goal of this section is to apply the argument of the proof of Theorem 3.3 to
show that PX,T is equal to the set of all f ∈ C(X) such that the local Voiculescu-Brown
entropy of αT with respect to the singleton {f} is zero. Thus by viewing the dynamics
at the function level we are able to obtain a simple description of the topological Pinsker
factor/algebra that avoids entropy pairs and the awkward fact that the set EX∪∆ does not
always form an equivalence relation (see [15]). As shown in [18], our functional-analytic
description of PX,T can be applied to obtain some information concerning the positivity of
local Voiculescu-Brown entropy with respect to products of canonical unitaries for certain
noncommutative toral automorphisms.

For economy, in this section we will simply write ht(T, f) instead of ht(αT , {f}) (as it
appears in the definition of Voiculescu-Brown entropy) for any function f ∈ C(X). Also,
given a function f ∈ C(X) we define the pseudo-metric df on X by

df (x, y) = |f(x)− f(y)|
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for all x, y ∈ X. We furthermore need to extend the metric space formulation of topological
entropy to pseudo-metrics. Thus for any pseudo-metric d on X we set

hd(T ) = sup
ε>0

lim sup
n→∞

1
n

log sepn(T, ε)

where sepn(T, ε) is the largest cardinality of an (n, ε)-separated set, with the latter defined
in the same way as for metrics (see Section 2).

The following lemma is a local version of Theorem 3.3 at the level of a single element
in the C∗-algebra.

Lemma 4.1. Let f ∈ C(X). Then hdf
(T ) > 0 implies ht(T, f) > 0.

Proof. Notice that, in the proof of Theorem 3.3, if the compact set K is taken to be finite,
then the argument still shows that if we define the pseudo-metric

d(σ, ω) = max
x∈K
|σ(x)− ω(x)|

on the unit ball of the dual and take hd(Sα) > 0 as our hypothesis, then ht(α,K) > 0.
Thus in our present context we can take K in the proof of Theorem 3.3 to be the singleton
{f} to obtain the desired conclusion. �

Lemma 4.2. If (x, y) is an entropy pair then ht(T, f) > 0 for every f ∈ C(X) with
f(x) 6= f(y).

Proof. Suppose (x, y) is an entropy pair and f is a function in C(X) with f(x) 6= f(y).
Set δ = |f(x)− f(y)|/3 and define the two open sets

U = {z ∈ X : |f(x)− f(z)| > δ},
V = {z ∈ X : |f(x)− f(z)| < 2δ}.

Then U = {U, V } is an open cover with x ∈ int(X \ U) and y ∈ int(X \ V ), and so
htop(T,U) > 0 by virtue of the fact that (x, y) is an entropy pair. Now if n ∈ N and V is a
subcover of U ∨ T−1U ∨ · · · ∨ T−(n−1)U of smallest cardinality then in each element of V

we can choose a point which is not contained in any other element of V, for otherwise V

would not be a minimal subcover. The set E obtained by collecting these points together
is (n, δ/2)-separated relative to the pseudo-metric df and has the same cardinality as V.
Hence

hdf
(T ) ≥ htop(T,U) > 0

and so ht(T, f) > 0 by Lemma 4.1, yielding the result. �

The converse of Lemma 4.2 is false. This is a consequence of the fact that set EX ∪∆
is not necessarily transitive as a relation (see [15]). Indeed if (x, y) and (y, z) are elements
of EX ∪ ∆ such that (x, z) 6∈ EX ∪ ∆, and if f ∈ C(X) satisfies f(x) 6= f(z), then we
cannot have both f(x) = f(y) and f(y) = f(z), whence ht(T, f) > 0 by Lemma 4.2.

Theorem 4.3. The topological Pinsker algebra PX,T is equal to the set of all f ∈ C(X)
such that ht(T, f) = 0.
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Proof. What we need to prove is that for any f ∈ C(X) we have ht(T, f) = 0 if and only if
f(x) = f(y) for all entropy pairs (x, y). The “only if” direction follows immediately from
Lemma 4.2. For the “if” direction, let f ∈ C(X) and suppose ht(T, f) > 0. Let B be the
unital αT -invariant C∗-subalgebra of C(X) generated by {αnT (f)}n∈Z, i.e., the closure in
C(X) of the set of polynomials in {αnT (f)}n∈Z. For convenience, in the rest of the proof
we will identify points in a compact metric space with pure states on the corresponding
unital C∗-algebra. Now if TB denotes the homeomorphism induced by αT

∣∣
B on the pure

state space of B, then since ht(αT
∣∣
B) ≥ ht(T, f) > 0 we have htop(TB) > 0 by [29, Prop.

4.8], and so by [2, Props. 1 and 2] there are pure states σ, ω on B such that (σ, ω) is an
entropy pair with respect to TB. We must then have σ(αnT (f)) 6= ω(αnT (f)) for some n ∈ Z
since σ and ω are distinct, and since the set of entropy pairs is T × T -invariant [2, Prop.
3] we may assume that n = 0, i.e., σ(f) 6= ω(f). By [2, Prop. 4] there are pure states σ′

and ω′ on C(X) extending σ and ω, respectively, such that (σ′, ω′) forms an entropy pair,
and we have σ′(f) 6= ω′(f), completing the proof. �

The system (X,T ) is said to have completely positive entropy if each of its non-trivial
factors has positive topological entropy [3]. Since positive entropy systems always have an
entropy pair [2, Props. 1 and 2], PX,T is equal to the scalars (resp. C(X)) precisely when
the system (X,T ) has completely positive entropy (resp. zero entropy), and so we obtain
the following corollaries to Theorem 4.3.

Corollary 4.4. The system (X,T ) has completely positive entropy if and only if ht(T, f) >
0 for all non-constant functions f ∈ C(X).

Corollary 4.5. We have htop(T ) > 0 if and only if ht(T, f) > 0 for some f ∈ C(X).
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