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Abstract. We prove that every Bernoulli action of a sofic group has completely positive en-
tropy with respect to every sofic approximation net. We also prove that every Bernoulli action
of a finitely generated free group has the property that each of its nontrivial factors with a finite
generating partition has positive f -invariant.

1. Introduction

A probability-measure-preserving action G y (X,µ) of a countable amenable group is said
to have completely positive entropy if each of its nontrivial factors has positive entropy in the
Kolmogorov-Sinai sense. This can also be expressed by saying that every nontrivial finite parti-
tion of X has positive entropy with respect to the action. In the case of a single transformation,
completely positive entropy is equivalent to being a K-automorphism by the Rokhlin-Sinai the-
orem, and these conditions are moreover equivalent to uniform mixing (see Section 18.2 of [6]).
Rudolph and Weiss showed in [19] that actions of general countable amenable groups with
completely positive entropy also possess strong mixing properties.

Bernoulli transformations are the prototypes for completely positive entropy, and it was an
open question for some time whether these were the only examples until Ornstein constructed
a non-Bernoulli K-automorphism in [13]. Extending the celebrated work of Ornstein in the
single transformation case, Ornstein and Weiss proved that entropy is a complete invariant for
Bernoulli actions of countably infinite amenable groups and that every factor of such an action
is Bernoulli [14]. In particular, Bernoulli actions of countable amenable groups have completely
positive entropy.

Bowen showed in [2] that the theory of dynamical measure entropy can be extended beyond
the realm of amenability to the context of acting groups possessing the much weaker finite
approximation property of soficity. In this case the entropy is defined with respect to a sofic
approximation sequence for the group and depends in general on the choice of this sequence. In
[10] Li and the author developed an operator-algebraic approach to sofic entropy that removes
the assumption in Bowen’s definition of a generating partition with finite Shannon entropy, and
this was recast in [8] in the language of finite partitions. In accord with the amenable case,
the entropy of a Bernoulli action of a countable sofic group is equal to the Shannon entropy of
the base, independently of the sofic approximation sequence [2, 9]. Using this fact Bowen was
able to extend the Ornstein-Weiss classification to a large class of acting groups that includes
all nontorsion countable sofic groups.

It is not known whether any nontrivial Bernoulli action of a nonamenable group has the
property that each of its factors is Bernoulli. On the other hand, it is a striking consequence
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of the cohomology computations in Popa’s deformation-rigidity theory that many countable
nonamenable groups have Bernoulli actions admitting non-Bernoulli factors [15, 18, 16, 17].
This includes infinite groups with property (T) and countable groups of the form G×H where
G is infinite and H is nonamenable. Another contrast with the amenable setting is that, by a
result of Ball [1], every finitely generated nonamenable group has Bernoulli actions with finite
base which factor onto every Bernoulli action. This phenomenon cannot occur for amenable
groups because Kolmogorov-Sinai entropy is nonincreasing under taking factors. Furthermore,
Bowen showed in [5] that if G is a countable group containing the free group F2 then every
nontrivial Bernoulli action of G factors onto every other Bernoulli action of G.

In this note we prove that every Bernoulli action of a sofic group has completely positive
entropy with respect to every sofic approximation net (Theorem 2.6). As a consequence, those
nonamenable sofic groups that fall within the scope of the cohomology results of [15, 18, 16, 17]
(e.g., SL(n,Z) for n ≥ 3) admit non-Bernoulli actions with completely positive entropy, as
happens in the amenable case but for completely differently reasons.

What we in fact demonstrate is that there is a positive lower bound on the local entropy
of a nontrivial finite partition which is uniform over all good enough sofic approximations
(Lemma 2.5). This additionally enables us to show that a Bernoulli action of a free group
has the property that each of its nontrivial factors with a finite generating partition has positive
f -invariant (Theorem 3.2), answering a question raised by Bowen in Section 1.2 of [3]. The
f -invariant, introduced by Bowen in [4], is an entropy-type invariant for probability-measure-
preserving actions of free groups which admit a generating partition with finite Shannon entropy.
Unlike sofic entropy, it is defined using Shannon entropy, but it is nevertheless related to sofic
entropy via a formula that involves local averaging over permutation models of the group [3].
This formula was used by Bowen to obtain a weaker version of Theorem 3.2 with “nonnegative”
in place of “positive” (Corollary 1.8 of [3]). To establish Theorem 3.2 we use the formula in the
same way, along with an asymptotic freeness result for random permutation models of a free
group (Lemma 3.1) that follows from work of Nica [12] by a standard measure concentration
argument. We remark that this asymptotic freeness is also necessary to derive Corollary 1.8 in
[3], although it is not mentioned there.

Section 2 contains a review of the definition of sofic measure entropy from [8] along with the
main technical result of the paper, Lemma 2.5, and its consequence in the sofic case, Theorem 2.6.
In Section 3 we concentrate on free groups and the f -invariant and prove Theorem 3.2.
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2. Sofic measure entropy

Let G be a discrete group. We write its identity element as e. For a map σ : G→ Sym(d) for
some d ∈ N and a finite set K ⊆ G write V(σ,K) for the set of all v ∈ {1, . . . , d} such that

(i) σst(v) = σsσt(v) for all s, t ∈ F , and
(ii) σs(v) 6= σt(v) for all distinct s, t ∈ F .
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A net Σ = {σi : G → Sym(di)} is called a sofic approximation net if limi di = ∞ and
limi |V(σi, F )|/di = 1 for all finite sets F ⊆ G. The group G is sofic if it admits a sofic ap-
proximation net. We say that a map σ : G→ Sym(d) is a sufficiently good sofic approximation
for a given purpose if there are a finite set K ⊆ G and ε > 0 such that σ satisfies |V(σ,K)| ≥ 1−ε
and this condition is enough for σ to perform what is required of it.

For the remainder of this section G is a sofic group and Σ = {σi : G→ Sym(di)} a fixed but
arbitrary sofic approximation net.

We next recall the definition of sofic measure entropy for a measure-preserving action G y
(X,B, µ) on a probability space, as formulated in [8]. When speaking about partitions of a
measure space we tacitly assume that they are measurable. For a set V we write P(V ) for the
power set of V , viewed as an algebra. In the case that V = {1, . . . , d} for some d ∈ N we simply
write Pd. For a partition ξ of X we write A(ξ) for the algebra generated by ξ.

Let α be a finite partition of X, F a finite subset of G, and δ > 0. Write αF for the partition
{
⋂
s∈F sAs : A ∈ αF } where As denotes the value of A at s. Let σ be a map from G to Sym(d)

for some d ∈ N. We write Homµ(α, F, δ, σ) for the set of all homomorphisms ϕ : A(αF ) → Pd
such that

(i)
∑

A∈α |σsϕ(A)∆ϕ(sA)|/d < δ for all s ∈ F , and

(ii)
∑

A∈αF

∣∣|ϕ(A)|/d− µ(A)
∣∣ < δ.

For a partition ξ ≤ α we write |Homµ(α, F, δ, σ)|ξ to mean the cardinality of the set of restrictions
of elements of Homµ(α, F, δ, σ) to ξ.

Let S be a subalgebra of the σ-algebra B. Let ξ and α be finite measurable partitions of X
with α ≥ ξ. Let F be a nonempty finite subset of G and δ > 0. Set

hξΣ,µ(α, F, δ) = lim sup
i

1

di
log |Homµ(α, F, δ, σi)|ξ,

hξΣ,µ(α, F ) = inf
δ>0

hξΣ,µ(α, F, δ),

hξΣ,µ(α) = inf
F
hξΣ,µ(α, F ),

hξΣ,µ(S) = inf
α
hξΣ,µ(α),

hΣ,µ(S) = sup
ξ
hξΣ,µ(S)

where the infimum in the third line is over all nonempty finite subsets of G, the infimum in the
fourth line is over all finite partitions α ⊆ S which refine ξ, and the supremum in the last line is
over all finite partitions in S. In the case that Homµ(α, F, δ, σi) is empty for all i greater than

some i0, we put hξΣ,µ(α, F, δ) = −∞.

Definition 2.1. The measure entropy hΣ,µ(X,G) of the action G y (X,B, µ) with respect to
Σ is defined to be hΣ,µ(B).

Note that if S is a generating subalgebra of B then hΣ,µ(X,G) = hΣ,µ(S) by Theorem 2.6 of
[8], although we will not need this fact.

Definition 2.2. The action Gy (X,µ) is said to have completely positive entropy with respect
to Σ if each of its nontrivial factors G y (Y, ν) satisfies hΣ,ν(Y,G) > 0 (by nontrivial we mean
that ν does not have an atom of full measure).
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Lemma 2.3. Let (X,µ) be a probability space. Let ε > 0. Then there is a β > 0 and an M ∈ N
such that if ξ = {A1, A2} and η = {B1, B2} are two-element ordered partitions of X, V is a
finite set of cardinality at least M , and ψ : A(ξ)→ P(V ) is a homomorphism, then the set of all
restrictions to η of homomorphisms ϕ : A(ξ ∨ η)→ P(V ) which restrict to ψ on ξ and satisfy

max(|ϕ(A1 ∩B2)|, |ϕ(A2 ∩B1))|) < β|V |

has cardinality at most eε|V |.

Proof. Let β > 0, to be determined. Let ξ = {A1, A2} and η = {B1, B2} be two-element ordered
partitions of X, V a finite set, and ψ : A(ξ)→ P(V ) a homomorphism. Let Θ be the set of all
restrictions to η of homomorphisms ϕ : A(ξ ∨ η)→ P(V ) which restrict to ψ on ξ and satisfy

max(|ϕ(A1 ∩B2)|, |ϕ(A2 ∩B1)|) < β|V |.

Such a restriction to η is determined by our knowledge of ϕ(A1 ∩B2) and ϕ(A2 ∩B1), for

ϕ(B1) = (ψ(A1) ∪ ϕ(A2 ∩B1)) \ ϕ(A1 ∩B2),

ϕ(B2) = (ψ(A2) ∪ ϕ(A1 ∩B2)) \ ϕ(A2 ∩B1).

Therefore |Θ| is bounded above by 2 ·
∑bβ|V |c

k=0

(|V |
k

)
. It follows by Stirling’s formula that if β

is sufficiently small as a function of ε then there is an M ∈ N such that |Θ| ≤ eε|V | whenever
|V | ≥M . �

Lemma 2.4. Let Gy (X,µ) be a measure-preserving action on a probability space. Let α be a
finite partition of X. Let E and F be nonempty finite subsets of G with e ∈ F , and let δ > 0.
Then for every good enough sofic approximation σ : G→ Sym(d) one has

Homµ(α, FE, δ, σ) ⊆ Homµ(αE , F, 3|E||α||E|δ, σ).

Proof. Let σ be a map from G to Sym(d) for some d ∈ N. Let ϕ ∈ Homµ(α, FE, δ, σ). Then
for all A ∈ α, s ∈ E, and t ∈ F we have, assuming that σ is a good enough sofic approximation
and noting that e ∈ F implies s ∈ EF ,

|σtϕ(sA)∆ϕ(tsA)| ≤ |σtϕ(sA)∆σtσsϕ(A)|+ |σtσsϕ(A)∆σtsϕ(A)|+ |σtsϕ(A)∆ϕ(tsA)|
< δd+ δd+ δd = 3δd.

Writing α = {A1, . . . , An} we thus have, for every t ∈ F and ω : E → {1, . . . , n},∣∣∣∣σtϕ( ⋂
s∈E

sAω(s)

)
∆ϕ

(
t
⋂
s∈E

sAω(s)

)∣∣∣∣ =

∣∣∣∣ ⋂
s∈E

σtϕ(sAω(s))∆
⋂
s∈E

ϕ(tsAω(s))

∣∣∣∣
≤
∑
s∈E
|σtϕ(sAω(s))∆ϕ(tsAω(s))|

< 3|E|δd

and hence
∑

A∈αE |σtϕ(A)∆ϕ(tA)| < 3|E||α||E|δd.

Finally, since (αE)F = αFE we have
∑

A∈(αE)F

∣∣|ϕ(A)|/d − µ(A)
∣∣ < δ, and so we conclude

that ϕ ∈ Homµ(αE , F, 3|E||α||E|δ, σ), yielding the inclusion of the lemma statement. �
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The fact that the exponential lower bound in the following lemma is uniform over all suf-
ficiently good sofic approximations is not necessary for establishing the completely positive
entropy of Bernoulli actions in Theorem 2.6, but it will be crucial for deriving the analogous
conclusion for the f -invariant in Theorem 3.2. In the proof we will use the following terminology
and notation. For d ∈ N and a subset V of {1, . . . , d} write πV for the map A({1, . . . , d})→ P(V )
given by W 7→W ∩ V . Given a Q ⊆ Sym(d), we say that a set V ⊆ {1, . . . , d} is Q-separated if
Qv ∩Qw = ∅ for all distinct v, w ∈ V .

Lemma 2.5. Let G y (X,µ) = (X0, µ0)G be a Bernoulli action. Let ξ be a finite partition of
X such that H(ξ) > 0. Then there is a λ > 0, a finite set Q ⊆ G, a θ > 0, and a d0 ∈ N such
that

|Homµ(ρ, F, δ, σ)|ξ ≥ eλd

for all finite partitions ρ of X refining ξ, finite sets F ⊆ G, δ > 0, and maps σ : G → Sym(d)
for which d ≥ d0 and |V(σ,Q)| ≥ 1− θ.

Proof. Let σ : G → Sym(d) be a map for some d ∈ N. Since the Shannon entropy H(·) is
subadditive with respect to taking joins and ξ is a join of two-element partitions, there is a
two-element partition ξ′ of X such that ξ′ ≤ ξ and H(ξ′) > 0. Then |Homµ(ρ, F, δ, σ)|ξ ≥
|Homµ(ρ, F, δ, σ)|ξ′ for all finite partitions ρ of X refining ξ, finite sets F ⊆ G, and δ > 0, and
so we may assume that ξ itself is a two-element partition.

Write ξ = {B1, B2}. Take an ε > 0 such that

H(ξ)− 2ε >
H(ξ)

2
.

Let β > 0 and M ∈ N be as given by Lemma 2.3 with respect to ε. Take two-element ordered
partition η = {C1, C2} such that C1 and C2 are finite unions of cylinder sets over some finite set
K ⊆ G and max(µ(B1 ∩C2), µ(B2 ∩C1)) is less than β/4 and also small enough to ensure that

H(η)− 2ε ≥ H(η)

2
.

Let ρ = {D1, . . . , Dm} be a partition refining ξ and F a finite subset of G containing e, and
let δ > 0 be such that δ ≤ β/|K|2. Note that by the monotonicity properties of entropy it
equivalent to quantify over such ρ, F , and δ in the statement of theorem.

Let δ′ > 0, to be further specified. Take a finite partition α = {A1, . . . , Aq} consisting cylinder
sets over e and a finite set E ⊆ G containing K such that αE refines η and for every i = 1, . . . ,m
there exists a set D′i ∈ A(αE) for which µ(Di∆D

′
i) < δ′. By a simple perturbation argument

we may assume that the sets D′1, . . . , D
′
m form a partition of X. Let σ : G→ Sym(d) be a map

for some d ∈ N. We assume that d is sufficiently large and that σ is a sufficiently good sofic
approximation for purposes to be described below. Since the sets D′1, . . . , D

′
m partition X we

can define a homomorphism θ : A(ρF )→ A(αFE) by setting

θ

( ⋂
s∈F

sDf(s)

)
=
⋂
s∈F

sD′f(s)

for all f ∈ {1, . . . ,m}F for which
⋂
s∈F sDf(s) 6= ∅ and redefining θ(

⋂
s∈F sDf0(s)) for some

f0 ∈ {1, . . . ,m}F for which
⋂
s∈F sDf0(s) 6= ∅ so that θ maps X to {1, . . . , d}. It is then

straightforward to check that if σ is a sufficiently good sofic approximation and δ′ is small enough
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then composing an element of Homµ(αE , F, δ/2, σ) with θ yields an element of Homµ(ρ, F, δ, σ).
Setting B′1 = θ(B1) and B′2 = θ(B2), we may moreover take δ′ to be small enough to ensure
that max(µ(B′1∆B1), µ(B′2∆B2)) < β/4, so that

max(µ(B′1 ∩ C2), µ(B′2 ∩ C1)) ≤ max(µ(B′1∆B1), µ(B′2∆B2))

+ max(µ(B1 ∩ C2), µ(B2 ∩ C1))

<
β

2
.

Note that αFE refines η, since e ∈ F and K ⊆ E. For every γ ∈ {1, . . . , q}d, regarding γ as a
map {1, . . . , d} → {1, . . . , q} we define a homomorphism ψγ : A(αFE)→ Pd by setting

ψγ

( ⋂
s∈FE

sAf(s)

)
=
⋂
s∈FE

σsγ
−1(f(s))

for all f ∈ {1, . . . , q}FE . View {1, . . . , q}d as a probability space with probability measure
νd where ν({k}) = µ(Ak) for each k = 1, . . . , q. By the second moment argument in Sec-
tion 8 of [2] (see also Section 4 of [8], where the argument is recast using the homomorphism
definition of entropy), if we assume that d is sufficiently large and that σ is a sufficiently
good sofic approximation then there exists a set L ⊆ {1, . . . , q}d such that νd(L) ≥ 3/4 and

ψγ ∈ Homµ(α, FE, δ/(6|E||α||E|), σ) for every γ ∈ L. By Lemma 2.4, if we assume σ to

be a sufficiently good sofic approximation then we will have Homµ(α, FE, δ/(6|E||α||E|), σ) ⊆
Homµ(αE , F, δ/2, σ), so that ψγ ∈ Homµ(αE , F, δ/2, σ) for all γ ∈ L.

We next suppose that σ is a sufficiently good sofic approximation so that the set

R = {v ∈ {1, . . . , d} : σ−1
s (v) 6= σ−1

t (v) for all distinct s, t ∈ FE}

has cardinality at least (1− 1/(2|K|2))d. Take a maximal σ(K)−1-separated set V ⊆ {1, . . . , d}.
Then |V | ≥ |σ(K)|−2d, since

⋃
v∈V σ(K)σ(K)−1v = {1, . . . , d} by maximality. Hence |V | ≥

d/|K|2. Set W = V ∩R. Then

|W | ≥ |V | − d

2|K|2
≥ |V |

2
.

We will now once again apply the second moment argument from Section 8 of [2] but this
time relativized to the set W . Let f ∈ {1, . . . , q}FE . Set Pf =

⋂
s∈FE sAf(s) and Qγ,f =⋂

s∈FE σsγ
−1(f(s)) for γ ∈ {1, . . . , q}d. For v ∈ {1, . . . , d} let Zv = Zv,f be the function on

{1, . . . , q}d such that Zv(γ) is equal to 1 if v ∈ W ∩Qγ,f and 0 otherwise. Writing E(·) for the

expected value of a function on {1, . . . , q}d, for v ∈W we have

E(Zv) = νd
({
γ ∈ {1, . . . , q}d : σ−1

s (v) ∈ γ−1(f(s)) for every s ∈ FE
})

=
∏
s∈FE

ν({f(s)}) =
∏
s∈FE

ν(Af(s)) = µ(Pf ).

Set Z =
∑

v∈W Zv. Let us estimate the variance of Z. For v, w ∈W , if σ−1
s (v) 6= σ−1

t (w) for all
s, t ∈ FE then Zv and Zw are independent, that is, E(ZvZw) = E(Zv)E(Zw). It follows that the
number of pairs (v, w) ∈W ×W for which Zv and Zw are not independent is at most |W ||FE|2.
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Hence

E(Z2) =
∑

v,w∈W
E(ZvZw) ≤

∑
v,w∈W

E(Zv)E(Zw) + |W ||FE|2 = E(Z)2 + |W ||FE|2

and so Var(Z) ≤ |W ||FE|2. As Z(γ) = |W ∩ Qγ,f | and E(Z) = |W |µ(Pf ), using Chebyshev’s
inequality we then have, for all t > 0,

P
(∣∣|W ∩Qγ,f |/|W | − µ(Pf )

∣∣ > t
)
≤ Var(Z)

|W |2t2
≤ |FE|

2

|W |t2
≤ 2|K|2|FE|2

dt2
.

Taking t = β/(2q|FE|) we thus obtain, for d sufficiently large,

P
(∣∣|W ∩Qγ,f |/|W | − µ(Pf )

∣∣ > β/(2q|FE|)
)
≤ 1

4q|FE|
.

Since B′1, B′2, C1, and C2 are unions of sets of the form Pf for f ∈ {1, . . . , q}FE , it follows that

if d is sufficiently large then there is a set L′ ⊆ {1, . . . , q}d with νd(L′) ≥ 3/4 such that for
every γ ∈ L′ we have |πW ◦ψγ(B′1∆C2)|/|W | < µ(B′2∆C1) + β/2 and |πW ◦ψγ(B′2∆C1)|/|W | <
µ(B′1∆C2) + β/2 so that

max(|πW ◦ ψγ(B′1∆C2)|, |πW ◦ ψγ(B′2∆C1)|) < β|W |,
which will allow us below to invoke the conclusion of Lemma 2.3 in accord with our choice of β.

Since W is σ(K)−1-separated, W ⊆ R, and C1 and C2 are unions of sets in αK , for every
v ∈W and i = 1, 2 the probability that v ∈ ψγ(Ci) is µ(Ci), while for all distinct v, w ∈W and

all i, j ∈ {1, 2} the events {γ ∈ {1, . . . , q}d : v ∈ ψγ(Ci)} and {γ ∈ {1, . . . , q}d : w ∈ ψγ(Cj)} are

independent. Define the function I on {1, . . . , q}d by

I(γ) = −
∑
v∈W

logµ(Ciγ,v)

where iγ,v is such that v ∈ ψγ(Ciγ,v). Then, by the law of large numbers,

lim
|W |→∞

P
(∣∣∣∣ 1

|W |
I(γ)−H(η)

∣∣∣∣ > ε

2

)
= 0.

Since for each γ ∈ {1, . . . , q}d the quantity e−I(γ) =
∏
v∈W µ(Ciγ,v) is equal to the νd-measure

of the set of all γ′ ∈ {1, . . . , q}d for which πW ◦ ψγ′ |η = πW ◦ ψγ |η, we can thus find, assuming

d is sufficiently large and σ is a sufficiently good sofic approximation, an L′′ ⊆ {1, . . . , n}d for
which νd(L′′) ≥ 3/4 and, for all γ ∈ L′′,

νd({γ′ ∈ {1, . . . , q}d : πW ◦ ψγ′ |η = πW ◦ ψγ |η}) ≤ e−(H(η)−ε/2)|W |.

Write Ψ for the set of all ψγ such that γ ∈ L ∩ L′ ∩ L′′. We then have

|{πW ◦ ψ|η : ψ ∈ Ψ}| ≥ νd(L ∩ L′ ∩ L′′)e(H(η)−ε/2)|W | ≥ 1

4
e(H(η)−ε/2)|W |.

If d is large enough so that |W | is large enough, the last expression above will be at least

e(H(η)−ε)|W |.
Set ξ′ = {B′1, B′2}. Take a set Ψ′ of representatives in Ψ for the relation of equality under

restriction to ξ′. For each ψ ∈ Ψ′ write Φψ for the set of all ϕ ∈ Ψ which agree with ψ
on ξ′. Since every ψ ∈ Ψ is of the form ϕγ for some γ ∈ L′, by our choice of β we have
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|{πW ◦ ϕ|η : ϕ ∈ Φψ}| ≤ eε|W | for every ψ ∈ Ψ′, assuming that d is large enough so that
|W | ≥M . Therefore, granted that d is large enough,

e(H(η)−ε)|W | ≤ |{πW ◦ ψ|η : ψ ∈ Ψ}|

≤
∑
ψ∈Ψ′

|{πW ◦ ϕ|η : ϕ ∈ Φψ}|

≤ |Ψ′| · eε|W |

≤ |Homµ(αE , F, δ/2, σ)|ξ′ · eε|W |.

Using the fact that |W | ≥ |V | − d/(2|K|2) ≥ d/(2|K|2), we thus obtain

1

d
log |Homµ(αE , F, δ/2, σ)|ξ′ ≥ (H(η)− 2ε)

|W |
d
≥ H(η)

4|K|2
.

Considering now the map ϕ 7→ ϕ ◦ θ from Homµ(αE , F, δ/2, σ) to Homµ(ρ, F, δ, σ), the fact that
for every ψ ∈ Homµ(αE , F, δ/2, σ) the restriction of ψ ◦ θ to ξ determines the restriction of ψ to
ξ′ yields

|Homµ(ρ, F, δ, σ)|ξ ≥ |Homµ(αE , F, δ/2, σ)|ξ′ .

We thus obtain the theorem with λ = H(η)/(4|K|2). �

The following is an immediate consequence of Lemma 2.5 and the definition of sofic measure
entropy.

Theorem 2.6. Every Bernoulli action of a sofic group has completely positive entropy with
respect to every sofic approximation net.

3. The f-invariant

Throughout this section Fr is a free group on a fixed but arbitrary nonempty finite set of r
generators. Our goal is to show the analogue of Theorem 2.6 for the f -invariant, namely that
every nontrivial factor of a Bernoulli action of Fr with a finite generating partition has positive
f -invariant.

The f -invariant of a measure-preserving action Fr y (X,µ) is defined as follows [4]. Write S
for the standard set of r generators of Fr. For a partition ξ with finite Shannon entropy we set

F (ξ) = (1− 2|S|)H(ξ) +
∑
s∈S

H(ξ ∨ sξ),

f(ξ) = inf
n∈N

F

( ∨
s∈Bn

sξ

)
where Bn denotes the set of all words in S∪S−1 of length at most n. Then f(ξ) takes a common
value over all generating partitions ξ with finite Shannon entropy [4] and we define f(X,Fr) to
be this value in the case that such a generating partition exists.

The f -invariant can be alternatively expressed by averaging the local quantities in the defi-
nition sofic entropy over permutation models for Fr. More precisely, by Theorem 1.3 of [3] we



BERNOULLI ACTIONS OF SOFIC GROUPS 9

have, for a finite generating partition ξ,

f(X,Fr) = inf
F

inf
δ>0

lim sup
d→∞

1

d
log

(
1

d!r

∑
σ∈Hom(Fr,Sym(d))

|Homµ(ξ, F, δ, σ)|ξ
)

(∗)

where F ranges over the finite subsets of G and Hom(Fr, Sym(d)) denotes the set of all group
homomorphisms from Fr to Sym(d). Note that for each d there are elements of Hom(Fr, Sym(d))
which fail to be good sofic approximations due to a lack of sufficient freeness, but the following
lemma shows that this lack of freeness occurs with asymptotically vanishing probability as
d→∞.

Lemma 3.1. Let r and m be positive integers with r ≤ m. Let α1 6= α2 6= · · · 6= αm be numbers
in {1, . . . , r} which exhaust this set. Let n1, . . . , nm ∈ Z \ {0}. Set

Ωd,ε =
{

(U1, . . . , Ur) ∈ Srd : trd(U
n1
α1
· · ·Unmαm ) < ε

}
.

Then limd→∞ |Ωd,ε|/d!r = 1.

Proof. By a theorem of Nica [12] we have

lim
d→∞

1

d!r

∑
(U1,...,Ur)∈Srd

trd(U
n1
α1
· · ·Unmαm ) = 0.

Since each of the above trace values is nonnegative, it follows that for all sufficiently large d we
have |Ωd,ε/2|/d!r ≥ 1/2. Expressing the normalized Hamming metric ρd on Sd as

ρd(U, V ) =
1

2
trd(|U − V |2) =

1

2
‖U − V ‖22

and applying the Cauchy-Schwarz and triangle inequalities, we deduce the existence of a δ >
0 such that Nδ(Ωd,ε/2) ⊆ Ωd,ε where Nδ(·) denotes the δ-neighbourhood with respect to the
metric ρd,r((U1, . . . , Ur), (V1, . . . , Vr)) = maxi=1,...,r ρd(Ui, Vi). Gromov and Milman remark in
Section 3.6 of [7] that a result of Maurey [11] shows that for d ∈ N the symmetric groups Sd
equipped with the uniform probability measures and normalized Hamming metrics form a Lévy
family (see Section 1 of [7]), and they observe in Section 2.2 of [7] that the Lévy property is
preserved under finite products. Thus for d ∈ N the products Srd with the product measures
and metrics ρd,r form a Lévy family, in which case limd→∞ |Nδ(Ωd,ε/2)|/d!r = 1, yielding the
lemma. �

Theorem 3.2. Let Fr y (Y, ν) be a nontrivial factor of a Bernoulli action of Fr and suppose
that this factor has a finite generating partition. Then f(Y, Fr) > 0.

Proof. For every finite set F ⊆ G, ε > 0, and d ∈ N write Ωd,F,ε for the set of all group
homomorphisms σ : Fr → Sym(d) such that∣∣{v ∈ {1, . . . , d} : σs(v) 6= σt(v)}

∣∣ ≥ 1− ε

for all distinct s, t ∈ F . Given the one-to-one correspondence between group homomorphisms
from Fr to Sym(d) and r-tuples of d × d permutation matrices that is set up via the standard
generators of Fr, we have limd→∞ |Ωd,F,ε|/d!r = 1 by Lemma 3.1. The result now follows by
appealing to Lemma 2.5 and (∗). �
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