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Abstract. We show that, for every minimal action of a countably infinite discrete group on a
compact metrizable space, if the extreme boundary of the simplex of invariant Borel probability
measures is closed and has finite covering dimension then the action has the small boundary
property.

1. Introduction

A basic principle in dynamics is that infinite groups have a complexity-lowering effect when they
act by measure-preserving or continuous transformations. The paradigm of this regularization
phenomenon is entropy, which expresses, logarithmically, the average “cardinality” of a space
under the dynamics when viewed at fixed scales (this requires an averaging mechanism built into
the group itself, in the form of amenability or soficity). For free actions on spaces that are diffuse
or have large covering dimension the entropy can easily be finite, and even zero. In topological
dynamics this kind of regularization also occurs at the dimensional level and is given numerical
expression through the mean dimension of the action. Just as entropy obstructs embeddability
into shifts over finite alphabets whose cardinality is of lower logarithmic value, mean dimension
obstructs embeddability into shifts over cubes whose dimension is of lower value.

A condition closely related to but formally quite different from having mean dimension zero
is the small boundary property (SBP), which asks for a basis of opens sets whose diameters are
null for every invariant Borel probability measure (or equivalently for every ergodic invariant
Borel probability measure). Unlike entropy or mean dimension this definition does not require
any averaging process and makes sense for all acting groups, but it implies mean dimension zero
when the group is amenable (Theorem 5.4 of [22]) and mean dimension zero or −∞ for every
sofic approximation sequence when the group is sofic (Theorem 8.2 of [18]) and is known to
be equivalent to mean dimension zero for Zd-actions with the marker property, which includes
minimal Zd-actions (Corollary 5.4 of [13]). Moreover, when the group is amenable and the action
is free the SBP is equivalent, by an Ornstein–Weiss-type tiling argument, to almost finiteness
in measure, which means that, up to a remainder that is uniformly small on all invariant Borel
probability measures, the space can be almost covered by finitely many disjoint open towers with
Følner shapes and levels of small diameter [15] (see Section 2 for more details).

By their very definition in terms of averages over Følner sets or sofic approximations, topological
entropy and mean dimension have a measure-theoretic aspect and are connected to the existence
and distribution of probability measures that are invariant under the action. Given that topological
entropy captures the exponential growth of the number of partial orbits over Følner sets (or the
number of dynamical models for sofic approximations) that are distinguishable at fixed scales,
and that such Følner partial orbits (or sofic models) support uniform probability measures that
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are approximately invariant and hence weak∗ close to Borel probability measures that are actually
invariant, it comes as a surprise that, as the Jewett–Krieger theorem demonstrates, nonzero and
even infinite entropy is compatible with the action having only one invariant Borel probability
measure. On the other hand, having nonzero mean dimension or failing to have the SBP does
have consequences for the size and geometry of the space of invariant Borel probability measures,
which brings us to the subject of the present paper.

A simple cardinality argument using balls shows that if G ↷ X is a continuous action on a
compact metrizable space such that the simplex MG(X) of invariant Borel probability measures
has countable extreme boundary then the action must have the SBP. In [23] Ma showed that
the SBP also holds whenever G is countable and amenable, G ↷ X is free and minimal, and
the extreme boundary of the simplex MG(X) is compact (i.e., MG(X) is a Bauer simplex) and
zero-dimensional. Ma’s approach makes use of noncommutative C∗-algebras and was inspired
by Toms, White, and Winter’s proof in [34] of the Toms–Winter conjecture (more precisely the
implication from strict comparison to Z -stability) in the case that the tracial state space is a
Bauer simplex whose extreme boundary has finite covering dimension, a result that was also
independently proved using similar ideas by Kirchberg and Rørdam [16] and by Sato [28] and
builds on Matui and Sato’s breakthrough in the case of finitely many extremal tracial states [24].
In this paper we take further inspiration from [34] as a model for how to proceed in the dynamical
setting, in part by recasting some of its arguments in a more purely dynamical form than what is
done in [23], so as to establish the following generalization of Ma’s theorem.

Theorem A. Let G↷ X be a minimal action of a countably infinite discrete group on a compact
metrizable space. Suppose that MG(X) is a Bauer simplex whose extreme boundary has finite
covering dimension. Then the action has the SBP.

One significant difference from the results of Toms–White–Winter and Ma is that we have been
able to dispense with the hypotheses of amenability (or nuclearity, in C∗-algebraic terms) and
freeness, and so the generalization of [23] actually goes in a couple of different directions. Indeed
we do not need to subject the group to the type of approximate centrality condition that is crucial
in [34] and that would seem to call for Følnerness of the tower shapes (compare for example
Section 9 of [15]). It might be noted, however, that nuclearity is still implicitly playing a role on
the side of the space, via our bump function constructions in the proof of Lemma 4.7.

What Toms, White, and Winter actually establish is a uniform McDuff property (Theorem 4.6
of [34]; see also Sections 4 and 5 of [1]) that, by the work of Matui and Sato in [24], implies the
passage from strict comparison to Z -stability in the Toms–Winter conjecture. This property is
analogous to almost finiteness in measure and hence, in the case of amenable groups, to the SBP.
Just as the uniform McDuff property (and even the weaker uniform property Γ [2]) implies the
equivalence of strict comparison and Z -stability in the Toms–Winter conjecture [1] (the backward
implication being a general fact [27]), the SBP implies, in the amenable case, the equivalence
of comparison and almost finiteness (Theorem 6.1 in [15]), and so we can derive the following
corollary (cf. Theorem 3.5 in [23]). For details on comparison and almost finiteness see Section 2.
Almost finiteness differs from its “in measure” version by requiring the remainder to be small in
a topological sense. For free minimal actions of countably infinite amenable groups on compact
metrizable spaces, it implies that the associated crossed product C∗-algebra is Z -stable [14] and
hence falls under the scope of the classification theorem for simple separable Z -stable nuclear
C∗-algebras satisfying the UCT (such C∗-algebras we call “classifiable” for short) [12, 9, 32].
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Corollary B. Let G ↷ X be a free minimal action of a countably infinite amenable discrete
group on a compact metrizable space. Suppose that MG(X) is a Bauer simplex whose extreme
boundary has finite covering dimension. Then the action is almost finite if and only if it has
comparison.

In [25] Naryshkin showed that, when G is a finitely generated group of polynomial growth,
every minimal action G ↷ X on a compact metrizable space has comparison. Together with
Corollary B this yields the following.

Corollary C. Let G ↷ X be a free minimal action of an infinite finitely generated group of
polynomial growth on a compact metrizable space. Suppose that MG(X) is a Bauer simplex
whose extreme boundary has finite covering dimension. Then the action is almost finite and the
crossed product C(X)⋊G is Z -stable and classifiable.

Given a simple unital stably finite separable C∗-algebra A, a C∗-diagonal B ⊆ A [17], and
a countable group G of unitary normalizers of B such that G and B together generate A, one
can consider the induced minimal action of G ↷ X on the spectrum of B (for minimality see
Section 10.3 of [29]), in which case MG(X) identifies with the simplex of tracial states on A via
the conditional expectation onto B (see Section 3 of [5]). Theorem A shows that if the trace
simplex of A is Bauer with finite-dimensional extreme boundary then the action G↷ X has the
SBP. In general G↷ X need not have the SBP, as the crossed products of the minimal Z-actions
without the SBP in [22] demonstrate. But these crossed products are not Z -stable and hence not
classifiable [10]. It is an interesting question whether G↷ X will always have the SBP when A is
classifiable (see for example [19]).

We begin in Section 2 with some general definitions and notation. Section 3 is devoted to a
dynamical analogue of a C∗-algebraic affine function realization result that appears as Theorem 9.3
in the paper [20] by Lin and was employed in both [34] and [23]. Like Theorem 9.3 in [20], this is
based on work of Cuntz and Pedersen on equivalence and traces in [4]. It is pointed out by Cuntz
and Pedersen in Section 8 of [4] that similar arguments also work in an equivariant setting such as
ours, and so we are merely making explicit in the commutative case some of the technical details
on dynamical equivalence that were left to the reader in [4] and then putting them together as in
[20] to obtain the realization result, which we record as Theorem 3.7. With this at hand we then
proceed to the proof of Theorem A, via a series of lemmas, in Section 4. At the end of Section 4
we also give some examples illustrating the application of Theorem A.

Acknowledgements. The authors were supported by the Deutsche Forschungsgemeinschaft (DFG,
German Research Foundation) under Germany’s Excellence Strategy EXC 2044-390685587, Math-
ematics Münster: Dynamics–Geometry–Structure, and by the SFB 1442 of the DFG.

2. Preliminaries

For a bounded Borel function f on a compact metrizable space X and a Borel probability
measure µ on X we usually write µ(f) for the integral

∫
X f dµ.

Let G be a countable discrete group and G↷ X a continuous action on a compact metrizable
space. We write MG(X) for the convex set of all G-invariant Borel probability measures on X
equipped with the weak∗ topology, under which it is a Choquet simplex. The extreme boundary
of MG(X) is the set of ergodic measures and is written M erg

G (X).
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A Choquet simplex is said to be a Bauer simplex if the set of its extreme points is closed. This
property is characterized by the fact that every continuous function on the extreme boundary
uniquely extends to a continuous affine function on the whole simplex. It obviously holds when
there are only finitely many extreme points, but can already fail when the set of extreme points is
countably infinite. At the opposite end from Bauer simplices is the Poulsen simplex, characterized
by the fact that the extreme points are dense.

For many amenable groups G, including Z, every Choquet simplex can be realized as MG(X)
for some free minimal subshift action G↷ X [8, 3]. Glasner and Weiss showed that if G does not
have property (T) (which is the case for example if G is infinite and amenable) and G↷ Y G is a
nontrivial shift action then MG(X) is the Poulsen simplex, while if G has property (T) then for
every action G↷ X the simplex MG(X), when nonempty, is Bauer [11].

The action G↷ X has the small boundary property (SBP) if X has a basis of open sets whose
boundaries are null for G-invariant Borel probability measures. The SBP holds if and only if for all
disjoint closed sets C,D ⊆ X and δ > 0 there exists an open set U ⊆ X such that C ⊆ U ⊆ X \D
and µ(∂U) ≤ δ for every µ ∈MG(X). This is the equivalence (i)⇐⇒(v) in Theorem 5.5 of [15],
and although the group G is assumed to be amenable there the argument can be rewritten so as
to work for general G by replacing the use of Proposition 3.4 in [15] with the fact that for every
ε > 0 and K ⊆ X satisfying µ(K) < ε for all µ ∈MG(X) then there is an open set W ⊇ K such
that µ(W ) < ε for all µ ∈MG(X) (one can apply the portmanteau theorem to see this). The SBP
is automatic when G is countably infinite, X has finite covering dimension and the action is free
[21, 30]. Examples of free minimal Z-actions without the SBP can be found in [22].

For sets U, V ⊆ X we say that U is subequivalent to V and write U ≺ V to mean than for
every compact set A ⊆ U there are finitely many open subsets U1, . . . , Un of X covering A and
s1, . . . , sn ∈ G such that the set siAi for i = 1, . . . , n are pairwise disjoint subsets of V . The action
has comparison if U ≺ V for all nonempty open sets U, V ⊆ X satisfying µ(U) < µ(V ) for every
µ ∈MG(X).

A tower is a pair (S,B) where S is a finite subset of G (the shape of the tower) and B is a
subset of X (the base of the tower) such that the sets sB for s ∈ S (the levels of the tower) are
pairwise disjoint. When convenient we can reparametrize the tower (S,B) so that e ∈ S (assuming
S is nonempty) by choosing a t ∈ S and considering instead (St−1, tB). The tower is open, Borel,
etc. if the levels are open, Borel, etc. We may also use the word tower to refer to the set SB when
convenient. A castle is a finite collection {(Si, Bi)}i∈I of towers such that the sets SiBi for i ∈ I
are pairwise disjoint. The castle is open, Borel, etc. if all of the towers are open, Borel, etc.

The action G↷ X is almost finite in measure if for every finite set K ⊆ G and δ > 0 there is
an open castle {(Si, Vi)}i∈I such that

(i) |tSi△Si|/|Si| < δ for every t ∈ K and i ∈ I,
(ii) the levels of the castle have diameter less than δ,
(iii) µ(X \

⊔
i∈I SiVi) < δ for every µ ∈MG(X).

If instead of (iii) we require the stronger condition that there exist S′
i ⊆ Si with |S′

i| < δ|Si| such
that X \

⊔
i∈I SiVi ≺

⊔
i∈I S

′
iVi, then we say that the action is almost finite. Note that the Følner

condition in (i) forces G to be amenable. If the action G↷ X is free then it is almost finite if and
only if it is almost finite in measure and has comparison (Theorem 6.1 of [15]), and if moreover G
is amenable then almost finiteness in measure is equivalent to the SBP (Theorem 5.6 of [15]).
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3. Affine function realization

We record in Theorem 3.7 the dynamical analogue of the C∗-algebraic affine function realization
result that appears as Theorem 9.3 in [20]. Like the latter, Theorem 3.7 follows from the theory
of equivalence developed by Cuntz and Pedersen in [4], only this time in the equivariant setting,
which was discussed in Section 8 of [4]. The technicalities in the equivariant case are analogous to
those in the non-equivariant case and were omitted in [4]. For the convenience of the reader we
will supply the details, following [4], for what we need to reach Theorem 3.7.

Throughout this section G↷ X is a minimal action of a countable discrete group on a compact
metrizable space. From the action G ↷ X we obtain an action of G on C(X) by the formula
(sf)(x) = f(s−1x) for all f ∈ C(X), s ∈ G, and x ∈ X. On the set C(X,R)+ of nonnegative
functions in C(X,R) we define a relation ∼ as follows: we say that f ∼ g whenever there exist
sequences (hn) in C(X,R)+ and (sn) in G such that f =

∑
n hn and g =

∑
n snhn, where the

sums are uniformly convergent. We also define a relation ≺ on C(X,R)+ by declaring that f ≺ g
whenever there exists some f ′ ∈ C(X,R)+ such that f ∼ f ′ ≤ g.

Proposition 3.1. The relations ≺ and ∼ are transitive.

Proof. Let us show that ≺ is transitive; the transitivity of ∼ is proved using the same argument.
Let f, g, h ∈ C(X,R)+ be such that f ≺ g and g ≺ h. Then we can write f =

∑
i ai and∑

i siai ≤ g =
∑

j bj and
∑

j tjbj ≤ h where (ai)i, (bj)j are sequences in C(X,R)+ and (si)i, (tj)j
are sequences in G. Writing Ui for the open support of ai, for x ∈ X we set

ci,j(x) =

{
ai(x)bj(six)

g(six)
, x ∈ Ui

0, otherwise.

This is well defined, for if ai(x) ̸= 0 then g(six) ≥
∑

k ak(s
−1
k six) ≥ ai(x) > 0. To see that ci,j is

continuous, it is enough to show, given an x ∈ ∂Ui and a sequence (xn) in Ui with xn → x, that
ci,j(xn) → 0, and this follows from the fact that ai(xn) → 0 and bj ≤ g.

Next we remark that for x ∈ Ui we have
∑

j ci,j(x) = ai(x), while for x ̸∈ Ui we have

0 =
∑

j ci,j(x) = ai(x). So in general
∑

j ci,j(x) = ai(x). The convergence is uniform by Dini’s

theorem, and thus
∑

i

∑
j ci,j =

∑
i ai = f .

Now let j ∈ N and x ∈ X. If g(t−1
j x) = 0, then ci,j(s

−1
i t−1

j x) = 0 for all i ∈ N, so

that
∑

i ci,j(s
−1
i t−1

j x) = 0. If g(t−1
j x) ̸= 0, then ci,j(s

−1
i t−1

j x) =
ai(s

−1
i t−1

j x)bj(t
−1
j x)

g(t−1
j x)

, so that∑
i ci,j(s

−1
i t−1

j x) ≤ bj(t
−1
j x). In either case,∑

j

∑
i

tjsici,j(x) ≤
∑
j

tjbj(x) ≤ h(x),

which shows that the series
∑

j

∑
i tjsici,j converges pointwise, and hence also uniformly by Dini’s

theorem, to a continuous function dominated by h. □

The following properties are readily checked and will often be used without comment. For (v)
one verifies by induction that na+ c ∼ nb+ d, and then applies (iv).

(i) If (fn) and (gn) are sequences such that fn ∼ gn for every n and the series
∑

n fn = f
and

∑
n gn = g converge uniformly, then f ∼ g.

(ii) If f1 ≺ g1 and f2 ≺ g2 then f1 + f2 ≺ g1 + g2.
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(iii) If f ≤ g or f ∼ g then f ≺ g.
(iv) If f ∼ g (resp. f ≺ g) then λf ∼ λg (resp. λf ≺ λg) for all λ ≥ 0.
(v) If a, b, c, d ∈ C(X,R)+ are such that c ∼ d and a+ c ∼ b+ d, then for every n ∈ N one

has a+ 1
nc ∼ b+ 1

nd.

Next we define
I = {f − g : f, g ∈ C(X,R)+, f ∼ g}.

Lemma 3.2. I is a closed linear subspace of C(X,R).

Proof. That I is a linear subspace follows from the basic properties of ∼. To show that I is
closed, we first verify, for a given f ∈ I and ε > 0, that there are g, h ∈ C(X,R)+ such that
g ∼ h and f = g − h and ∥g + h∥ ≤ ∥f∥+ ε. By the definition of I we can write f = a− b where
a, b ∈ C(X,R)+ are such that a ∼ b. Writing f+ (resp. f−) for the positive (resp. negative) part
of f , we have f+ + b = f− + a, as f = f+ − f−. By property (v) we have f+ + 1

nb ∼ f− + 1
na for

every n. Set gn = f+ + 1
n(a+ b) and hn = f− + 1

n(a+ b). Then gn − hn = f and

gn =
(
f+ +

1

n
b
)
+

1

n
a ∼ f− +

1

n
a+

1

n
a ∼ f− +

1

n
a+

1

n
b = hn,

while for large enough n we have ∥gn + hn∥ = ∥|f |+ 2
n(a+ b)∥ < ∥f∥+ ε, in which case gn and hn

fulfill the desired conditions.
Now let (fn) be a sequence in I with fn → f ∈ C(X,R) and let us show that f ∈ I. By passing

to a subsequence if necessary, we may assume without loss of generality that ∥fn+1 − fn∥ < 2−n

for each n. Since I is a linear subspace and hence fn+1 − fn ∈ I, by the first paragraph we can
find for each n elements gn, hn ∈ C(X,R)+ such that gn ∼ hn and fn+1 − fn = gn − hn and
∥gn + hn∥ < 2−n. Since max{∥gn∥, ∥hn∥} < 2−n, the series g :=

∑
n gn and h :=

∑
n hn converge

uniformly. Also, g ∼ h by property (i). Finally, we observe that

f − f1 =
∑
n

(gn − hn) = g − h

and therefore f = (g − h) + f1 ∈ I. □

Having shown I to be a closed linear subspace, we define V to be the quotient space C(X,R)/I
with the quotient norm ∥·∥V . The quotient map C(X,R) → V will be written g 7→ g. The dual
V ∗ of V identifies in the obvious way with the annihilator of I, i.e., with the space of (signed)
Borel measures that satisfy µ(f) = µ(g) whenever f ∼ g.

Lemma 3.3. Let g ∈ C(X,R)+ \ {0}. Then there is a constant L(g) > 0 such that h ≺ ∥h∥L(g)g.

Proof. Let U be the open support of g, which is nonempty. By minimality and compactness we can
find s1, . . . , sn ∈ G such that

⋃n
i=1 siU = X, so that there exists a θ > 0 for which

∑n
i=1 sig ≥ θ.

For h ∈ C(X,R)+ we have

h ≤ ∥h∥1 ≤ ∥h∥
θ

n∑
i=1

sig ∼ n

θ
∥h∥g,

and so we may take L(g) = n/θ by the transitivity of ≺. □

Lemma 3.4. The image of C(X,R)+ \ {0} under the quotient map C(X,R) → V is an open set.
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Proof. Let z be an element in the image of C(X,R)+ \ {0}, say z = g where 0 ̸= g ∈ C(X,R)+
is a representative. With L(g) as in Lemma 3.3, we will show that the open ball centred at z
of radius 1

2L(g)
−1 is contained in the image of C(X,R)+ \ {0}. Let h be an element of V with

∥h − g∥ < 1
2L(g)

−1. Take k ∈ (g − h) + I with ∥k∥ < 1
2L(g)

−1. By the definition of L(g) we

have |k| ≺ ∥k∥L(g)g ≤ 1
2g, so that there exists a w ∈ C(X,R)+ such that |k| ∼ w ≤ 1

2g. Set
k′ = k + w − |k|. We have k′ − k ∈ I, and therefore the class of h in V is the same as the class of
g−k′. Since g−k′ ≥ g−w ≥ 1

2g ̸= 0, this shows that h belongs to the image of C(X,R)+\{0}. □

Lemma 3.5. {g ∈ C(X,R) : µ(g) > 0 for all µ ∈MG(X)} = (C(X,R)+ \ {0}) + I.

Proof. Write A for the set on the left-hand side. The inclusion ⊇ is a consequence of minimality.
For the reverse inclusion, since A = A+I it suffices to show that the images of A and C(X,R)+\{0}
under the quotient map C(X,R) → V are equal. For brevity write W for the second of these
images, which is open by Lemma 3.4. Suppose that the two images are not equal. Then there
is a g ∈ C(X,R) such that µ(g) > 0 for all µ ∈ MG(X) but g ̸∈ W . Since W and {g} are both
convex and W is open, by the Hahn–Banach saparation theorem there is a φ ∈ V ∗ such that
φ(g) ≤ t < φ(h) for all h ∈ C(X,R)+ \ {0}, which means that there is a signed invariant Borel
measure µ such that µ(g) ≤ t < µ(h) for all h ∈ C(X,R)+ \ {0}. Since t < µ(ε1) for all ε > 0 we
must have t ≤ 0. At the same time, if there were an h ∈ C(X,R)+ \ {0} such that µ(h) < 0 then
we would have that t < nµ(h) for every n ∈ N, a contradiction. It follows that µ(g) ≤ 0 ≤ µ(h) for
all h ∈ C(X,R)+ \ {0}. The second of these inequalities shows that µ is a positive invariant Borel
measure, while the first gives a contradiction to the fact that ν(g) > 0 for all ν ∈MG(X). □

Lemma 3.6. Let g ∈ C(X,R)+. Then ∥g∥V = inf{∥g − k∥ : k ∈ I, k ≤ g}.

Proof. Put α = inf{∥g − k∥ : k ∈ I, k ≤ g}. By definition ∥g∥V ≤ α, and so let us show the
reverse inequality.

First we set β = inf{∥h∥ : h ∈ C(X,R)+, g ≺ h} and argue that α ≤ β. Given an ε > 0, take
an h ∈ C(X,R)+ with g ≺ h such that ∥h∥ < β + ε. Then we can find a g′ ∈ C(X,R)+ such
that g ∼ g′ ≤ h. Put k = g − g′. Since g ∼ g′, we have k ∈ I, and since g′ ≥ 0 we have k ≤ g.
Moreover α ≤ ∥g − k∥ = ∥g′∥ ≤ ∥h∥ < β + ε, so letting ε→ 0 yields α ≤ β.

To conclude, let us show that β ≤ ∥g∥V . Given an ε > 0 we find a k ∈ I with ∥g−k∥ < ∥g∥V +ε.
Write g − k = (g − k)+ − (g − k)−. Since k ∈ I we can write k = k1 − k2 with k1, k2 ∈ C(X,R)+
and k1 ∼ k2. Then g + (g − k)− + k2 = (g − k)+ + k1. It follows by property (v) that for every
n ∈ N we have

g ≤ g + (g − k)− +
1

n
k2 ∼ (g − k)+ +

1

n
k1

and therefore g ≺ (g − k)+ + 1
nk1 by the transitivity of ≺, so that for large enough n we obtain

β ≤
∥∥∥(g − k)+ +

1

n
k1

∥∥∥ ≤ ∥g − k∥+ 1

n
∥k1∥ < ∥g∥V + 2ε. □

Theorem 3.7. Let G ↷ X be a minimal action of a countably infinite discrete group on a
compact metrizable space. Suppose that MG(X) is a Bauer simplex. Let f be a strictly positive
function in C(M erg

G (X),R) and let δ > 0. Then there is a nonnegative function h ∈ C(X,R) with
∥h∥ ≤ ∥f∥+ δ such that µ(h) = f(µ) for all µ ∈M erg

G (X).

Proof. Since every continuous function on the extreme boundary of a Bauer simplex extends
(uniquely) to a continuous affine function on the whole simplex, we may assume that f is a strictly
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positive continuous affine function on MG(X). Since f is continuous and affine it extends to an

element f̃ ∈ V ∗∗ which is weak∗ continuous and hence belongs to V . It follows by Lemma 3.5
that there exists a g ∈ C(X,R)+ \ {0} such that g = f̃ . By Lemma 3.6 we can find a k ∈ I with
k ≤ g such that ∥g− k∥ < ∥f∥+ δ. Since g− k ≥ 0 and g− k has the same class as g in V (which

is f̃), we are done. □

4. Proof of Theorem A

We begin with a series of technical lemmas required for the perturbation-and-patching argument
in the beginning of the proof of Lemma 4.6. The first one is a special case of Lemma 3.4 in [34].
For completeness we include a proof.

Lemma 4.1. Let X be a compact metrizable space and let W be a set of Borel probability measures
on X. Suppose that (f1,n)

∞
n=1, . . . , (fL,n)

∞
n=1 are sequences in C(X, [0, 1]) such that

lim
n→∞

sup
µ∈W

µ(fl,nfl′,n) = 0

for all l ̸= l′. Then there exist 0 ≤ f̃l,n ≤ fl,n such that

(i) limn→∞ supµ∈W
∣∣µ(fl,n)− µ(f̃l,n)| = 0 for all l = 1, . . . , L, and

(ii) limn→∞ ∥f̃l,nf̃l′,n∥ = 0 for all l ̸= l′.

Proof. For r ∈ N set φr(t) = min{1, rt}. Then supt≥0 |t(1−φr(t))| = (4r)−1. For each l = 1, . . . , L
set gl,n = fl,n ·

∑
l′ ̸=l fl′,n, in which case limn→∞ supµ∈W µ(gl,n) = 0. Put

hl,n,r = fl,n · (1− φr ◦ gl,n)
and note that

sup
µ∈W

|µ(fl,n)− µ(hl,n,r)| = sup
µ∈W

µ(fl,n(φr ◦ gl,n)) ≤ r · sup
µ∈W

µ(gl,n)
n→∞−−−→ 0

and, for l ̸= l′,

∥hl,n,rhl′,n,r∥ = ∥fl,nfl′,n(1− φr ◦ gl,n)(1− φr ◦ gl′,n)∥(4.1)

≤ ∥gl,n(1− φr ◦ gl,n))∥ ≤ 1

4r
.

The proof now concludes with a saturation argument: for each r ∈ N pick an Nr ∈ N so that
supµ∈W |µ(fl,n)− µ(hl,n,r)| ≤ 1/r for all n ≥ Nr. We may assume that N1 = 1 < N2 < N3 < . . . .
For n ∈ N, set rn := max{r ∈ N : Nr ≤ n}. Clearly Nrn ≤ n < Nrn+1 for all n ∈ N. Setting

f̃l,n = hl,n,rn we have

sup
µ∈W

|µ(fl,n)− µ(f̃l,n)| ≤
1

rn

for all n ∈ N. This and (4.1), along with the fact that rn → ∞ as n→ ∞, conclude the proof. □

We now apply Lemma 4.1 and Theorem 3.7 to establish the following (cf. Lemma 3.1 in [23]).

Lemma 4.2. Let G↷ X be a minimal action of a countably infinite group on a compact metrizable
space. Let W1, . . . ,WL be pairwise disjoint closed subsets of M erg

G (X) and let ε > 0. Then there
exist pairwise disjoint closed sets K1, . . . ,KL ⊆ X such that

µ(Kj) > 1− ε
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for all µ ∈Wj and j = 1, . . . , L.

Proof. Since W1, . . . ,WL are closed and pairwise disjoint, by Urysohn’s lemma we can find, for
each n ∈ N, functions ψ1,n, . . . , ψL,n ∈ C(M erg

G (X), [1/n, 1 − 1/n]) with ψl,n|Wl
= 1 − 1/n and

ψl,n|Wl′ = 1/n for l′ ̸= l. Since MG(X) is a Bauer simplex, we can extend these to strictly positive
affine continuous functions onMG(X) of norm at most 1−1/n, for which we use the same notation.
By Theorem 3.7 there exist fl,n ∈ C(X, [0, 1]) such that µ(fl,n) = ψl,n(µ) for all µ ∈MG(X). The

condition in Lemma 4.1 is clearly satisfied for W =
⊔L

i=1Wi there, and so by replacing fl,n with

f̃l,n from the conclusion of that lemma we may also assume that limn→∞ ∥fl,nfl′,n∥ = 0.
Choose n ∈ N large enough so that

(i) µ(fl,n) > 1− ε for all µ ∈Wl, and
(ii) ∥fl,nfl′n∥ < ε2 for all l ̸= l′.

Setting Kl = {x ∈ X : fl,n(x) ≥ ε} for each l, we obtain closed sets which are pairwise disjoint
due to (ii). Moreover, for µ ∈Wl we have

∫
X\Kl

fl,n dµ ≤ ε · µ(X \Kl) ≤ ε and hence, by (i),

µ(Kl) >

∫
Kl

fl,n dµ = µ(fl,n)−
∫
X\Kl

fl,n dµ > 1− 2ε. □

The next lemma is the well-known comparison property for ergodic probability-measure-
preserving actions.

Lemma 4.3. Let G↷ (X,µ) be an ergodic measure-preserving action of a countable group on
a probability space. Let A,B ⊆ X be measurable sets with µ(A) = µ(B). Then there exist a
collection {As}s∈G of pairwise disjoint measurable subsets of A indexed by G (some of which may
be empty) such that µ(A \

⊔
s∈GAs) = 0 and the sets sAs for s ∈ G are pairwise disjoint and

contained in B.

Proof. Fix an enumeration s1, s2, . . . of G and recursively define pairwise disjoint measurable
subsets A1, A2, . . . of A by setting A1 = A ∩ s−1

1 B and An = (A \
⊔n−1

i=1 Ai) ∩ s−1
n (B \

⊔n−1
i=1 siAi)

for n > 1. Then the sets snAn for n ≥ 1 are pairwise disjoint and contained in B. Moreover,
the complement C = A \

⊔
n≥1An satisfies µ(C) = 0, for otherwise the measure of the set

D = B \
⊔

n≥1 snAn, being equal to µ(C), would also be nonzero, in which case ergodicity and the

G-invariance of the set GC would imply the existence of an n0 ∈ N such that µ(sn0C ∩D) > 0,
contradicting our choice of the set An0 . □

Lemma 4.4. Let G↷ (X,µ) be an ergodic measure-preserving action of a countable group on a
probability space. Let q ∈ N and let A1, . . . , Aq ⊆ X be pairwise disjoint measurable sets of equal
measure. Let ε > 0. Then there exists a finite collection {Bj}j∈J of pairwise disjoint measurable
subsets of A1 and sets Sj ⊆ G of cardinality q such that {(Sj , Bj)}j∈J is a castle and

(i) for every j ∈ J there is an enumeration sj,1, . . . , sj,q of Sj such that sj,kBj ⊆ Ak for all
k = 1, . . . , q, and

(ii) µ(
⊔

j∈J SjBj) ≥ µ(
⊔q

k=1Ak)− ε.

Proof. By Lemma 4.3, for every k = 1, . . . , q there exists a collection {Ak,s}s∈G of pairwise disjoint
measurable subsets of A1 indexed by G such that µ(A1 \

⊔
s∈GAk,s) = 0 and the sets sAk,s for

s ∈ G are pairwise disjoint and contained in Ak. Writing W for the collection of q-tuples of
distinct elements of G, for every w = (s1, . . . , sq) we set Bw =

⋂q
k=1Ak,sk and Sw = {s1, . . . , sq},
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in which case |Sw| = q and skBw ⊆ Ak for all k = 1, . . . , q. The sets Bw partition a conull subset
of A1, and so by the countable additivity of µ we can find a finite subcollection W0 ⊆W such that
µ(
⊔

w∈W0
Bw) ≥ µ(A1) − ε/q and hence µ(

⊔
w∈W0

SwBw) ≥ q(µ(A1) − ε/q) = µ(
⊔q

k=1Ak) − ε.
Thus the sets Sw and Bw for w ∈W0 will do the job. □

Lemma 4.5. Let G↷ X be a minimal action of a countably infinite discrete group on an infinite
compact metrizable space. Let µ ∈ M erg

G (X). Let q ∈ N. Let Ω be a finite subset of C(X, [0, 1]).
Let δ > 0. Then there is an open castle {(Sj , Vj)}j∈J such that, for each j ∈ J ,

(i) the shape Sj has cardinality q,
(ii) the diameters of the sets h(SjVj) ⊆ R for h ∈ Ω are all at most δ,
(iii) µ(

⊔
j∈J SjVj) ≥ 1− δ.

Proof. By compactness and continuity we can find a finite open cover U of X so that for every
U ∈ U and h ∈ Ω the image h(U) has diameter at most δ/2 in R. Applying the standard recursive
disjointification process with respect to some fixed enumeration of the elements of U, we obtain a
finite Borel partition {Bi}i∈I of X such that h(Bi) has diameter at most δ/2 for all h ∈ Ω and
i ∈ I.

Since G and X are infinite and the action is minimal, the measure µ is atomless. Thus

each Bi can be written as a disjoint union of q sets, say B
(l)
i for l = 1, . . . , q, which each have

measure µ(Bi)/q. For each i ∈ I we apply Lemma 4.4 to {B(l)
i }ql=1 so as to obtain a Borel

castle {(Si,j , Bi,j)}j∈Ji such that
⊔

j∈Ji Si,jBi,j ⊆ Bi, each shape Si,j has cardinality q, and

µ(
⊔

j∈Ji Si,jBi,j) ≥ µ(Bi)− δ/(2|I|). Putting these |I| many castles together, we obtain a Borel

castle {(Sj , Ej)}j∈J such that each shape has cardinality q, the measure of
⊔

j∈J SjEj is at least

1− δ/2, and each tower is entirely contained in some Bi.
Using the regularity of µ, for each tower base Ej we can choose a compact subset Kj ⊆ Ej so

that µ(Kj) > µ(Ej)− δ/(2q|J |). Since {(Sj ,Kj)}j∈J is a closed castle, there is a positive constant
bounding from below the distance between any two of its levels. By the uniform continuity of
the homeomorphisms coming from the elements in

⋃
j∈J Sj , we can then find for each j an open

neighbourhood of Kj , say Vj , so that {(Sj , Vj)}j∈J is again a castle. In view of the uniform
continuity of the functions h ∈ Ω and of the homeomorphisms coming from

⋃
j Sj , we can also

choose the neighbourhoods Vj so that the image of each tower under any of the functions of Ω has
diameter less than δ. Finally, we observe that

µ

( ⊔
j∈J

SjVj

)
≥ q

∑
j∈J

µ(Kj) ≥ q
∑
j∈J

(
µ(Ej)−

δ

2q|J |

)

= µ

( ⊔
j∈J

SjEj

)
− δ

2
≥ 1− δ. □

The next lemma provides us with a uniform incrementation mechanism that later in Lemma 4.7
will be leveraged into a global condition via a maximality argument, much along the lines of what
was done in the C∗-algebraic context in Section 4 of [34].

Lemma 4.6. Let G↷ X be a minimal action of a countably infinite discrete group on an infinite
compact metric space. Suppose that MG(X) is a Bauer simplex and that M erg

G (X) has finite
covering dimension. Then there exists an α > 0 such that for every finite set Ω ⊆ C(X, [0, 1]) and
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η > 0 there are d1, d2 ∈ C(X, [0, 1]) satisfying d1d2 = 0 and µ(dih) ≥ αµ(h)− η for every i = 1, 2,
h ∈ Ω, and µ ∈MG(X).

Proof. Set δ = η/4. Write m for the covering dimension of M erg
G (X). Let Ω be a finite subset of

C(X, [0, 1]).
By Lemma 4.5, given µ ∈M erg

G (X) there is an open castle Cµ := {(Sµ,j , Uµ,j)}j∈Jµ
(a) each shape Sµ,j has cardinality 2(m+ 1),
(b) the diameters of the sets h(Sµ,jUµ,j) ⊆ R for h ∈ Ω are all at most δ/(2(m+ 1)), and
(c) µ(

⊔
j∈Jµ Sµ,jUµ,j) > 1− δ2/4.

We may assume, by reparametrizing the towers if necessary, that all of the shapes Si,j contain
the identity element, a fact that will be used for a couple of estimates later in the proof. In view
of (c) we can find open sets Vµ,j ⊆ Vµ,j ⊆ Uµ,j such that the set Cµ :=

⊔
j∈Jµ Sµ,jVµ,j satisfies

µ(Cµ) > 1− δ2/2.
Consider for each µ ∈M erg

G (X) the weak∗ open neighbourhood

Wµ := {ν ∈M erg
G (X) : ν(Cµ) > 1− δ2/2}

of µ. By compactness the cover {Wµ}µ∈Merg
G (X) has a finite subcover {Wµ1 , . . . ,WµL}. By the

m-dimensionality of M erg
G (X), we can refine this finite subcover to an (m+ 1)-colourable open

cover, i.e., we can find an open cover {Wi,k : k = 1, . . . , ki, i = 0, . . . ,m} so that for each

i = 0, . . . ,m the collection {Wi,k}kik=1 is disjoint and for each i = 0, . . . ,m and k = 1, . . . , ki there
is an l(i, k) ∈ {1, . . . , L} such that Wi,k ⊆Wµl(i,k)

.

Let i ∈ {0, . . . ,m}. SetM = maxk=1,...,ki |Jµl(i,k)
|. Since the setsWi,k for k = 1, . . . , ki are closed

and pairwise disjoint, Lemma 4.2 allows us to find pairwise disjoint closed sets A1, . . . , Aki ⊆ X
such that µ(Ak) > 1 − δ2/(8(m + 1)2M2) for all µ ∈ Wi,k and k = 1, . . . , ki. By the regularity

of X we can find open sets Ok such that Ak ⊆ Ok and the collection {Ok}kik=1 is disjoint. For
k = 1, . . . , ki set

Bk =
⋂{

s−1Ok : s ∈
⋃

j∈Jµl(i,k)
Sµl(i,k),j

}
and

Ãk =
⋂{

s−1Ak : s ∈
⋃

j∈Jµl(i,k)
Sµl(i,k),j

}
.

Notice that for µ ∈Wi,k we have

µ(X \ Ãk) ≤ |Jµl(i,k)
| · 2(m+ 1)µ(X \Ak)(4.2)

<
δ2

4(m+ 1)M
.

Set
C =

{(
Sµl(i,k),j , Uµl(i,k),j ∩Bk

)
: k = 1, . . . , ki, j ∈ Jµl(i,k)

}
,

which is an open castle whose shapes all have cardinality 2(m+ 1). Note also, by condition (b)
above, that for every tower (T, V ) of C and every h ∈ Ω the image h(TV ) has diameter at most
δ/(2(m+ 1)).

For every k = 1, . . . , ki and j ∈ Jµl(i,k)
we use Urysohn’s lemma to find a function fk,j ∈

C(X, [0, 1]) such that fk,j = 1 on Vµl(i,k),j ∩ Ãk and fk,j is supported in Uµl(i,k),j ∩ Bk. If µ is a
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measure in
⊔ki

k=1Wi,k, say µ ∈Wi,k̄, then we have

µ

( ki∑
k=1

∑
j∈Jµl(i,k)

∑
s∈Sµl(i,k),j

sfk,j

)

≥ µ

( ∑
j∈Jµl(i,k̄)

∑
s∈Sµl(i,k̄),j

sfk̄,j

)

≥
∑

j∈Jµl(i,k̄)

∑
s∈Sµl(i,k̄),j

µ(s(Vµl(i,k̄),j ∩ Ãk̄))

= 2(m+ 1) ·
∑

j∈Jµl(i,k̄)

µ(Vµl(i,k̄),j ∩ Ãk̄)

(4.2)

≥ 2(m+ 1) ·
∑

j∈Jµl(i,k̄)

(
µ(Vµl(i,k̄),j)−

δ2

4(m+ 1)M

)

= µ

( ⊔
j∈Jµl(i,k̄)

Sµl(i,k̄),j
Vµl(i,k̄),j

)
−
δ2|Jµl(i,k̄)

|
2M

= µ(Cµl(i,k̄)
)−

δ2|Jµl(i,k̄)
|

2M

≥ µ(Cµl(i,k̄)
)− δ2

2

≥ 1− δ2.

Re-indexing everything for simplicity, what we have constructed above are an open cover
{W0, . . . ,Wm} ofM erg

G (X) and, for each i = 0, . . . ,m, an open castle {(Si,j , Vi,j)}j∈Ji and functions
fi,j ∈ C(X, [0, 1]) for j ∈ Ji such that

(i) the function ψi :=
∑

j∈Ji
∑

s∈Si,j
sfi,j satisfies µ(ψi) ≥ 1− δ2 for every µ ∈Wi

and, for every j ∈ Ji,

(ii) the shape Si,j has cardinality 2(m+ 1),
(iii) the diameter of the set h(Si,jVi,j) ⊆ R is at most δ/(2(m+ 1)) for all h ∈ Ω,
(iv) fi,j is supported in Vi,j .

Note that (i) implies that, for every µ ∈Wi,

µ({x ∈ X : ψi(x) > 1− δ}) ≥ 1− δ.(4.3)

Set g =
∑m

i=0

∑
j∈Ji fi,j . For real numbers a < b we write φa,b for the continuous function on R

which is 0 on (−∞, a], 1 on [b,∞), and linear on [a, b], and put

d1 = φδ,2δ ◦ g,
d2 = 1− φ0,δ ◦ g.

Then d1, d2 ∈ C(X, [0, 1]) satisfy d1d2 = 0.
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Now let h ∈ Ω and suppose we are given a µ ∈M erg
G (X). Take an 0 ≤ i ≤ m such that µ ∈Wi.

Observe that∣∣∣∣∑
j∈Ji

µ(fi,jh)−
1

2(m+ 1)
µ(ψih)

∣∣∣∣ = 1

2(m+ 1)

∣∣∣∣∑
j∈Ji

∑
s∈Si,j

µ(fi,j(h− s−1h))

∣∣∣∣(4.4)

(iii),(iv)

≤ 1

2(m+ 1)

∑
j∈Ji

∑
s∈Si,j

δ

2(m+ 1)
µ(Vi,j)

≤ δ

2(m+ 1)
< δ.

Since d1 + δ1 ≥ (m+ 1)−1g, it follows that

µ(d1h) ≥
1

m+ 1
µ(gh)− δ

≥ 1

m+ 1
µ

((∑
j∈Ji

fi,j

)
h

)
− δ

(4.4)

≥ 1

m+ 1
· 1

2(m+ 1)
µ(ψih)− 2δ

(4.3)

≥ 1

2(m+ 1)2
µ(h)− 4δ.

On the other hand, for every µ ∈M erg
G (X) we have

µ((1− d2)h) = µ((φ0,δ ◦ g)h)

≤
m∑
i=0

∑
j∈Ji

µ(1Vi,jh)

(iii)

≤
m∑
i=0

∑
j∈Ji

1

2(m+ 1)
µ

( ∑
s∈Si

1sVi,jh

)
+ δ

≤ m+ 1

2(m+ 1)
µ(h) + δ

=
1

2
µ(h) + δ

and thus

µ(d2h) = µ(h)− µ((1− d2)h) ≥
1

2
µ(h)− δ.

We conclude that µ(dih) ≥ (2(m+ 1)2)−1µ(h) − η for all i = 1, 2 and µ ∈ M erg
G (X), and hence

also for all µ ∈MG(X) by the Krein–Milman theorem. □

Lemma 4.7. Let G↷ X be a minimal action of a countably infinite discrete group on an infinite
compact metrizable space. Suppose that MG(X) is a Bauer simplex and that M erg

G (X) has finite
covering dimension. Let C and D be disjoint closed subsets of X. Then for every δ > 0 there exist
h1, h2 ∈ C(X, [0, 1]) such that h1h2 = 0, h1 = 1 on C, h2 = 1 on D, and µ(h1 + h2) ≥ 1− δ for
all µ ∈MG(X).
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Proof. Consider the set of all λ ∈ [0, 1] such that there exist h1, h2 ∈ C(X, [0, 1]) satisfying
h1h2 = 0, h1 = 1 on C, h2 = 1 on D, and µ(h1 + h2) ≥ λ for all µ ∈ MG(X). By Urysohn’s
lemma this set contains 0 and hence is nonempty, so that it has a supremum β. What we need to
show is that β = 1.

Suppose to the contrary that β < 1. Let α > 0 be as given by Lemma 4.6. Choose an η > 0
small enough so that α(1−β−η) > 5η. Then we can find h1, h2 ∈ C(X, [0, 1]) satisfying h1h2 = 0,
h1 = 1 on C, h2 = 1 on D, and µ(h1 + h2) ≥ β − η for all µ ∈ MG(X). With φa,b for a < b
denoting as before the continuous function on R which is 0 on (−∞, a], 1 on [b,∞), and linear on
[a, b], we define

f1 = φ2η,3η ◦ h1,
f2 = φ2η,3η ◦ h2,
g1 = φη,2η ◦ h1 − φ2η,3η ◦ h1,
g2 = 1− g1 − f1 − f2.

These four functions form a partition of unity in C(X). By Lemma 4.6 there are d1, d2 ∈ C(X, [0, 1])
such that d1d2 = 0 and, for all µ ∈MG(X),

µ(d1g1) ≥ αµ(g1)− η,(4.5)

µ(d2g2) ≥ αµ(g2)− η.

Define

h̃1 = f1 + d1g1,

h̃2 = f2 + d2g2.

Since the products f1g2, f2g1, f1f2, and d1d2 are all zero we have h̃1h̃2 = 0.
Let µ ∈MG(X). If it happens that µ(f1 + f2) ≥ β + η then we have

µ(h̃1 + h̃2) ≥ µ(f1 + f2) ≥ β + η.

If on the other hand µ(f1 + f2) < β + η then

µ(g1 + g2) = 1− µ(f1 + f2) > 1− β − η

and hence, using the inequalities f1 + f2 ≥ h1 + h2 − 2η and (4.5) along with our choice of η,

µ(h̃1 + h̃2) = µ(f1 + f2) + µ(d1g1) + µ(d2g2)

≥ µ(h1 + h2)− 2η + αµ(g1 + g2)− 2η

> β − 5η + α(1− β − η)

> β

Thus in either case we have µ(h̃1 + h̃2) > β, contradicting the definition of β. □

Proof of Theorem A. We may assume that X is infinite, for otherwise the SBP is obvious. Let C
and D be disjoint closed subsets of X and let δ > 0. By the characterization of the SBP mentioned
in Section 2, it suffices to find an open set U ⊆ X such that C ⊆ U ⊆ X \D and µ(∂U) < δ for
every µ ∈MG(X). By Lemma 4.7 there exist h1, h2 ∈ C(X, [0, 1]) such that h1h2 = 0, h1 = 1 on
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C, h2 = 1 on D, and µ(h1 + h2) ≥ 1− δ for all µ ∈MG(X). Set U = {x ∈ X : h1(x) > 0}. Then
h1 = h2 = 0 on ∂U , so that for every µ ∈MG(X) we have

µ(∂U) ≤ 1− µ(h1 + h2) ≤ δ.

Since C ⊆ U ⊆ X \D, we are done. □

The following provides some examples of actions of locally finite groups on infinite-dimensional
spaces to which Theorem A applies.

Example 4.8. Using the same kind of construction carried out in [31] in the C∗-algebraic
framework of simple interval algebras, we can build the following minimal actions G ↷ X of
UHF-type limits of permutation groups with prescribed metrizable Choquet simplex as the space
of invariant Borel probability measures and with X of infinite covering dimension. Let m1,m2, . . .
be a sequence of integers greater than 1. For each k set nk = m1m2 · · ·mk and define Gk to be
the permutation group Sym(nk).

Write Y for the Hilbert cube and set Xk = Y ×{0, . . . , nk − 1}. The construction will also work
for other path-connected compact metrizable spaces Y , such as finite-dimensional cubes, but we
are interested here in examples of the SBP beyond the setting of finite-dimensional spaces, where
it is automatic assuming the action is free [22, 30] (another possibility would be to let the space Y
depend on k and tend to infinity in dimension, like in the construction of many simple AH algebras,
including the C∗-algebras of Villadsen and Toms in [35] and [33], whose Z-dynamical analogues
do not have the SBP [22, 10]). For each k > 1 let fk,0, . . . , fk,mk−1 : Y → Y be continuous maps.
Then we define a continuous connecting map φk+1 : Xk+1 → Xk by

φk+1((y, ank + b)) = (fk+1,a(y), b)

for a = 0, . . . ,mk+1 − 1 and b = 0, . . . , nk − 1. The group Gk acts on Xk by permuting the
second coordinate, and these actions induce embeddings γk : Gk ↪→ Gk+1 such that sφk+1(x) =
φk+1(γk(s)x) for all x ∈ Xk+1 and s ∈ Gk. Write X for the inverse limit of the spaces Xk and G
for the direct limit of the groups Gk. Then G is a countably infinite locally finite group and we
obtain a continuous action G↷ X on a compact metrizable space.

Now suppose that for every k one has
⋃mk+1−1

a=0 fk+1,a(Y ) = Y . Then the connecting maps φk

are surjective. Moreover, one can check in this situation that the action will be minimal precisely
when for every k ∈ N and nonempty open set U ⊆ Y there is an integer l ≥ 0 such that for every
y ∈ Y there are aj ∈ {0, . . . ,mk − 1} for j = 0, . . . , l for which

(fk,a0 ◦ fk+1,a1 ◦ · · · ◦ fk+l,al)(y) ∈ U

(compare Lemma 1.2 in [31] and Proposition 2.1 in [6]). The construction in Section 3 of [31]
shows that, given any metrizable Choquet simplex S, if we choose the numbers mk to grow fast
enough then one can choose functions fk,i satisfying these conditions in such a way that MG(X)
is affinely homeomorphic to S. Note that Lemma 3.8 of [31] works just as well with almost the
same proof even if P therein is replaced with the simplex of Borel probability measures on any
compact metrizable path-connected space that is not a point (such as the Hilbert cube). Note
moreover that, in the proof of Lemma 3.7 in [31], for each k a modification of two of the initially
chosen functions fk,i is made so as to produce an iterated dyadic splitting of the interval that
guarantees simplicity (which translates as minimality in our context) without changing the trace
simplex in the limit. It is for the latter purpose that the growth condition on the numbers mk

is used, via Lemma 3.5 in [31]. In our case we can still dyadically split to the same effect but
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now in a way that incorporates larger and larger finite sets of coordinates in the Hilbert cube, so
that we now need to modify a growing number of the fk,i from stage to stage. If moreover we
set one of the fk,i for each k to be the identity map then the space X contains closed subsets
homeomorphic to Y and hence is infinite-dimensional. These modifications can all be absorbed
at the measure-theoretic level (i.e., without changing the simplex of invariant Borel probability
measures in the limit) by requiring that the numbers mk grow even faster.

The above actions are closely related to the orbit-breaking techniques that appear in the study
of C∗-algebra crossed products. For example, if Y is a singleton then, up to orbit equivalence, we
get a Z-odometer but with one orbit cut into two pieces where the infinite rollover occurs. This
gives rise to an AF algebra (the C∗-algebraic analogue of local finiteness, or of a locally finite group
acting on the Cantor set) inside the crossed product of the odometer, with the inclusion inducing
an isomorphism of K0 groups. The crossed product itself is not AF (the acting group Z yields a
K1 obstruction) but rather a Bunce–Deddens algebra. See Example VIII.6.3 and Section VIII.7 of
[7].
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