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CHAPTER 1

Introduction

The aim of these notes is to survey several recent developments at the crossed product
interface of the subjects of C∗-algebras and group actions on compact spaces, especially in
connection with the classification program for separable nuclear C∗-algebras. Groups and
group actions have from the beginning provided a rich source of examples in the theory
of operator algebras, and the struggle to obtain an algebraic understanding of dynamical
phenomena has to a great extent driven, and continues to drive, the development of struc-
ture and classification theory for both von Neumann algebras and C∗-algebras. While our
focus is on the topological realm of C∗-algebras, we have nevertheless endeavored to take a
broad perspective that incorporates both the measurable and the topological in a unifying
framework. This enables us not only to illuminate the conceptual similarities and technical
differences between the two sides, but also to emphasize that topological-dynamical and
C∗-algebraic concepts themselves can range from the more measure-theoretic (like entropy
and nuclearity, which involve weak-type approximation of multiplicative structure or norm
approximation of linear structure) to the more topological (like periodicity and approxi-
mate finite-dimensionality, which involve norm approximation of multiplicative structure).
Thinking in such terms can be helpful for predicting and understanding the role of various
phenomena in C∗-classification theory.

One of our major themes is the distinction between internal and external approxi-
mation. For a C∗-algebra A, internal approximation means modelling the structure of A
locally via C∗-subalgebras or C∗-algebras which map into A, while in external approxima-
tion this modelling is done via C∗-algebras into which A maps. One can similarly speak of
internal and external approximation for a discrete group G, as we can model the structure
either using subsets of G or groups into which G maps. The same distinction also applies
to group actions on spaces, and in which case we apply the internal/external terminology
by thinking of the action C∗-algebraically. Thus, for an action of a discrete group G on
a compact Hausdorff space X, internal finite approximation in the strongest sense would
be a clopen partition of X whose elements are permuted by the action, which corresponds
to a G-invariant finite-dimensional ∗-subalgebra of C(X), while external finite approxima-
tion in the strongest sense would be a finite orbit, which corresponds to a G equivariant
homomorphism from C(X) into C(E) for some finite set E on which G acts.

The notion of external finite or finite-dimensional approximation is very flexible and
broadly applicable (for example in defining invariants like entropy), but by itself it is
of limited value if one is seeking the kind of refined internal structural information that
C∗-classification theory demands. In fact it is by applying the external and internal view-
points together in a back and forth way that one arrives at the key idea in classification
theory, namely the intertwining argument, which was developed by Elliott in his seminal
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6 1. INTRODUCTION

K-theoretic classification of AF algebras [26]. The goal of an intertwining is to lift an iso-
morphism between K-theoretic invariants of two C∗-algebras by proceeding locally along
the given inductive limit decompositions, passing alternately from building blocks of one
algebra to those of the other. Success depends on the existence and uniqueness (modulo
approximate conjugacy) of maps between the kind of building blocks along which one is
doing the intertwining. One can view existence as an external problem, and uniqueness
as an internal one, as the basic case of AF algebras makes clear. The hope is that, under
the assumption of nuclearity or some topological strengthening of it, external approxima-
tions exist and are unique up to approximate innerness modulo the obvious K-theoretic
obstructions.

The original K-theoretic formulation of the classification program for simple sepa-
rable nuclear C∗-algebras has enjoyed and continues to enjoy spectacular successes [30].
However, it has had to come to terms with examples of Villadsen [101, 102], Rørdam
[89], and Toms [97] that have indicated the need either to enlarge the invariant beyond
K-theory and traces or to identify regularity properties that suitably restrict the class of
C∗-algebras. The latter has been the subject of remarkable progress over the last several
years and has led to the various notions of tracial rank zero, decomposition rank, nuclear
dimension, radius of comparison, and Z-stability, all of which we will discuss in connection
with crossed products in Chapter 4.

A basic principle that has emerged is that one should look for regularity proper-
ties that are noncommutative topological expressions of zero-dimensionality. While zero-
dimensionality is a rather restrictive condition for compact metrizable spaces, and indeed
uniquely identifies the Cantor set under the additional assumption of no isolated points,
the introduction of noncommutativity at the algebraic level produces a dimension-lowering
effect to the point where in the extreme case of simple C∗-algebras one might expect higher
dimensional phenomena to be the exception rather than the rule. We can at least say, as a
consequence of classification theory, that the class of “zero-dimensional” simple separable
nuclear C∗-algebras is extremely rich. It includes crossed products of minimal homeomor-
phisms of compact metrizable spaces whose covering dimension is finite (see Section 4).
This is a noncommutative manifestation of the fact that minimality, being the dynamical
analogue of C∗-algebraic simplicity, produces the same kind of dimension lowering. The
degree to which dimension is lowered under the dynamics is captured by a dimensional
version of entropy called mean dimension (see Section 4). Entropy is a logarithmic measure
of the degree to which cardinality is lowered at fixed observational scales and can thus be
viewed in comparison as the logarithmic “mean cardinality” of a system (see Section 2).
Mean dimension can be nonzero for minimal homeomorphisms, and crossed products of
such systems can fail to exhibit certain key regularity properties, but the precise rela-
tionship between these properties and mean dimension has yet to be worked out. This is
discussed in Chapter 4.

Another basic theme common to groups, dynamics, and operator algebras is that of
finiteness, infiniteness, and paradoxicality (or “proper infiniteness”). Here finiteness no
longer refers to cardinality, but rather to the more general concept of incompressibility as
an abstraction of the fact that finite sets cannot be mapped properly into themselves by
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Table 1. Measure-theoretic and topological finite approximation proper-
ties for discrete groups

property of G structure of LG

internal amenable
(⇔ not paradoxical)

hyperfinite

external sofic Rω-embeddable

property of G structure of C∗λ(G)

internal: locally finite AF algebra

external: locally embeddable
into finite groups

MF algebra

Table 2. Measurable and topological dynamics: measure-theoretic finite-
dimensional approximation

property of Gy (X,µ) structure of L∞(X,µ)oG

internal amenable hyperfinite

external sofic Rω-embeddable

property of Gy X structure of C(X)oλ G

internal (topologically) amenable nuclear

external sofic Rω-embeddable

an injection, a property that characterizes finite sets under the axiom of choice. For mea-
surable dynamical systems incompressibility can be interpreted as probability-measure-
preserving, while for topological systems we might understand some kind of generalized
recurrence. For C∗-algebras the notions of finiteness, infiniteness, and proper infiniteness
apply to projections (using Murray-von Neumann subequivalence) and, more generally, to
positive elements (using Cuntz subequivalence). In the case of projections this leads to
the type decomposition for von Neumann algebras. A factor (i.e., a von Neumann algebra
with trivial centre) is of exactly one of the types I, II1, II∞, and III. The type I factors
are B(H) for a Hilbert space H, while the type II∞ factors are tensor products of a type
I factor and a type II1 factor. Thus for the purpose of classification and structure theory
one is left with types II1 and III. In II1 factors all projections are finite and their order-
ing in terms of Murray-von Neumann subequivalence is determined by a unique faithful
normal tracial state. In type III factors all nonzero projections are properly infinite and
consequently traces fail to exist. This parallels the amenable/paradoxical dichotomy for
discrete groups due to Tarski (Theorem 1.2). For simple separable C∗-algebras, at least
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under a finite-dimensional approximation condition like nuclearity, one might hope that
the trace/traceless divide results in a similar dichotomy between stable finiteness (the pro-
jections in any matrix algebra over the given C∗-algebra are all finite) and pure infiniteness
(every nonzero positive element is properly infinite). This fails however, as demonstrated
by Rørdam’s example of a simple unital separable nuclear C∗-algebra containing both an
infinite and a nonzero finite projection [89]. Nevertheless, the study of simple separable
nuclear C∗-algebras has achieved impressive classification results in the stably finite case
(subject to the kind of regularity conditions alluded to above) as well as the purely infinite
case, for which the work of Kirchberg and Phillips gives a complete K-theoretic classifi-
cation under the (possibly redundant) assumption that the algebras satisfy the universal
coefficient theorem.

While topological finite-dimensional approximation, whether internal or external, gen-
erally implies incompressibility in the form of stable finiteness, paradoxicality can coexist
with internal measure-theoretic finite-dimensional approximation, as witnessed by the ex-
istence of hyperfinite type III factors or purely infinite nuclear C∗-algebras. For simple
separable C∗-algebras this provides a philosophical explanation of why the combination
of internal measure-theoretic finite-dimensional approximation (nuclearity) and algebraic
paradoxicality (pure infiniteness) is sufficient for producing a definitive classification re-
sult, in contrast to the stably finite case, where one has to confront the vexing issues of
dimension and topological approximation.

The combination of paradoxicality and internal measure-theoretic finite approximation
can similarly occur in topological dynamics, and we will see in Chapter 2 how this trans-
lates at the C∗-algebra level via the reduced crossed product. On the other hand, discrete
groups behave more restrictively in the sense that (i) incompressibility (amenability, i.e.,
the existence of an invariant mean) and measure-theoretic internal finite approximation
(the Følner property) coincide, and (ii) paradoxicality is equivalent to nonamenability
(Tarski’s dichotomy). The technical connection to operator algebras arises by viewing
a group dually as its reduced group C∗-algebra. Then amenability transforms into the
internal measure-theoretic property of nuclearity (Theorem 1.1) while stable finiteness is
automatic due to the presence of the canonical faithful tracial state. To witness paradoxi-
cality in the form of properly infinite projections, one needs to pass to the crossed product
by the action of the group on its Stone-Čech compactification, as discussed in Section 3.

The framework which lays out the broad conceptual relationships between all of the
phenomena that we will encounter is presented in Tables 1.1 to 1.4. Appearing in the
headings on the right sides are the group von Neumann algebra LG, the von Neumann
algebra crossed product L∞(X,µ) o G, the reduced group C∗-algebra C∗λ(G), and the
reduced C∗-crossed product C(X) oλ G, the latter two of which are reviewed below.
The horizontal pairing between group-theoretic or dynamical properties and properties of
the corresponding von Neumann algebra or C∗-algebra are structural analogies that are
known in some cases to translate at the technical level to an equivalence and in many other
cases to a forward implication. In the remaining couple of cases some further massaging
must be done in order to come up with a precise general statement. The categories with
question marks indicate the target of current research in the C∗-classification theory of
topological dynamics on higher dimensional spaces, where a definitive picture is far from
being attained. While the purely infinite case has barely been addressed, some remarkable



1. INTRODUCTION 9

Table 3. Topological dynamics: topological finite-dimensional approximation

property of Z y X structure of C(X)oλ Z

internal zero-dimensional X:
clopen Rokhlin property AT algebra

general X:
??? (zero mean
dimension,
higher-dimensional
Rokhlin property, . . . )

??? (Z-stability, finite
nuclear dimension, strict
comparison, AH algebra,
. . . )

external chain recurrence MF algebra

progress has recently been achieved for minimal Z-actions, although there are still many
pieces of the puzzle that have yet to be put together. Notice that in Table 1.2 we have
restricted ourselves to Z-actions, as this has been the primary focus of C∗-classification
and the picture becomes much hazier already for Z2-actions. For minimal Z-actions the
construction of Rokhlin towers based on first return time maps has played a fundamental
role in classifying crossed products, and so one might say that the successes of classification
in this case are predicated on the fact that Z is the only nontrivial group that is both free
and amenable.

Table 1.1 presents the array of local finite approximation properties for discrete groups
that one obtains by taking all four cross-pairings of the categories internal/external and
measure-theoretic/topological. Here we see in primal combinatorial form many of the
approximation phenomena that arise in operator algebras. Note that, since we are only
considering discrete groups, “topological” means the same thing here as “purely group-
theoretic”, while measure-theoretic properties involve basic combinatorial approximation.
On the topological side one has the finite approximation properties of local finiteness (inter-
nal) and local embeddability into finite groups (external), while on the measure-theoretic
side one has the respectively weaker finite approximation properties of amenability (inter-
nal) and soficity (external). This schema summarizes the organization of the main body of
these notes into four chapters, each of which begins with a discussion of the corresponding
finite approximation property for groups and its C∗-algebraic analogue as can be found
on the right side of Table 1.1.

Tables 1.2 and 1.3 apply the same logic to measurable and topological dynamics. We
will say little about measure-preserving systems per se, although invariant probability
measures will appear in our analysis of topological systems. The bulk of Chapters 4
and 5 will be devoted to the study of internal and external finite and finite-dimensional
approximation in topological dynamics and C∗-algebras.

Table 1.4 treats paradoxicality, which is the main subject of Chapter 2. While dynami-
cal amenability is a measure-theoretic concept as witnessed by its connection to nuclearity,
where exactly paradoxical decomposability for topological dynamics should be situated is
less obvious. In its more generous multi-level/matricial sense, paradoxicality is directly
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Table 4. Measurable and topological dynamics: paradoxicality

property of Gy (X,µ) structure of L∞(X,µ)oG

countable paradoxical
decomposability of measurable
sets
(⇔ no equivalent finite invariant
measure)

purely infinite (type III)

property of Gy X structure of C(X)oλ G

zero-dimensional X:
paradoxical decomposability of
clopen sets

purely infinite

general X:
??? (some more general kind of
paradoxical decomposability?)

purely infinite

tied to the lack of invariant measures via a theorem of Tarski. However, it is the conven-
tional two-into-one sense of paradoxicality that in global form translates C∗-algebraically
into pure infiniteness, at least for actions on the Cantor set, and this is what is of imme-
diate interest from the perspective of C∗-classification theory. The relation between these
two degrees of paradoxicality is connected to a topological question involving perforation
in the associated type semigroup (see Section 3). For group actions on sets without extra
structure the difference between the two collapses, and this is part of Tarski’s proof of
his theorem relating paradoxical decomposability and the absence of invariant measures,
which is discussed prior to Theorem 3.4 and yields the amenable/paradoxical dichotomy
for discrete groups. It is on account of Theorems 4.4, 5.3, and 5.5 that we have decided to
treat paradoxical decomposability for topological dynamics in Chapter 2, although Theo-
rem 3.9 would perhaps more properly belong to Chapter 4 given that the problem about
whether perforation can occur (Question 3.10) remains unresolved.

The remaining Chapter 3 is devoid of specifically C∗-algebraic concepts, as there does
not seem to be anything special to say here without simply passing to a von Neumann
algebra closure, where one can talk about the external finite-dimensional approximation
property of hyperlinearity. We will however spend some time in this chapter exploring a
couple of topological-dynamical notions that, in their most general conventional formu-
lations, hinge on measure-theoretic finite approximation. These are entropy and mean
dimension, the latter of which, as hinted above, is the subject of some tantalizing ques-
tions at the frontier of the classification program for crossed products of Z-actions that
are examined in Chapter 4.

In these notes we have restricted our attention to actions of groups, as opposed to semi-
groups. In the latter case the theory turns out somewhat differently [85, 24, 2]. Already
by passing from Z-actions to N-actions, i.e., from homeomorphisms to possibly noninvert-
ible continuous maps, one can readily encounter the kind of purely infinite behaviour that
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for group actions can only be achieved in the nonamenable case (see Sections 3 to 5). See
[21] for some recent progress in this direction. Also, as our focus is on crossed products,
we do not discuss the groupoid C∗-algebras associated to hyperbolic-type dynamics that
appear in [92, 84, 96].

We round out the introduction with some basic terminology and notation. Throughout
these notes G will always be a discrete group with identity element e. In applications to
C∗-algebras we are mainly interested in countable G, and we will make this assumption
starting in Section 3. In Sections 1 and 2 we will not impose any cardinality hypothesis
since the basic theory of amenability works equally well for uncountable G. The full
group C∗-algebra C∗(G) of G is the completion of the group ring CG in the norm ‖a‖ =
supπ ‖π(a)‖ where π ranges over all ∗-representations on Hilbert spaces. The reduced group
C∗-algebra C∗λ(G) is the norm closure of CG in the left regular representation on `2(G).
The full group C∗-algebra has the universal property that for every unitary representation
u : G→ B(H) there is a unique ∗-homomorphism π : C∗(G)→ B(H) such that π(s) = us
for all s ∈ G. The reduced and full group C∗-algebras canonically coincide if and only if
G is amenable, as shown in Theorem 1.1.

Actions of G on a compact Hausdorff space are always assumed to be continuous. Let
G y X be such an action. Write α for the induced action on C(X), i.e., αs(f)(x) =
f(s−1x). Denote by Cc(G,C(X)) the space of finitely supported functions on G with
values in C(X). This is a ∗-algebra with the convolution product(∑

s∈G
fss

)
∗
(∑
s∈G

gss

)
=
∑
s,t∈G

fsαs(gt)st

and involution (∑
s∈G

fss

)∗
=
∑
s∈G

αs−1(f∗s )s−1.

The ∗-representations of Cc(G,C(X)) on Hilbert spaces correspond to covariant repre-
sentations (u, π,H), which consist of a unitary representation u : G → B(H) and a
representation π : C(X) → B(H) such that usπ(f)u∗s = π(αs(f)) for all f ∈ C(X) and
s ∈ G. The full crossed product C∗(X) o G is the completion of Cc(G,C(X)) in the
norm ‖a‖ = supπ ‖π(a)‖ where π ranges over all ∗-representations of Cc(G,C(X)) on
Hilbert spaces. To define the reduced crossed product, start with a faithful representation
C(X) ⊆ B(H) and amplify this to the representation π : C(X)→ B(H⊗ `2(G)) given by

π(f)ξ ⊗ δs = (αs−1(f)ξ)⊗ δs

where {δs}s∈G is the canonical orthonormal basis of `2(G). Along with the amplification
id⊗ λ on H ⊗ `2(G) of the left regular representation of G, this yields a covariant repre-
sentation, and the reduced crossed product C(X)oλG is the norm closure of Cc(G,C(X))
under the resulting ∗-representation. This can be seen not to depend on the initial faithful
representation of C(X). There is a canonical conditional expectation C(X)oλG→ C(X)
which on elements of Cc(G,C(X)) is evaluation at e. As for group C∗-algebras, when G is
amenable the reduced and full crossed products canonically coincide. We typically write
the unitary in a crossed product corresponding to a group element s as us.
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The action Gy X is topologically free if the set of all x ∈ X such that sx 6= x for every
s ∈ G \ {e} is dense in X. The action is minimal if there are no nonempty proper closed
G-invariant subsets of X, which is equivalent to every G-orbit being dense. Minimal topo-
logically free actions will be our primary focus, as they connect to the classification theory
of simple nuclear C∗-algebras via the following specialization to commutative dynamics of
a result from [5], which will be used frequently.

Theorem 0.1. Suppose that the action Gy X is minimal and topologically free. Then
C(X)oλ G is simple.

The rough strategy of the proof in [5] is to take a nonzero closed ideal I in C(X)oλG
and argue using the canonical expectation C(X) oλ G → C(X) and topological freeness
that I ∩C(X) is a nonzero G-invariant ideal of C(X), which by minimality must be all of
C(X), so that I = C(X)oλ G.

The study of more general actions and closed ideals in reduced crossed products raises
a number of interesting and subtle questions which we will not address (see for example
[93]).

Finally, we direct the reader to the book [20] by Brown and Ozawa for a reference
on groups, group actions, and crossed products in the framework of finite-dimensional
approximation, and to the book [9] by Blackadar for a general reference on operator
algebras. For background on the classification program for separable nuclear C∗-algebras
see [88], and for a recent survey see [30]. We also mention the article [8] of Blackadar
on the “algebraization of dynamics”, which has some overlap with the present notes but
focuses less on groups and dynamics and more on the general structure theory of operator
algebras.



CHAPTER 2

Internal measure-theoretic phenomena

1. Amenable groups and nuclearity

The notion of amenability in its most basic combinatorial sense captures the idea of
internal finite approximation from a measure-theoretic perspective. It plays a pivotal role
not only in combinatorial and geometric group theory but also in the theory of operator
algebras through its various linear manifestations like hyperfiniteness, semidiscreteness,
injectivity, and nuclearity. In this section we will review the theory of amenability for dis-
crete groups (see [37, 79] for general references), and then move in Section 2 to amenable
actions and their reduced crossed products.

A discrete group G is said to be amenable if on `∞(G) there exists a left invariant
mean, i.e., a state σ satisfying σ(s · f) = σ(f) for all s ∈ G and f ∈ `∞(G) where
(s · f)(t) = f(s−1t) for all t ∈ G. By Gelfand theory, left invariant means on `∞(G)
correspond to invariant regular Borel probability measures for the associated action of G
on the spectrum of `∞(G), which is the Stone-Čech compactification βG of G. It follows
that G is amenable if and only if every action of G on a compact Hausdorff space X
admits a G-invariant regular Borel probability measure, since every invariant regular Borel
probability measure on βG can be pushed forward to one on any compact Hausdorff space
X on which G acts by selecting a point x ∈ X and applying the continuous equivariant
map βG→ X sending s to sx, which exists by the universal property of βG. Amenability
for groups is thus an inherently dynamical concept.

From the combinatorial viewpoint, amenability can be expressed by the Følner prop-
erty, which is the existence of a net {Fi} of nonempty finite sets such that limi |sFi ∩
Fi|/|Fi| = 1 for all s ∈ G. Given such a Følner net {Fi} one can produce a left invariant
mean on `∞(G) by taking any weak∗ cluster point of the net of normalized characteristic
functions |Fi|−11Fi viewed as states on `∞(G) via the embedding `1(G) ↪→ `1(G)∗∗ =
`∞(G)∗. The converse operation of teasing out approximate finiteness from simple invari-
ance is trickier. Starting with a left invariant mean σ on `∞(G), an application of the
Hahn-Banach separation theorem shows that the set P (G) of positive norm-one functions
in `1(G) is weak∗ dense when viewed as a subset of the state space of `∞(G) via duality.
It follows that there is a net {gi} in P (G) converging weak∗ to σ, which means that,
for a given nonempty finite set F ⊆ G, the net {(s · gi − gi)s∈F } converges weakly to
zero in `1(G)F (Day’s trick). Since the norm and weak closures of a convex subset of a
Banach space coincide by Mazur’s theorem, there is a net {hj} of convex combinations
of the functions gi such that {(s · hj − hj)s∈F } converges to zero in norm. Using the
directed set of finite subsets of G we can thereby construct a net {kn} in P (G) such that
‖s · kn − kn‖1 → 0 for every s ∈ G (Reiter’s property). To finish one can perturb the

13



14 2. INTERNAL MEASURE-THEORETIC PHENOMENA

functions kn so as to have finite support and then show by a summation argument that
for each n there is some rn > 0 so that the sets {s ∈ G : kn(s) > rn} are approximately
invariant to an asymptotically vanishing degree for each s ∈ G in accordance with the
definition of the Følner property. One can now see for example that all Abelian groups
are amenable since the Følner property clearly holds in view of the structure theorem for
finitely generated Abelian groups.

The above ideas also play a key role in the much more difficult proof of Connes’ analo-
gous result for von Neumann algebras with separable predual that says that injectivity (the
existence of a norm-one projection from B(H) onto the algebra as acting on the Hilbert
space H) is equivalent to hyperfiniteness (the existence of an increasing sequence of finte-
dimensional ∗-subalgebras with ultraweakly dense union). See for example Theorem 6.2.7
and Section 11.4 in [20]. In this setting the term amenability itself refers to the equivalent
cohomological property that every bounded derivation from the von Neumann algebra to
a normal dual Banach bimodule over the algebra is inner. Likewise, a C∗-algebra A is said
to be amenable if every bounded derivation from A to a dual Banach module A-bimodule.
By work of Connes, Choi-Effros, Kirchberg, and Haagerup, this is equivalent to each of
the following conditions (see Section IV.3 of [9]):

(i) there is a unique C∗-tensor norm on A⊗B for every C∗-algebra B,
(ii) the enveloping von Neumann algebra A∗∗ is amenable,

(iii) for every representation π : A → B(H) the von Neumann algebra π(A)′′ is
amenable,

(iv) there is a net of contractive completely positive maps ϕn : A → Mkn and ψn :
Mkn → A through matrix algebras such that ‖ψn ◦ ϕn(a)− a‖ → 0 for all a ∈ A.

If A is unital then the maps in (iv) may be taken to be unital, which together with com-
plete positivity automatically implies contractivity. Property (i) is called nuclearity and
property (iv) the completely positive approximation property. Nuclearity tends to be the
preferred term for this class of C∗-algebras, and we will adhere to this convention. While
C∗-algebras as such are to be thought of as topological objects (as opposed to von Neu-
mann algebras, which, in addition to being C∗-algebras, have measure-theoretic structure),
nuclearity is a measure-theoretic property. This is evident in the fact that nuclearity can
be expressed in terms of the von Neumann algebra A∗∗ according to condition (ii). It is
also reflected in the fact that in (iv) the maps are not required to interact in any way
with the multiplication in the C∗-algebra, which is where the topological structure locally
resides. So the following result should not be too surprising (see Section 2.6 of [20] and
Section IV.3.5 of [9]).

Theorem 1.1. The following are equivalent.

(1) G is amenable,
(2) C∗λ(G) is nuclear,
(3) C∗(G) = C∗λ(G).

Proof. (1)⇒(2). One can verify the completely positive approximation property for
C∗λ(G) by starting with a Følner net {Fi} for G and for each i defining ϕi : C∗λ(G)→MFi

to be the cut-down to B(`2(Fi)) ⊆ B(`2(G)) as identified with MFi , and ψi : MFi → C∗λ(G)
to be the map defined on matrix units by es,t 7→ |Fi|−1λst−1 .
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(2)⇒(1). Suppose that we have a net of unital completely positive maps ϕi : C∗λ(G)→
Mki and ψi : Mki → C∗λ(G) such that ‖ψi ◦ ϕi(a) − a‖ → 0 for all a ∈ C∗λ(G). By
Arveson’s extension theorem we can extend ϕi to a unital completely positive map ϕ̃i :
B(`2(G)) → Mki . Take a point-ultraweak cluster point γ of the net {ψ ◦ ϕ̃i}. Then γ is
a unital completely positive map to the von Neumann algebra C∗λ(G)′′ which restricts to
the identity on C∗λ(G). Denoting by τ the tracial state a 7→ 〈aδe, δe〉 on C∗λ(G)′′, one then
checks that the restriction of τ ◦ γ to `∞(G) ⊆ B(`2(G)) is a left invariant mean using the
fact that C∗λ(G) lies in the multiplicative domain of γ [20, Sect. 1.5].

(1)⇒(3). Construct maps ϕi and ψi as in the proof (1)⇒(2), only now viewing ψi
as mapping into C∗(G) instead of C∗λ(G). Then the compositions of the canonical ∗-
homomorphism Θ : C∗(G)→ C∗λ(G) with the maps ψi ◦ ϕi converge pointwise in norm to
the identity map on C∗(G), showing that Θ is an isomorphism.

(3)⇒(1). Let τ be the tracial state on C∗(G) associated to the trivial representation
of G. Identifying C∗(G) with C∗λ(G) ⊆ B(`2(G)), extend τ to a state σ on B(`2(G)) and
then restrict σ to `∞(G). As in the proof of (2)⇒(1), one verifies that this restriction is
a left invariant mean by using the fact that C∗λ(G) lies in the multiplicative domain of
σ. �

Note that in the forward direction of the above proof we don’t need the full combina-
torial power of the Følner property. It would be enough to use the fact that amenability
is equivalent to Reiter’s property, which, as mentioned above, asserts the existence of a
net of functions {hi} in P (G) such that ‖s · hi − hi‖1 → 0. By a simple perturbation
argument we may assume that the support Fi of hi is finite for each i, and then define
the map ψi : MFi → C∗λ(G) above instead by es,t 7→

√
hiλst−1 . We mention in connection

with this that Reiter’s property is equivalent to its `2 version, i.e., the existence of a net
of functions {ki} in the unit ball of `2(G) such that ‖s · ki − ki‖2 → 0.

It is also the case that G is amenable if and only if the group von Neumann algebra
LG = C∗λ(G)′′ ⊆ B(`2(G)) is amenable. We remark that Theorem 1.1 fails in the nondis-
crete setting, as C∗λ(G) is nuclear for every separable connected locally compact group G.
However, C∗(G) = C∗λ(G) is equivalent to amenability for all locally compact groups G.

We infer from this discussion that one cannot expect to say anything very general
about the topological structure of nuclear C∗-algebras. A large part of the classification
program for nuclear C∗-algebras attempts to do precisely that, at least in the course of
its execution, and what is surprising is the success it has achieved in a great many cases.
On the other hand, all but the topologically simplest classifiable C∗-algebras require the
incorporation of traces, and hence measure theory, into the classifying invariant.

Returning our focus to groups, let us now discuss the prevalence of amenability and the
conditions under which it fails to hold. Abelian groups and finite groups are amenable, and
amenability is closed under taking subgroups, quotients, extensions, and increasing unions.
A group is said to be elementary amenable if it belongs to the smallest class of groups
that is closed under these operations and contains all Abelian groups and finite groups.
Elementary amenable groups do not exhaust all amenable groups, as the Grigorchuk group
demonstrates. What distinguishes the Grigorchuk group from the elementary amenable
groups is that the growth as n → ∞ of the number of distinct words of length n with
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respect to a finite generating set is neither polynomial nor exponential. See Chapter VIII
of [46].

The prototype of a nonamenable group is the free group F2 on two generators. The
lack of a left invariant mean on `∞(F2) is an immediate consequence of the fact that
F2 admits a paradoxical decomposition, which for a group G means pairwise disjoints
subsets C1, . . . , Cn, D1, . . . , Dm of G and elements s1, . . . , sn, t1, . . . , tm ∈ G such that
both {s1C1, . . . , snCn} and {t1D1, . . . , tmDm} are partitions of G. A Cantor-Bernstein
argument shows that if a paradoxical decomposition exists then one may in fact arrange for
{C1, . . . , Cn, D1, . . . , Dm} to be a partition of G (note however that this conclusion might
fail for paradoxical decomposability in the topological dynamical context to be discussed
in Section 3). For F2 with generators a and b one can take C1 = W (a), C2 = W (a−1),
D1 = W (b) ∪ {e, b−1, b−2, . . . }, and D2 = W (b−1) \ {b−1, b−2, . . . }, where W (·) denotes
the set of all words beginning with the indicated element, and verify that {C1, aC2} and
{D1, bD2} are both partitions of F2.

Whether a group G is nonamenable if and only if it contains a copy of F2 was an open
problem for many years following the introduction of amenability by von Neumann. It is
true for groups of matrices by a result of Tits, but was shown to be false in general by
Olshanskii, who constructed nonamenable torsion groups. Nevertheless, we have the fol-
lowing remarkable theorem of Tarski, which establishes a dichotomy between amenability
and paradoxical decomposability.

Theorem 1.2. G is amenable if and only if it does not admit a paradoxical decompo-
sition.

The Tarski number of a group G is defined as the smallest possible number of pieces
in a paradoxical decomposition of G, or infinity if no paradoxical decomposition exists.
It then turns out that G contains F2 if and only if its Tarski number is is the smallest
possible value, namely 4.

For an extensive account of the subject of paradoxicality see the book [107].
Paradoxical decomposability has both local and global C∗-algebra analogues, namely

proper and pure infiniteness, which we will explore in Sections 3 through 5. The novelty
in the dynamical setting is that amenability and paradoxical decomposability can coexist,
so that the Tarski dichotomy no longer holds.

2. Amenable actions, nuclearity, and exactness

Motivated by Zimmer’s notion of amenability for measurable dynamical systems,
Anantharaman-Delaroche introduced the following topological analogue [1, 3, 4]. As
in the previous section, we write P (G) for the set of all probability measures on G, which
we identify with the positive functions in `1(G) of norm one.

Definition 2.1. An action ofG on a compact Hausdorff spaceX is said to be amenable
if there is a net of continuous maps mi from X to P (G) with the weak∗ topology such
that ‖msx

i − s ·mx
i ‖1 → 0 for all s ∈ G.

Note that the amenability of a group G is equivalent to the amenability of its action on
a singleton, which simply reduces to Reiter’s property. Also, every action of an amenable
group is amenable, as one can take constant maps mi whose images are elements of P (G)
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which are asymptotically invariant in the sense of Reiter’s property. Amenability is a
somewhat bizarre property from the traditional perspective of topological dynamics, as it
lifts under (not necessarily surjective) continuous equivariant maps and the group is used
in a spatial way via P (G).

It is possible for nonamenable groups to admit an amenable action. The prototype for
this is the action of the free group F2 on its Gromov boundary ∂G, which is the Cantor
set consisting of all infinite reduced words x1x2 · · · in the generators a and b and their
inverses, equipped with the relative product topology as a subset of {a, b, a−1, b−1}N. The
action is defined by left concatenation followed by cancellation as necessary. For each
n ∈ N one defines the map mn : ∂G→ P (G) by sending a reduced infinite word x1x2 · · ·
to n−1

∑n
k=1 δx1···xk . It is then easy to see that ‖msx

n − s ·mx
n‖2 → 0 for all s ∈ G. More

generally, every Gromov hyperbolic group acts amenably on its Gromov boundary (see
Section 5.3 of [20]). The existence of groups which admit no amenable action leads to the
subject of exactness, which we will treat below.

We will next reformulate amenability for actions from the C∗-algebra perspective as
a generalization of the 2-norm version of Reiter’s property for groups and use this to
establish the theorem below from [1] (see also Sections 4.3 and 4.4 of [20]). For an
action Gy X we can view the twisted convolution algebra Cc(G,C(X)) as a pre-Hilbert
C(X)-module with the C(X)-valued inner product 〈S, T 〉 =

∑
s∈G S(s)∗T (s) and norm

‖S‖C(X) = ‖〈S, S〉‖1/2.

Proposition 2.2. An action G y X on a compact Hausdorff space is amenable if
and only if there is a net of functions Ti ∈ Cc(G,C(X)) such that (i) for each i one has
Ti(s) ≥ 0 for all s ∈ G and 〈Ti, Ti〉 = 1, and (ii) ‖δs ∗ Ti − Ti‖C(X) → 0 for all s ∈ G,
where δs is the function in Cc(G,C(X)) taking value 1 at s and zero otherwise.

To establish the forward direction of the proposition, one takes a net {Ti} as in the
statement and sets mx

i (s) = (Ti(s)
∗Ti(s))(x). Conversely, if {mi : X → P (G)} is a net as

in the definition of amenable action then one defines Ri : G→ C(X) by Ri(s)(x) = mx
i (s)

and puts T̃i(s) =
√
Ri(s). The desired finitely supported functions Ti can then be obtained

by cutting down the T̃i to suitable finite subsets of G and normalizing.

Theorem 2.3. An action G y X on a compact Hausdorff space is amenable if and
only if C(X)oλ G is nuclear.

Proof. We denote by α the induced action on C(X), i.e., αs(f)(x) = f(s−1x). Sup-
pose first that the action is amenable. Take a net of functions Ti ∈ Cc(G,C(X)) as given
by Proposition 2.2. Write Di for the support of Ti. For each i define the unital completely
positive compression map ϕi : C(X)oλ G→ C(X)⊗MDi by

ϕi(fut) =
∑

s∈Di∩tDi

α−1
s (f)⊗ es,t−1s.

Write Ri for the self-adjoint element
∑

s∈D α
−1
s (Ti(s))⊗ es,s. Define ψi : C(X)⊗MDi →

C(X)oλG by composing the unital completely positive cut-down a 7→ RiaRi from C(X)⊗
MDi to itself with the unital map from C(X)⊗MDi → C(X)oλG given by ψi(f ⊗ es,t) =
αs(f)ust−1 , which is readily checked to be completely positive. A short computation then
shows that ψi ◦ ϕi(fus) = (Ti ∗ T ∗i (s))fus, and since 1 − Ti ∗ T ∗i (s) = 〈Ti, Ti − s ∗ Ti〉
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it follows from the Cauchy-Schwarz inequality that ‖ψi ◦ ϕi(fus) − fus‖ → 0 for all
f ∈ C(X) and s ∈ F . Since C(X) ⊗MD is nuclear, we can then find ni ∈ N and unital
completely positive maps θi : C(X)⊗MDi →Mni and γi : Mni → C(X)⊗MDi such that
‖ψi ◦ γi ◦ θi ◦ ϕi(fus)− fus‖ → 0 for all f ∈ C(X) and s ∈ G. This verifies the complete
positive approximation approximation property and hence the nuclearity of C(X)oλ G.

For the converse direction, suppose that C(X)oλG is nuclear. Let F be a finite subset
of G and ε > 0. Then there are unital completely positive maps ϕ : C(X)oλG→Mn and
ψ : Mn → C(X)oλG such that ‖ψ ◦ϕ(us)−us‖ < ε for all s ∈ F . We would like the map
ϕ to send us to zero for all s outside of a finite set, and this can be arranged as follows. Fix
a faithful representation ρ of C(X) on a Hilbert space H, and let π be the representation
of C(X) oλ G on H ⊗ `2(G) ⊗ `2(N) which is the countably infinite amplification of the
canonical representation on H ⊗ `2(G) associated to ρ. Then π is essential, and thus, by
the matricial version of Glimm’s lemma, given any finite set Ω ⊆ C(X) oλ G and ε > 0
there is an isometry V : `2n → H⊗ `2(G)⊗ `2(N) such that the unital completely positive
map ϕ′ : C(X) oλ G → Mn given by a 7→ V ∗π(a)V satisfies ‖ϕ′(a) − ϕ(a)‖ < ε for all
a ∈ Ω. By a perturbation we may assume that the image of V lies in H⊗`2(F )⊗`2(N) for

some finite set F̃ ⊆ G, which has the effect that ϕ(us) = 0 for all s /∈ F̃ F̃−1, as desired.
Now define h ∈ Cc(G,C(X)) by h(s) = E((ψ ◦ ϕ(us))u

−1
s ) where E : C(X) oλ G →

C(X) is the canonical conditional expectation. Then

‖1− h(s)‖ = ‖E((us − ψ ◦ ϕ(us))u
−1
s )‖ ≤ ‖us − ψ ◦ ϕ(us)‖ < ε.

One can also verify using the G-equivariance of E that h is a positive-type function in the
sense that for any s1, . . . , sn ∈ G the element [α−1

si (h(sis
−1
j ))]i,j of Mn(C(X)) is positive.

Viewing h as an element of C(X) oλ G, it follows that for every finite set D ⊆ G the
cut-down of h by the orthogonal projection from H ⊗ `2(G) onto H ⊗ `2(D) is positive,
which implies that h itself is positive as an element of C(X) oλ G. Consequently there
is a g ∈ Cc(G,C(X)) such that ‖g∗ ∗ g − h‖ < ε. We may assume that E(g∗ ∗ g) = 1

by replacing g with gE(g∗ ∗ g)1/2 and recalibrating ε. Now define T ∈ Cc(G,C(X)) by
T (s)(x) = |g(s−1x, s−1)|. Then, as is readily checked, for each s ∈ G we have 〈T, δs ∗
T 〉(x) = |(g∗ ∗g)(s)(x)| for all x ∈ X, and in particular 〈T, T 〉 = 1. Furthermore, for s ∈ F
we have

‖δs ∗ T − T‖22 = ‖2− 〈T, δs ∗ T 〉 − 〈δs ∗ T, T 〉‖ ≤ 2‖h(s)− 1‖ < 2ε

We conclude by Proposition 2.2 that the action is amenable. �

The fact that a nonamenable group can admit an amenable action, as well as the ques-
tion of when C(X)oG = C(X)oλG, brings us to the notions of nuclearly embeddability
and exactness. A C∗-algebra A is said to be nuclearly embeddable if there is a C∗-algebra
D and an injective ∗-homomorphism ι : A → D which is nuclear in the sense that there
exist a net of contractive completely positive contractive linear maps ϕn : A → Mkn and
ψn : Mkn → D through matrix algebras such that ‖ψn ◦ ϕn(a) − ι(a)‖ → 0 for all a ∈ A.
In particular, C∗-subalgebras of nuclear C∗-algebras are nuclearly embeddable. By a deep
theorem of Kirchberg, nuclear embeddability for a C∗-algebra A is equivalent to exactness,
which means that for every C∗-algebra B and closed two-sided ideal J in B the sequence

0→ J ⊗A→ B ⊗A→ (B/J)⊗A→ 0
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of minimal tensor products is exact. Another deep theorem of Kirchberg asserts that
every separable exact C∗-algebra arises as a C∗-subalgebra of a nuclear C∗-algebra, which
moreover can always be taken to be the Cuntz algebra O2.

A discrete group G is said to be exact if whenever A is a C∗-algebra equipped with
an action of G by automorphisms and J is a G-invariant closed two-sided ideal of A the
sequence

0→ J oλ G→ Aoλ G→ (A/J)oλ G→ 0

is exact. This is equivalent to the exactness of C∗λ(G) [61].
Given an amenable action G y X, the crossed product C(X) oλ G is nuclear by

Theorem 2.3, and so C∗λ(G), as a C∗-subalgebra of C(X) oλ G, is nuclearly embeddable.
In fact we have the following equivalences [3, 77].

Theorem 2.4. The following are equivalent.

(1) G is exact,
(2) the action of G on βG is amenable,
(3) G admits an amenable action on a compact Hausdorff space,
(4) for every action Gy X the crossed product C(X)oλ G is exact.

We thus see that, from the viewpoint of both dynamics and general C∗-algebras,
exactness, like amenability, should be thought of as a measure-theoretic property. In
particular, exactness sees nothing in the dynamics that is separate from the exactness of
the group itself.

Theorem 2.4 shows that every amenable group and every free group (and more gen-
erally every hyperbolic group) is exact. A construction of Gromov yields groups that do
not coarsely embed into a Hilbert space and consequently fail to be exact (see Section 5.5
of [20]).

Finally we address the question of when C(X) o G = C(X) oλ G, for which we do
not have a complete answer as in the case of group C∗-algebras. We first establish the
following lemma, which involves an analogue of Archbold and Batty’s property C ′. This
lemma is a dynamical version of Proposition 9.2.7 in [20] and is proved in a similar way.
By a G-C∗-algebra we mean a C∗-algebra equipped with an action of G by automorphisms.

Lemma 2.5. G is exact if and only if one has a canonical inclusion A∗∗ or G ⊆
(Aoλ G)∗∗ for every G-C∗-algebra A.

Proof. For the “if” direction we note that if A is a C∗-algebra and J a G-invariant
ideal of A then, combining A∗∗oλG ⊆ (AoλG)∗∗ from our assumption with the fact that
A∗∗ ∼= J∗∗ ⊕ (A/J)∗∗, we obtain an inclusion

(A/J)∗∗ oλ G ⊆
(
Aoλ G
J oλ G

)∗∗
which restricts to an inclusion

(A/J)oλ G ⊆
(
Aoλ G
J oλ G

)
yielding the exactness of G.
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In the converse direction, given a G-C∗-algebra A, for a directed set I we define the
C∗-algebra

AI = {(ai)i ∈ `∞(I, A) : the strong∗ limit of ai exists in A∗∗}.
By choosing I suitably we may assume that the ∗-homomorphism ρ : AI → A∗∗ given
by (ai)i∈I 7→ strong∗- limi ai is surjective. One can then verify that the resulting homo-
morphism AI oalg G → A∗∗ oalg G ⊆ (A oλ G)∗∗ between algebraic crossed products is
contractive for the reduced crossed product norm on the source algebra, so that we obtain
∗-homomorphism θ : AI oλG→ (AoλG)∗∗. Set J = ker ρ. Since AoλG ⊆ ker θ the map
θ factors through (AoλG)/(J oλG), which is equal to (A/J)oλG = A∗∗oλG as we are
assumingG to be exact. This then yields the desired embedding A∗∗oλG ⊂ (AoλG)∗∗. �

Lemma 2.6. Suppose that G is exact. Let Gy X be an action on a compact Hausdorff
space. Then the action is amenable if and only if there is a G-equivariant unital positive
linear map `∞(G)→ C(X)∗∗.

Proof. Suppose first that the action is amenable. Then there is a net of continuous
maps mi : X → P (G) such that ‖msx

i − s ·mx
i ‖1 → 0 for all s ∈ G. Define positive linear

maps ϕi : C(X)∗ → `1(G) by ϕi(µ)(s) =
∫
mx
i (s) dµ(x) and dualize to produce unital

positive linear maps ϕ∗i : `∞(G) = `1(G)∗ → C(X)∗∗. Then any point-weak∗ cluster point
of the net {ϕ∗i } is a G-equivariant unital positive linear map `∞(G)→ C(X)∗∗.

Suppose conversely that there is aG-equivariant unital positive linear map T : `∞(G)→
C(X)∗∗. Define a G-equivariant map S : `∞(G) ⊗ C(X) → C(X)∗∗ from the C∗-tensor
product (which is unique in this case by the commutativity of either of the factors) by
setting S(a ⊗ f) = T (a)f and observe that S(1 ⊗ f) = f for every f ∈ C(X). Let
ϕ : (`∞(G)⊗C(X))oλG→ C(X)∗∗oλG be the unital completely positive extension of S
defined on finitely supported elements by ϕ(

∑
s∈F fsus) =

∑
s∈F S(fs)us (Exercise 4.1.4

of [20]). Denoting by ψ the inclusion C(X) oλ G ⊆ (`∞(G) ⊗ C(X)) oλ G we see that
ϕ ◦ ψ is the canonical inclusion C(X)oλ G ⊆ C(X)∗∗ oλ G.

Observe next that the action of G on the spectrum βG × X of `∞(G) ⊗ C(X) is
amenable since it factors onto the action Gy βG, which is amenable by the exactness of
G (Theorem 2.4). It follows by Theorem 2.3 that the crossed product (`∞(G)⊗C(X))oλG
is nuclear. Now by Lemma 2.5 we have a canonical inclusion C(X)∗∗oλG ⊆ (C(X)oλG)∗∗,
and so the inclusion C(X) oλ G ⊆ (C(X) oλ G)∗∗ factors through a nuclear C∗-algebra.
Consequently (C(X)oλG)∗∗ is semidiscrete and so C(X)oλG is nuclear (see Section IV.3
of [9]). We conclude by Theorem 2.3 that the action Gy X is amenable. �

Note that the above lemma fails if G is not assumed to be exact, since one always
has the embedding `∞(G) ↪→ `∞(G)∗∗ = C(βG)∗∗ although the action G y βG is only
amenable when G is exact.

Theorem 2.7. Let G y X be an action of a countable discrete group on a compact
metrizable space. If the action is amenable then C(X)oG = C(X)oλG, and the converse
is true when G is exact.

Proof. That amenability of the action implies C(X) o G = C(X) oλ G can be
established by applying the same observation as for (1)⇒(3) in Theorem 1.1 only now
using the construction in the first part of the proof of Theorem 2.3.
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Suppose now that G is exact and that C(X)oG = C(X)oλ G, and let us show that
the action is amenable. By Lemma 2.6 it suffices to show the existence of a G-equivariant
unital positive linear map `∞(G) → C(X)∗∗. Let Υ be the set of all Borel probability
measures µ on X which are quasi-invariant for the action of G, i.e., for every s ∈ G
the measure s · µ defined by (sµ)(A) = µ(s−1A) is equivalent to µ. Fix a µ ∈ Υ. By the
universal property of the full crossed product we obtain a representation πµ : C(X)oλG =
C(X)oG→ B(L2(µ)) where C(X) acts by multiplication and

(πµ(us)f)(x) =
d(sµ)

dµ
(x)f(s−1x)

where d(sµ)/dµ is the Radon-Nikodym derivative (see Section A.6 of [7]). Consider the
embedding θ : C(X) oλ G → (`∞(G) ⊗ C(X)) oλ G arising from the G-equivariant em-
bedding C(X) → `∞(G) ⊗ C(X) into the C∗-tensor product given by f 7→ 1 ⊗ f , with
G acting on `∞(G) in the usual way. By Arveson’s extension theorem we can extend
πµ to a unital completely positive map ϕµ : (`∞(G) ⊗ C(X)) oλ G → B(L2(µ)). Since
C(X) lies in the multiplicative domain of ϕµ (see Section 1.5 of [20]) the image of `∞(G)
under ϕµ commutes with π(C(X)) and hence lies in π(C(X))′′ since π(C(X))′′ is a max-
imal Abelian subalgebra of B(L2(µ)). Moreover, since for each s ∈ G the unitary us
lies in the multiplicative domain of ϕµ, we see for every f ∈ `∞(G) and s ∈ G that
ϕµ(sf) = ϕµ(usfu

∗
s) = π(us)ϕµ(f)π(us)

∗ = sϕµ(f) where in the last expression we mean
the induced action of G on π(C(X))′′. Thus restricting ϕµ yields a G-equivariant unital
positive linear map ψµ : `∞(G)→ π(C(X))′′.

Observe next that the ∗-homomorphism C(X)∗∗ →
⊕

µ∈Υ π(C(X))′′ determined on

C(X) by f 7→ (πµ(f))µ∈Υ is injective since every finite Borel measure on X is absolutely
continuous with respect to a quasi-invariant Borel probability measure. It follows that the
G-equivariant unital positive linear map

Ψ : `∞(G)→
⊕
µ∈Υ

π(C(X))′′

given by Φ(f) = (ψµ(f))µ∈Υ factors through C(X)∗∗ equivariantly, so that we obtain a
G-equivariant unital positive linear map `∞(G) → C(X)∗∗. We conclude by Lemma 2.6
that the action Gy X is amenable. �

The ideas for establishing the second part of Theorem 2.7, including Lemmas 2.5 and
2.6, were communicated to me by Narutaka Ozawa. The proof is reminiscent of some of
the arguments involving maximal tensor products and the weak expectation property that
can be found in Section 3.6 of [20].

3. The type semigroup, invariant measures, and pure infiniteness

The following three sections are based on the work of Rørdam and Sierakowski [91].
We will however take a slightly different approach in our treatment of simple purely infinite
crossed products which will allow us to obtain some extra information concerning minimal
actions of groups which are not necessarily exact, including a dichotomy for the reduced
crossed products of universal minimal actions in Section 4. We will also concentrate
exclusively on minimal topologically free actions, for which the associated reduced crossed
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product is simple. Thus we do not have to worry about ideals, which are handled by
Rørdam and Sierakowski in the nonsimple case under an exactness assumption, which
permits one to relate closed ideals in the reduced crossed product to closed invariant sets.
Consistent with this more concentrated scope, we give a proof of Theorem 5.5 that uses
exactness only to ensure nuclearity of the reduced crossed product, which enables us at the
same time to establish Theorem 5.3. The key to doing this is to work with the universal
minimal system instead of the action Gy βG, so that we do not have to negotiate ideals.

In the translation from groups to C∗-algebras, paradoxical decomposability becomes
more of a dynamical concept compared to the existence of a left invariant mean. While
C∗λ(G) detects group-theoretic amenability by way of invariant means and the completely
positive approximation property, for nonamenable G one cannot see paradoxicality in a
direct way by looking at C∗λ(G), which is always stably finite due to the presence of the
faithful tracial state given by a 7→ 〈aδe, δe〉 in the canonical representation on `2(G). The
existence of a left invariant mean can be detected C∗-algebraically either according to its
definition as a state `∞(G) which is invariant under the left translation, or dually via the
nuclearity of C∗λ(G). To find the C∗-algebraic manifestation of paradoxical behaviour one
must look instead inside the fusion of these two dual objects, namely the crossed product
`∞(G) oλ G. Note that `∞(G) oλ G contains all reduced crossed products by actions of
G on compact Hausdorff spaces possessing a dense orbit. This follows from the fact that
every such system G y X can be realized as a factor of G y βG by picking an x ∈ X
with dense orbit and using the universal property of the Stone-Čech compactification to
extend the map G→ X given by s 7→ sx to βG.

Thus to study paradoxical decomposability as it is reflected in the C∗-algebraic notions
of proper and pure infiniteness we must work in the context of the dynamics of G acting
on compact Hausdorff spaces, and not in C∗λ(G) as in the case of the original invariant
mean formulation of amenability. This has the interesting effect that, whereas amenability
and paradoxical decomposability for groups are mutually exclusive, pure infiniteness can
coexist with nuclearity if one considers crossed products of actions instead of simply C∗λ(G).

The analogue of paradoxical decomposability for nonzero positive elements of a C∗-
algebra is proper infiniteness. For a C∗-algebra A and positive elements a ∈ Mn(A) and
b ∈Mm(A) in matrix algebras over A we write a - b, and say that a is Cuntz subequivalent
to b, if there is a sequence {tk} in Mm,n(A) such that limk→∞ t

∗
kbtk = a. For projections p

and q in A this is the same as Murray-von Neumann subequivalence, i.e., the existence of
a partial isometry v ∈ A such that v∗v = p and vv∗ ≤ q. A nonzero positive element a in
A is said to be infinite if a⊕ b - a for some nonzero positive b ∈ A, and properly infinite
if a⊕ a - a, where a⊕ b means

(
a 0
0 b

)
. A unital C∗-algebra A is said to be infinite if the

projection 1A is infinite, and properly infinite if 1A is properly infinite. Given an infinite
projection p in a C∗-algebra A there exists a sequence of nonzero mutually orthogonal
subprojections of p, as we can take a partial isometry v ∈ A satisfying v∗v = p and
vv∗ � p and set p1 = p − vv∗ and pn = vpn−1v

∗ for n ≥ 2. The converse is true for the
projection 1A in a simple unital C∗-algebra A. Moreover when A is simple and unital the
following are equivalent:

(1) A is infinite,
(2) A is properly infinite,



3. THE TYPE SEMIGROUP, INVARIANT MEASURES, AND PURE INFINITENESS 23

(3) there is a sequence of nonzero mutually orthogonal and mutually equivalent pro-
jections in A,

(4) there is a sequence of mutually orthogonal projections in A which are all equiva-
lent to 1A.

A C∗-algebra A is purely infinite if it has no one-dimensional quotients and a - b for

all positive elements a, b ∈ A such that a ∈ span(AbA). This is equivalent to every nonzero
positive element in the C∗-algebra being properly infinite [59].

If every nonzero hereditary C∗-subalgebra of every quotient of a C∗-algebra A contains
an infinite projection, then A is purely infinite. For a simple unital C∗-algebra A not
isomorphic to C the following are equvalent:

(1) A is purely infinite,
(2) for every nonzero a ∈ A there exist x, y ∈ A such that xay = 1,
(3) every nonzero hereditary C∗-algebra of A contains an infinite projection.

In particular, simple unital purely infinite C∗-algebras contain many projections.
As paradoxical decomposability for groups is a measure-combinatorial concept, one

might regard pure infiniteness for C∗-algebras in a similar way. Indeed simple purely
infinite C∗-algebras tend to behave more like measure-theoretic or even combinatorial
objects: they all have real rank zero, and in the case that the algebras are separable,
nuclear, and satisfy the universal coefficient theorem there is the classification of Kirchberg
and Phillips [58, 81] that is in terms of K-theory alone (in contrast to the stably finite
setting, where traces are needed in the invariant to handle the topological phenomena
which appear there). On the other hand, there are topological obstructions which prevent
one from making general statements equating tracelessness with pure infiniteness in the
spirit of Tarski’s dichotomy for groups. See Section 9 of [60] and [89]. Rørdam constructed
in [89] a simple separable nuclear C∗-algebra in the UCT class containing both an infinite
and a nonzero finite projection. The ordered K0 group of such a C∗-algebra is perforated,
and we will see in Theorem 3.9 how perforation plays a role in our dynamical context.

Such pathologies are inherently topological and do not occur in von Neumann algebras.
A von Neumann algebra decomposes as a direct sum of a finite part, a nonfinite semifinite
part, and a purely infinite (or type III) part. The finite part splits into type I and II1

parts, and the nonfinite semifinite part splits into type I and II∞ parts. Recall that a
factor is a von Neumann algebra with trivial centre, and that every von Neumann algebra
with separable predual can be written as a direct integral of factors. Since a factor is
indecomposable it is either (i) finite, in which case it is either type In (i.e., isomorphic to
Mn) for some n ∈ N or type II1, (ii) nonfinite and semifinite, in which case it is either
type I∞ (i.e., isomorphic to B(H) for some infinite-dimensional Hilbert space H) or type
II∞, or (iii) purely infinite/type III. Finite factors admit a unique normal tracial state,
while nonfinite semifinite factors admit a unique semifinite normal tracial state. Thus the
invariant mean/paradoxical decomposability dichotomy for groups translates in a direct
way to von Neumann algebras. One underlying reason for this is that one can perform
countable cutting and pasting operations with projections, which is not possible in a
general C∗-algebra. This can be seen in a prototypical way in Murray and von Neumann’s
construction of the trace on a II1 factor.
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Murray and von Neumann’s method was used by Nadkarni in [75] to show that a
Borel automorphism of a standard Borel space X admits an invariant Borel probability
measure if and only if X is not compressible in the following sense. For a Borel action of
a countable group G on Borel space X we say that two Borel sets A,B ⊆ X are countably
equidecomposable and write A ∼∞ B if there is a countable Borel partition {Ai}∞i=1 of A, a
countable Borel partition {Bi}∞i=1 of B, and a sequence {si}∞i=1 in G such that siAi = Bi
for every i. We then say that X is compressible if there exist disjoint Borel subsets A
and B of X such that A ∼∞ X and every G-orbit meets B. Moreover, we say that X
is countably G-paradoxical if there exist disjoint Borel subsets A and B of X such that
A ∼∞ B ∼∞ X. Compressibility and countable G-paradoxicality are the Borel action
analogues of infinite and properly infinite projections.

Becker and Kechris observed in [6] that Nadkarni’s argument can be applied to obtain
the same conclusion in the more general setting of Borel actions of countable groups on
Borel spaces, and in fact even more generally for countable equivalence relations on a
standard Borel space, in which the notion of invariant measure and compressibility still
make sense. Building on this result Becker and Kechris then proved the following, which
applies in particular to actions of countable groups on compact Hausdorff spaces.

Theorem 3.1. Let Gy X be a Borel action of a countable group on a standard Borel
space. Then there is a G-invariant Borel probability measure on X if and only if X is not
countably G-paradoxical.

Thus the invariant mean/paradoxical decomposability dichotomy persists here as in
the von Neumann algebra setting. In the topological context of group actions on com-
pact spaces and their crossed products, however, one cannot perform the same kind of
countable cutting and pasting operations on the space without being forced to pass to
the Borel structure. In the case that most resembles measure theory, namely that of
zero-dimensional spaces, we expect clopen sets to play the role of measurable sets in the
analysis of paradoxical decomposability and so we will be forced to work with finite par-
titions. This will mean that we must consider the kind of multilevel/matricial version
of paradoxicality that appears in the proof of Tarski’s theorem via the type semigroup
but collapses there into the basic form of paradoxicality by virtue of an axiom of choice
argument. In the topological setting we cannot appeal to the axiom of choice to form
partitions and we thus run into the phenomenon of perforation in ordered semigroups.
This is what we turn to next.

Definition 3.2. Suppose thatG acts on a setX. Let S be a collection of subsets ofX.
Let k and l be integers with k > l ≥ 1. We say that a set A ⊆ X is (G,S , k, l)-paradoxical
(or simply (G,S )-paradoxical when k = 2 and l = 1) if there exist A1, . . . , An ∈ S and
s1, . . . , sn ∈ G such that

∑n
i=1 1Ai ≥ k · 1A and

∑n
i=1 1siAi ≤ l · 1A. The set A is said to be

completely (G,S )-nonparadoxical if it fails to be (G,S , k, l)-paradoxical for all integers
k > l > 0.

Remark 3.3. Suppose that S is actually a subalgebra of the power set PX , which will
always be the case in our applications. Then we can express the (G,S , k, l)-paradoxicality
of a set A in S by partitioning copies of A instead of merely counting multiplicities. More
precisely, A is (G,S , k, l)-paradoxical if and only if for each i = 1, . . . , k there exist an
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ni ∈ N and Ai,1, . . . , Ai,ni ∈ S , si,1, . . . , si,ni ∈ G, and m1,1, . . . ,mi,ni ∈ {1, . . . , l} so that⋃ni
j=1Ai,j = A for each i = 1, . . . , k and the sets si,jAi,j × {mi,j} ⊆ A × {1, . . . , l} for

j = 1, . . . , ni and i = 1, . . . , k are pairwise disjoint. For the nontrivial direction, observe
that if A1, . . . , An and s1, . . . , sn are as in the definition of (G,S , k, l)-paradoxicality then
the sets of the form

A ∩
(( ⋂

i∈P
Ai

)
\

⋃
i∈{1,...,n}\P

Ai

)
∩ s−1

j

(( ⋂
i∈Q

siAi

)
\

⋃
i∈{1,...,n}\Q

siAi

)
,

where P and Q are subsets of {1, . . . , n} with |P | ≤ k and |Q| ≤ l and j ∈ Q, can be
relabeled so as to produce the desired Ai,j .

For a compact Hausdorff space X we write CX for the collection of clopen subsets of
X and BX for the collection of Borel subsets of X.

Suppose that G acts on a set X. Let S be a G-invariant subalgebra of the power
set PX of X. The type semigroup S(X,G,S ) of the action with respect to S is the
preordered semigroup{⋃

i∈I
Ai × {i} : I is a finite subset of N and Ai ∈ S for each i ∈ I

}/
∼

where ∼ is the equivalence relation under which P =
⋃
i∈I Ai × {i} is equivalent to Q =⋃

i∈J Bi × {i} if there exist a k ∈ N and ni,mi ∈ N, Ci ∈ S , and si ∈ G for i = 1, . . . , k

such that P =
⊔k
i=1Ci × {ni} and Q =

⊔k
i=1 siCi × {mi} where

⊔
means disjoint union.

Addition is defined by[⋃
i∈I

Ai × {i}
]

+

[ ⋃
i∈J

Bi × {i}
]

=

[(⋃
i∈I

Ai × {i}
)
∪
( ⋃
i∈J+max I

Bi × {i}
)]
,

and for the preorder we declare that a ≤ b if b = a+ c for some c.
Paradoxical decomposability can now be reexpressed as 2a ≤ a, in formal analogy

with proper infiniteness for nonzero positive elements in a C∗-algebra. In parallel with the
characterization of pure infiniteness for C∗-algebras in terms of properly infinite positive
elements, we say that S(X,G,S ) is purely infinite if 2a ≤ a for all a ∈ S(X,G,S ).

Tarski proved that, for an action of G on a set X, there is a finitely additive G-invariant
measure on the power set PX with µ(E) = 1 if and only if E is not (G,PX)-paradoxical.
The type semigroup was introduced for this purpose. Tarski first showed that the existence
of a finitely additive G-invariant measure with µ(E) = 1 is equivalent to the complete
(G,PX)-nonparadoxicality of E by establishing Theorem 3.4 below (see Chapter 9 of [107]
for a discussion and proof). He then proved that (G,PX , k, l)-paradoxicality for some
integers k > l ≥ 1 implies (G,PX)-nonparadoxicality, which translates into a cancellation
property in the type semigroup. This second step requires the axiom of choice in the form
of an infinitary version of the marriage lemma, and the argument does not carry over to
the type semigroups built from proper subalgebras of PX . We will thus have to contend
with the issue of perforation, which will appear in Theorem 3.9 below.

Theorem 3.4. Let S be an Abelian semigroup with 0 and let ≤ be the preorder on S
such that a ≤ b if b = a+ c for some c. Let u ∈ S. Then the following are equivalent.
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(1) (n+ 1)u 6≤ nu for all n ∈ N,
(2) there exists an additive map σ : S → [0,∞] such that σ(u) = 1.

Variations on the above result, such as the Goodearl-Handelman theorem for partially
ordered Abelian groups [35], have proven very useful in other contexts.

Lemma 3.5. Let G y X be an action on a compact metrizable space. Let B be a
nonempty Borel subset of X. Suppose that there is a G-invariant Borel probability measure
µ on X with µ(B) > 0. Then B is completely (G,BX)-nonparadoxical.

Proof. Let µ be a G-invariant Borel probability measure on X with µ(B) > 0.
Suppose that B fails to be completely (G,BX)-nonparadoxical. Then there are k, l ∈ N
with k > l and, for each i = 1, . . . , k, an ni ∈ N, Bi,1, . . . , Bi,ni ∈ BX , si,1, . . . , si,ni ∈
G, and m1,1, . . . ,mi,ni ∈ {1, . . . , l} such that

⋃ni
j=1Bi,j = B for every i and the sets

si,jBi,j × {mi,j} are pairwise disjoint subsets of B × {1, . . . , l}. Since µ is G-invariant we
have

kµ(B) ≤
k∑
j=1

n∑
i=1

µ(Bi,j) =

k∑
j=1

n∑
i=1

µ(si,jBi,j) = µ

( k⋃
j=1

n⋃
i=1

µ(si,jBi,j)

)
≤ lµ(B),

and dividing by µ(B) yields k ≤ l, a contradiction. We conclude that B is completely
(G,BX)-nonparadoxical. �

Lemma 3.6. Let Gy X be an action on a zero-dimensional compact metrizable space.
Let V be a completely (G,CX)-nonparadoxical nonempty clopen subset of X such that
G·V = X. Then there is G-invariant Borel probability measure µ on X such that µ(V ) > 0.

Proof. By Theorem 3.4 there is an additive map σ : S(X,G,CX)→ [0,∞] such that
σ([V ]) = 1. Since the clopen subsets of X generate the Borel σ-algebra of X, σ induces a
G-invariant Borel measure ν on X by first setting ν(U) = σ([U ]) for all U ∈ CX , showing
that this is a premeasure on CX using compactness to reduce countable additivity to finite
additivity, and then extending by Carathéodory’s theorem (see Lemma 5.1 of [91]). Since
ν(X) ≥ ν(V ) > 0 and

ν(X) = ν(F · V ) ≤
⋃
s∈F

ν(sV ) = |F |ν(V ) <∞,

we can set µ(·) = ν(·)/ν(X) to obtain a G-invariant Borel probability measure on X. �

Proposition 3.7. Let G y X be a minimal action on a zero-dimensional compact
metrizable space. Then the following are equivalent:

(1) there exists a G-invariant Borel probability measure on X,
(2) X is completely (G,CX)-nonparadoxical,
(3) there exists a nonempty clopen subset of X which is completely (G,CX)-nonparadoxical.

Proof. Lemma 3.5 yields (1)⇒(2), while (2)⇒(3) is trivial. Since for any nonempty
clopen set V ⊆ X we have G · V = X by minimality, we obtain (3)⇒(1) from Lemma 3.6.

�

Lemma 3.8. Let Gy X be a topologically free minimal action on a zero-dimensional
compact Hausdorff space. Then C(X)oλ G is purely infinite if and only if every nonzero
projection in C(X) is infinite in C(X)oλ G.



3. THE TYPE SEMIGROUP, INVARIANT MEASURES, AND PURE INFINITENESS 27

Proof. By Theorem 0.1, the crossed product C(X) oλ G is simple. Since every
projection in a simple purely infinite C∗-algebra is properly infinite, we obtain the forward
direction. Suppose then that every nonzero projection in C(X) is infinite in C(X)oλG and
let us show that C(X)oλG is purely infinite. By simplicity, it suffices to show that every
nonzero hereditary C∗-subalgebra C(X) oλ G contains an infinite projection. Let A be
such a C∗-subalgebra. Take a nonzero positive element a in A such that ‖E(a)‖ = 1. Using
topological freeness it is straightforward to construct an f ∈ C(X)+ such that ‖f‖ = 1,
‖fE(a)f−faf‖ ≤ 1/4, and ‖fE(a)f‖ ≥ ‖E(a)‖−1/4 = 3/4. Setting g = (fE(a)f−1/2)+

we then have g 6= 0 since ‖fE(a)f‖ > 1/2, and g - faf since ‖fE(a)f − faf‖ < 1/2 [87,
Prop. 2.2], so that g - a. Since X is zero-dimensional there exists a nonzero projection

p ∈ gC(X)g, which is infinite in C(X)oλG by our hypothesis. Since p - g [59, Prop. 2.7]
we have p - a and so there exists a w ∈ C(X)oλ G such that p = waw∗ [59, Prop. 2.6].

Then a1/2ww∗a1/2 is a projection in A which is equivalent to p and hence is infinite. �

The next theorem, which is a specialization of a result of Rørdam and Sierakowski to
the minimal case, shows that if the invariant mean/paradoxical decomposability dichotomy
fails for topologically free minimal actions on zero-dimensional compact Hausdorff spaces
then any examples witnessing this failure must exhibit perforation, or more precisely the
lack of almost unperforation, in the type semigroup. The type semigroup S(G,X,S ) is
almost unperforated if a ≤ b whenever a and b are elements of S(G,X,S ) for which there
are k, l ∈ N satisfying k > l and ka ≤ lb.

Theorem 3.9. Let Gy X be a topologically free minimal action on a zero-dimensional
compact metrizable space. Consider the following conditions:

(1) S(X,G,CX) is purely infinite,
(2) every clopen subset of X is (G,CX)-paradoxical,
(3) C(X)oλ G is purely infinite,
(4) C(X)oλ G does not admit a tracial state,
(5) there are no additive maps S(X,G,CX) → [0,∞] taking at least one nonzero

finite value.

Then (1)⇒(2)⇒(3)⇒(4)⇒(5). Moreover, if S(X,G,CX) is almost unperforated then all
five conditions are equivalent.

Proof. (1)⇒(2). This is a straightforward consequence of the definitions.
(2)⇒(3). Let U be a nonempty (G,CX)-paradoxical clopen subset of X. Then there is

a clopen partition {C1, . . . , Cn} of U and s1, . . . , sn ∈ G such that the sets s1C1, . . . , snCn
are pairwise disjoint and V =

⋃n
i=1 siCi is a proper subset of U . Set z =

∑n
i=1 usi1Ci .

Then z∗z = 1U and zz∗ = 1V , so that 1U is an infinite projection in C(X)oλG. It follows
by Lemma 3.8 that C(X)oλ G is purely infinite.

(3)⇒(4). A unital purely infinite C∗-algebra does not admit a tracial state since the
unit is properly infinite.

(4)⇒(5). As the proof of Lemma 3.6 demonstrates, from any additive map σ :
S(X,G,CX) → [0,∞] taking at least one nonzero finite value we can construct a G-
invariant Borel probability measure on X, from which we obtain a tracial state on C(X)oλ
G by composing with the canonical conditional expectation onto C(X).
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Finally, if S(X,G,CX) is almost unperforated then to obtain (5)⇒(1) we observe that,
by Theorem 3.4, the absence of nontrivial additive maps S(X,G,CX) → [0,∞] implies
that for any given a ∈ S(X,G,CX) there are k, l ∈ N such that k > l and ka ≤ la. Taking
a large enough n ∈ N such that 2(ln + 1) ≤ kn we obtain 2(ln + 1)a ≤ kna ≤ lna, in which
case 2a ≤ a by almost unperforation. �

Question 3.10. Does the type semigroup S(X,G,CX) associated to an action as in
Theorem 3.9 (or any action on a zero-dimensional compact Hausdorff space) ever fail to
be almost unperforated?

In the next two sections we will examine actions as in Theorem 3.9 for which the type
semigroup S(X,G,CX) is almost unperforated.

Example 3.11. Consider the free group Fr = 〈a1, . . . , ar〉 of rank r acting on its Gro-
mov boundary ∂Fr. Let w1 · · ·wn be a reduced word in the generators and their inverses.
Let U be the clopen subset of ∂Fr consisting of all infinite reduced words beginning with
w1 · · ·wn. Since every clopen subset of ∂Fr is a finite disjoint union of such clopen sets and
a finite disjoint union of (Fr,C∂Fr)-paradoxical clopen sets is again (Fr,C∂Fr)-paradoxical,
to show that every nonempty clopen subset of ∂Fr is (Fr,C∂Fr)-paradoxical we need only
verify that U is (Fr,C∂Fr)-paradoxical. This can be done by taking distinct elements
x, y ∈ {a, b, a−1, b−1} \ {w−1

1 , w−1
n } and observing that w1 · · ·wnxU and w1 · · ·wnyU are

disjoint clopen subsets of U .

The action of Fr y ∂Fr is an example of a strong boundary action. A action of G on
an infinite compact Hausdorff space X is a strong boundary action if for for every pair U
and V of nonempty open subsets of X there is an s ∈ G such that s(X \ U) ⊆ V . The
action is n-filling if for every collection of n nonempty open subsets U1, . . . , Un of X there
are s1, . . . sn ∈ G such that s1U1 ∪ · · · ∪ snUn = X. For n = 2 this is the same as being a
strong boundary action. Note that an n-filling action is minimal, for if U is a nonempty
G-invariant open subset of X then we can take U1, . . . , Un to be all equal to U to deduce
that U = X.

In the case thatX is zero-dimensional the n-filling property implies that every nonempty
clopen subset of X is (G,CX)-paradoxical, which can be seen as follows. Since the action
is minimal and X is assumed to be infinite, X contains no isolated points in X. Thus given
a nonempty clopen set U ⊆ X we can take a partition of U into 2n nonempty clopen sets
U1, . . . Un, V1, . . . Vn. Then by the n-filling property there are s1, . . . , sn, t1, . . . , tn ∈ G such
that s1U1∪· · ·∪snUn = t1V1∪· · ·∪tnVn = X. For i = 1, . . . , n setAi = U∩(siUi\

⋃i−1
j=1 sjUj)

and Bi = U∩(tiVi\
⋃i−1
j=1 tjVj). Then the nonempty sets among the Ai form a clopen parti-

tion of U , as do the nonempty sets among the Bi, and s−1
1 A1, . . . , s

−1
n An, t

−1
1 B1, . . . , t

−1
n Bn

are pairwise disjoint subsets of U , showing that U is (G,CX)-paradoxical.
In [63] Laca and Spielberg showed that the reduced crossed product of a strong bound-

ary action is purely infinite, and in [48] Jolissaint and Robertson obtained the same conclu-
sion more generally for n-filling actions. Strong boundary actions include word hyperbolic
groups acting on their Gromov boundary, of which Fr y ∂Fr is the prototype, where
hyperbolicity is exhibited in its most extreme tree form. Note that the Gromov boundary
need not be zero-dimensional, as happens for example for a Fuchsian group of the first
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kind having a compact fundamental domain in the closed unit disk D, in which case the
Gromov boundary action is the same as the action on the boundary of D.

4. The universal minimal system

Like any action of G on a compact Hausdorff space, the action G y βG admits a
minimal subsystem by Zorn’s lemma. By the universal property of βG, each minimal
subsystem of G y βG factors onto every minimal action of G on a compact Haudorff
space. It turns out that there is, up to conjugacy, a unique minimal action of G satisfying
this universal property (see [40] for a short proof of the uniqueness). We will write this
universal minimal action as G y M and view M as a minimal closed G-invariant subset
of βG.

We aim to establish in Theorem 4.4 a Tarski-type dichotomy for the universal minimal
action. We will use the fact that the universal minimal action is free [31]. This is contained
in Lemma 4.2, which provides some additional information for the purposes of Section 5.

Lemma 4.1. Let t ∈ G \ {e}. Then there is a partition of G into three sets E1, E2,
and E3 such that Ei ∩ tEi = ∅ for each i = 1, 2, 3.

Proof. Take a maximal set H ⊆ G with the property H∩tH = ∅ and define E1 = H,
E2 = tH, and E3 = G \ (E1 ∪E2). Then E2 ∩ tE2 = t(H ∩ tH) = ∅, and E3 ∩ tE3 = ∅ by
the maximality of H. �

Lemma 4.2. There is a countable set Ω ⊆ C(M) such that for every G-invariant

C∗-subalgebra A of C(M) containing Ω the action of G on Â is free.

Proof. By Lemma 4.1, for every t ∈ G \ {e} there is a partition of G into three
sets Et,1, Et,2, and Et,3 such that Et,i ∩ tEt,i = ∅ for each i = 1, 2, 3. Write pt,i for the
image of the projection 1Et,i under the restriction map `∞(G) ∼= C(βG)→ C(M) and set
Ω = {pt,i : t ∈ G \ {e}, i = 1, 2, 3}. Since pt,i ⊥ tpt,i for every t ∈ G \ {e} and i = 1, 2, 3,
we see that Ω has the desired property. �

Lemma 4.3. Let E be a (G,PG)-paradoxical subset of G. Then 1E is properly infinite
in `∞(G)oG.

Proof. By hypothesis there exist clopen partitions {C1, . . . , Cn} and {D1, . . . , Dm}
of E and s1, . . . , sn, t1, . . . , tm ∈ G such that s1C1, . . . , snCn, t1D1, . . . , tmDm are pairwise
disjoint subsets of E. Set a =

∑n
i=1 usi1Ci and b =

∑m
i=1 uti1Di . Then a∗a = b∗b = 1E

and aa∗ + bb∗ = 1s1C1∪···∪snCn∪s1D1∪···∪smDm ≤ 1E , so that 1E is properly infinite in
`∞(G)oG. �

Theorem 4.4. C(M) oλ G either has a faithful tracial state or is purely infinite
depending on whether or not G is amenable.

Proof. If G is amenable then every continuous action Gy X on a compact Hausdroff
space admits a G-invariant regular Borel probability measure, and if the action is minimal
then every such measure has full support and hence produces a faithful tracial state on
C(X)oλ G via composition with the canonical conditional expectation onto C(X).

Suppose now that G is nonamenable and let us show that C(M)oλG is purely infinite.
By Lemma 4.2 the action G y M is free, and so by Lemma 3.8 it suffices to show that
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every nonzero projection in C(M) is infinite in C(M)oλG. So let p be a nonzero projection
in C(M). Then it has the form 1U for some clopen subset U of M . We claim that there is
a clopen subset V of βG and a finite set F ⊆ G such that V ∩M = U and

⋃
s∈F sV = βG.

To see this, take a clopen subset W of βG such that W ∩M = U . Since βG \M is open,
we can write βG \M as union of the collection {Ui}i∈I of clopen subsets of βG which do
not intersect M . Since the action on M is minimal there is a finite set F ⊆ G containing
e such that

⋃
s∈F sU = M . Then the clopen sets

⋃
s∈F s(W ∪ Ui) for i ∈ I cover βG and

hence by compactness there is a finite set J ⊆ I such that
⋃
i∈J
⋃
s∈F s(W ∪ Ui) = βG.

We can then take V = W ∪
⋃
i∈J Ui to verify the claim.

Set n = |F |. Let E be the subset of G which spectrally corresponds to V under the
identification `∞(G) ∼= βG. Then, within the type semigroup S(G,G,PG) associated to
the action of G on itself by left translation, we have [G] ≤ n[E]. Since G is nonamenable
it admits a paradoxical decomposition by Tarski’s theorem (Theorem 1.2), and so 2n[G] ≤
(2n− 1)[G] ≤ · · · ≤ 2[G] ≤ [G]. Hence 2n[E] ≤ 2n[G] ≤ n[E], and since n[E] ≤ 2n[E] we
deduce that 2n[E] = n[E] by a Schröder-Bernstein argument (see Theorem 3.5 of [107])
Since the type semigroup S(G,G,PG) has cancellation (Theorem 8.7 of [107]), it follows
that 2[E] = [E]. By Lemma 4.3, 1E is properly infinite in `∞(G)oG. Therefore p, viewed
as the image of 1E under the composition `∞(G) o G → `∞(G) oλ G → C(M) oλ G of
the canonical quotient maps, is (properly) infinite, completing the proof. �

We point out that, in the context of the above theorem, the existence of a faithful
tracial state is equivalent to stable finiteness, as the following proposition demonstrates.

Proposition 4.5. For a minimal action G y X on a compact Hausdorff space, the
following are equivalent:

(1) there exists a G-invariant regular Borel probability measure on X,
(2) C(X)oλ G admits a faithful tracial state,
(3) C(X)oλ G is stably finite.

Proof. (1)⇒(2). Every G-invariant regular Borel probability measure on X produces
a tracial state on C(X)oλ G via composition with the canonical conditional expectation
C(X) oλ G → C(X), and this state is faithful since the measure has full support by
minimality.

(2)⇒(3). It is well known and easy to verify that the existence of a faithful tracial
state on a unital C∗-algebra implies stable finiteness.

(3)⇒(1). If C(X) oλ G is stably finite then it admits a quasitrace τ : (C(X) oλ
G)+ → [0,∞) which we may assume to be normalized so that τ(1) = 1. By the definition
of quasitrace, τ defines via restriction a tracial state on every unital commutative C∗-
subalgebra and satisfies τ(a∗a) = τ(aa∗) for all a ∈ C(X) oλ G. Thus τ defines via
restriction a tracial state on C(X) and for all f ∈ C(X)+ and s ∈ G we have τ(usfu

∗
s) =

τ((usf
1/2)(usf

1/2)∗) = τ(f), so that the regular Borel probability measure on X induced
by τ is G-invariant. �

Note that every G admits a minimal action on a compact metrizable space with an
invariant Borel probability measure [47], in which case the reduced crossed product is
stably finite. In the case that G is amenable all minimal actions have this property. So
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we ask if the invariant mean/paradoxical decomposability dichotomy for groups persists
in the natural dynamical context that produces simple reduced crossed products:

Question 4.6. Is it true that for every minimal topologically free action Gy X of a
nonamenable group the reduced crossed product C(X) oλ G either has a faithful tracial
state or is purely infinite?

5. Minimal actions, pure infiniteness, and nuclearity

As in the previous section, M is a minimal closed G-invariant subset of βG.

Lemma 5.1. Suppose that G is nonamenable. Let p be a projection in C(M). Then
there is a countable set Λ ⊆ C(M) such that p is properly infinite in A oλ G for every
G-invariant C∗-subalgebra A ⊆ C(M) which contains {p} ∪ Λ.

Proof. By Theorem 4.4 the projection p is properly infinite in C(M) oλ G, and so
there are partial isometries x, y ∈ C(M)oλ G such that x∗x = y∗y = p and xx∗ + yy∗ ≤
p. Take sequences {xn} and {yn} in Cc(G,C(M)) which converge in norm to x and
y, respectively. Then for each n the set Kn of all elements in C(M) oλ G of the form
E(xnu

∗
t ) or E(ynu

∗
t ) for t ∈ G is finite, and for every G-invariant C∗-subalgebra A of C(M)

containing Kn the crossed product AoλG contains xn and yn. Thus for every G-invariant
C∗-subalgebra A of C(M) that contains the countable set

⋃∞
n=1Kn the crossed product

Aoλ G contains x and y and hence also p as a properly infinite projection. �

Lemma 5.2. Let Ω be a countable subset of C(M). Then there is a separable G-
invariant unital C∗-subalgebra A of C(M) which is generated by projections, contains Ω,
and has the property that each of its projections is properly infinite in Aoλ G.

Proof. We will recursively construct countable subsets Ω0 = Ω,Ω1,Ω2, . . . of C(M)
and countable G-invariant subsets P0, P1, P2, . . . consisting of projections in C(M) such
that for each n the set Qn of projections in C∗(Pn) is contained in Ωn+1 and each member
of Qn is properly infinite in C∗(Pn+1)oλ G.

Since M is zero-dimensional, every element of C(M) can be approximated in norm by
linear combinations of projections. It follows that every countable subset of C(M) lies in
the C∗-algebra generated by a countable set of projections, and by applying G to this set
we may take it to be G-invariant. So take a countable G-invariant set P0 of projections
in C(M) such that 1 ∈ P0 and Ω ⊆ C∗(P0). Since C∗(P0) is separable the set Q0 of
projections in C∗(P0) is countable, and so by Lemma 5.1 we can find for each p ∈ Q0 a
countable set Λp ⊆ C(M) such that p is properly infinite in Aoλ F for every G-invariant
C∗-subalgebra A ⊆ C(M) which contains {p} ∪ Λp. Set Ω1 = Q0 ∪

⋃
p∈Q0

Λp. Since Ω1

is countable we can find as before a countable G-invariant set P1 ⊆ C(M) of projections
such that Ω1 ⊆ C∗(P1). Now continue in the same fashion to generate sets Ω0,Ω1,Ω2, . . .
and P0, P1, P2, . . . with the desired properties.

Let A be the C∗-subalgebra of C(M) generated by the G-invariant countable set of
projections

⋃∞
n=0 Pn. Then A is unital and G-invariant and Ω ⊆ A. Moreover, if p is a

projection in A then it is equivalent to a projection in C∗(Pn) for some n and therefore p
is properly infinite in C∗(Pn+1)oλ G and hence also in Aoλ G. �
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Theorem 5.3. G is nonamenable if and only if there exists a free minimal action
Gy X on the Cantor set such that C(X)oλ G is purely infinite.

Proof. If G is amenable then every action on a compact Hausdorff space admits a
G-invariant Borel probability measure, and such an invariant measure yields a tracial state
on the reduced crossed product via composition with the canonical conditional expectation
onto C(X), which implies that the reduced crossed product is not purely infinite.

Suppose then that G is nonamenable. Combining Lemmas 4.2, 5.1, and 5.2 we obtain

a separable G-invariant unital C∗-subalgebra A of C(M) such that Â is zero-dimensional,

the action of G on Â is free and minimal, and every projection in A is properly infinite
in A oλ G. By Lemma 3.8, A oλ G is purely infinite. Now since G is nonamenable it

is infinite, and so Â cannot contain any isolated points in view of the minimality of the

action. Since Â is metrizable by virtue of the separability of A, it follows that Â is the
Cantor set. �

By Theorem 2.4, G is exact if and only if there is an action Gy X which is amenable.
We record next some more precise information in the forward direction.

Lemma 5.4. Suppose that G is exact. Then there is a countable set Υ ⊆ C(M) such
that for every G-invariant unital C∗-subalgebra A of C(M) containing Υ the action of G

on Â is amenable.

Proof. By Theorem 2.4 the actionGy βG is amenable, and hence so is its restriction
to M . Let {Ti}i∈I be a net in Cc(G,C(M)) which witnesses the amenability of the action
as in Proposition 2.2. Since G is countable we may assume I to be countable. Then we
can take Υ = {Ti(t) : i ∈ I, t ∈ G}. �

The main point of the following result of Rørdam and Sierakowski is that the crossed
products in question fall under the purview of the Kirchberg-Phillips classification theorem
for simple separable purely infinite nuclear C∗-algebras (i.e., Kirchberg algebras) which
satisfy the universal coefficient theorem (UCT) [58, 81]. The classifying invariant in the
unital case is K-theory paired with the K0 class of the unit, and it is complete.

Theorem 5.5. G is exact and nonamenable if and only if there exists a free minimal
action Gy X on the Cantor set such that C(X)oλ G is a Kirchberg algebra in the UCT
class.

Proof. By Theorems 2.3, 2.4, and 5.3, we need only show the forward direction,
and this follows by incorporating the use of Lemma 5.4 into the proof of (1)⇒(3) in
Theorem 5.3, applying Theorem 2.3, and noting that the UCT property is a consequence
of a result of Tu [100]. �



CHAPTER 3

External measure-theoretic phenomena

1. Sofic groups, sofic actions, and hyperlinearity

As discussed in Section 1, for discrete groups the basic idea of internal measure-
theoretic finite approximation is captured by the Følner set characterization of amenability.
At the same time we can view Følner sets as furnishing external finite approximations in
the following way. Let F be a nonempty finite subset of a discrete group G. For every
s ∈ G choose a bijection σ̃s : F \s−1F → F \sF and define an element σs the permutation
group Sym(F ) of F by σs(t) = st if st ∈ F and σs(t) = σ̃s(t) otherwise. This defines a map
σ : G → Sym(F ), and if F is approximately invariant under translation by a given finite
set E ⊆ G in the sense that |sF ∩ F |/|F | is small for all s ∈ E then σ is approximately
multiplicative and free on E in the sense that |{t ∈ F : σrs(t) = σrσs(t)}|/|F | is small
for all r, s ∈ E and |{t ∈ F : σr(t) 6= σs(t)}|/|F | is small for all distinct r, s ∈ E. The
existence of such approximately multiplicative and free maps into the permutation group
of a finite set leads us to the following notion of a sofic group, which was conceived by
Gromov in [38] (see also [109]).

We say that a countable discrete group G is sofic if for i ∈ N there are a sequence
{di}∞i=1 of positive integers and a sequence {σi}∞i=1 of maps s 7→ σi,s from G to Sym(di)
which is asymptotically multiplicative and free in the sense that

lim
i→∞

1

di

∣∣{k ∈ {1, . . . , di} : σi,st(k) = σi,sσi,t(k)}
∣∣ = 1

for all s, t ∈ G and

lim
i→∞

1

di

∣∣{k ∈ {1, . . . , di} : σi,s(k) 6= σi,t(k)}
∣∣ = 1

for all distinct s, t ∈ G. Such a sequence {σi}∞i=1 is called a sofic approximation sequence
for G. In the theory of sofic entropy discussed in the next section we assume, in order
to avoid pathologies, that limi→∞ di = ∞, which is automatic if G is infinite. To treat
uncountable G one simply replaces sequences with nets.

In addition to amenable groups, all residually finite groups are sofic, since we can
produce genuinely multiplicative maps σi : G → Sym(G/Gi) where Gi is a finite-index
normal subgroup and the action on G/Gi is by left translation. The image of a group
element s under such a map will be a genuinely free permutation if s is not contained
in the normal subgroup. More generally, all groups that are locally embeddable into
finite groups (see Section 1) are sofic, and soficity can be viewed as the measure-theoretic
analogue of this topological property (note that since we are talking about discrete groups,
“topological” is synonymous here with “purely group-theoretic”). Free groups are sofic

33
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because they are residually finite. It is not known whether there is a countable discrete
group that is not sofic.

One can also regard the σi above as maps into permutation matrices in Mdi , and in
this way one can formally weaken soficity by merely requiring σi to map into unitaries,
with the approximate multiplicativity and freeness expressed using the 2-norm arising
from the unique tracial state on Mdi . This gives us the notion of hyperlinearity, which is
equivalent to the embeddability of the group von Neumann algebra LG into an ultrapower
Rω of the hyperfinite II1 factor. In fact, using a 2 × 2 matrix trick one can deduce that
LG embeds into Rω merely knowing that G embeds into the unitary group of Rω, i.e.,
without the zero-trace condition on nontrivial group elements [57, 86] (see Prop. 7.1 in
[78]). In contrast to the internal finite approximation picture where it is known that the
countable discrete group G is amenable if and only if the group von Neumann algebra LG
is hyperfinite, it is not known whether soficity and hyperlinearity are the same.

Whether there exist countable discrete groups which are not hyperlinear is a specializa-
tion of Connes’ embedding problem, which asks whether every separable II1 von Neumann
algebra embeds into Rω. Thus Rω-embeddability is the algebraic analogue of the combi-
natorial property of soficity, and one could also apply this notion to C∗-algebras with a
faithful tracial state. However, insofar as they take us beyond the realm of amenability,
soficity and Rω-embeddability do not appear to be directly relevant to the classification
theory for nuclear C∗-algebras. We note however that by a result of Kirchberg [56, 78]
Connes’ embedding problem is equivalent to asking whether every separable C∗-algebra is
the quotient of a C∗-algebra with the weak expectation property (QWEP), and it would
be very interesting to test these ideas by examining actions nonamenable groups and their
reduced crossed products.

As is implicit in the definition of sofic entropy reviewed in the next section, the concept
of soficity also applies to measure-preserving and topological dynamics, and more generally
to groupoids with appropriate structure. One asks that the associated inverse semigroup of
partial transformations can be locally modelled using partial permutation matrices in much
the same way as for groups using permutation matrices. Because of the rigid matricial
nature of the modelling, for topological systems this implies the existence of an invariant
Borel probability measure. It follows that for actions of nonamenable groups on compact
Hausdorff spaces the properties of amenability and soficity are mutually exclusive. On the
other hand, for amenable acting groups they always both hold.

The topological analogues of hyperlinearity and soficity play an important role in C∗-
structure theory, and we will examine this subject in Chapter 5. Also, soficity has recently
come to be recognized as the missing ingredient in our understanding of the role of internal
and external finite approximation and the relation between them in the theories of entropy
and mean dimension, to which we turn next.

2. Entropy

The dynamical concept of topological entropy is based, in its most general sofic form,
on the idea of counting finite models which are distinguished up to some observational
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error. As such it is directly connected to external finite-dimensional approximation in C∗-
algebras, and specifically to the question of what the size or volume of the number of finite-
dimensional local approximations for a C∗-algebra can tell us about its structure. Not
surprisingly, given our analysis of the relationship between internal and external structure
for groups, topological entropy can also be interpreted as reflecting internal structure in
certain specialized contexts, like that of integer actions on the Cantor set, which will be
discussed in connection with combinatorial independence in Section 3.

If we try to locally count all external finite-dimensional models for a C∗-algebra then we
are in the realm of free entropy dimension, a subject which we will not pursue here (com-
pare however the internal notions of dimension in Section 2) although it is linked to certain
phenomena like approximate unitary equivalence that one encounters in C∗-classification
theory [106, 45]. In contrast, topological entropy counts the number dynamical mod-
els relative to the group or some fixed approximation thereof, and the growth is in the
much smaller exponential regime. One might expect that this coordinatized information
typically gets washed away when passing to the crossed product. For minimal homeo-
morphisms of the Cantor set this is exactly what happens: within every class of such
homeomorphisms yielding the same crossed product up to isomorphism, every possible
value of entropy occurs [17, 94, 95]. On the other hand, if one measures the exponential
growth of the asymptotic number of finite models for the dynamics (instead of just taking
a supremum or infimum as for entropy) as the precision with which one distinguishes these
models gets finer and finer, then one can identify dimensional phenomena that lie at the
heart of certain key issues in the classification of simple stably finite nuclear C∗-algebras.
This variation on entropy is called mean dimension and will be treated in Section 4, and
it will be our main interest in connection with C∗-structure. For context and motivation
we will begin with a review of entropy theory.

There are two mathematical approaches to the notion of entropy, and they are con-
nected by Stirling’s approximation. One is captured by Shannon’s information theory,
while the other has its origin in the work of Boltzmann in statistical mechanics and is
based on the idea of counting finite models. Both of these viewpoints can be used to
generate invariants for dynamical systems. Conventionally one does this in a measure-
theoretic way using partial orbits even if one is treating actions on compact spaces, as one
has a variational principle that allows one to pass between measurable and topological
dynamics. One the other hand, the computation of topological entropy in many cases in-
volves the counting of finite orbits, which has a topological flavour (see Example 2.2). One
could thus define a more genuinely topological notion of entropy by counting partial orbits
which are close to being finite orbits, as opposed to arbitrary partial orbits according to
the conventional definitions. This “topological” topological entropy would be in line with
the kinds of finite-dimensional approximation that are specific to C∗-algebras, as opposed
to von Neumann algebras. We will return to this point, although we will spend the bulk
of our time discussing the conventional definitions of dynamical entropy.

The information-theoretic approach to entropy is internal in nature and, as expected
from our prior discussions, works in the dynamical setting most generally for amenable
acting groups. This is the domain of the classical theory of dynamical entropy [108,
33, 76]. The statistical mechanical approach is external and applies in dynamics most
generally for sofic acting groups. The theory of sofic entropy was only recently pioneered
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by Bowen in [15] and further developed by Kerr and Li in [53, 51]. Just as soficity
for groups includes amenability as a special case, the sofic version of entropy subsumes
the classical amenable one [16, 54]. Dynamical entropy in its most general sofic form
measures the exponential growth of the number of finite models for the dynamics at fixed
but arbitrarily fine levels of precision. For single transformations these finite models can
be taken to be partial orbits which we only distinguish to within a given error, with the
exponential growth measured relative to the number of iterations. More generally, for
actions of a countable amenable group one similarly computes the exponential growth of
partial orbits along a Følner sequence. Most generally, for actions of a countable sofic
group one replaces the internal counting of orbits with an external picture that counts the
number of models for the dynamics that are compatible with a given sofic approximation
of the group by permutations of a finite set, and then measures exponential growth along
a fixed sequence of such approximations which asymptotically witness the soficity of the
group. The Ornstein-Weiss quasitiling machinery can then be used to show that this sofic
notion of entropy reduces to the partial orbit definition in the amenable case.

The notion of entropy was first introduced into dynamics in the work of Kolmogorov
and Sinai using Shannon’s idea of information. In its original form, Kolmogorov-Sinai mea-
sure entropy is expressed in terms of partial orbits of partitions (internal picture) rather
than points (external picture), although one can equivalently take the latter viewpoint.
Because of its internal nature it works most generally for actions of amenable groups.
We now recall the definition. Let (X,µ) be a probability space. Let P be a measurable
partition of X. The information function I : X → [0,∞] assigns to a point x the value
− logµ(A) where A is the member of P that contains x. This is meant to quantify the
amount of information that one gains in learning the partition member A to which a pre-
scribed but unrevealed point x belongs. The idea is that the amount of information we
gain about x (i.e., the degree to which we can distinguish x from other points) should be
inversely proportional to the measure of A, with the additional application of a logarithm
designed to produce additive behaviour. The entropy H(P) of the partition P is defined
as

H(P) =

∫
X
I(x) dµ(x) =

∑
A∈P
−µ(A) logµ(A),

that is, the average amount of information gained in learning that x lies in its particular
partition member as x ranges over all of X.

Now given a measure-preserving transformation T : X → X one defines

hµ(T,P) = lim
n→∞

1

n
H(P ∨ T−1P ∨ · · · ∨ T−n+1P)

with the limit existing by subadditivity. This quantity represents the amount of informa-
tion gained, on average in both space and time, in learning that the trajectory of a point
visits a certain sequence of members of P. Thus the more chaotic or mixing the dynamics
are, the larger we expect hµ(T,P) to be, since we will be able to distinguish points more
quickly from the knowledge of what members of P their partial trajectories visit. The
Kolmogorov-Sinai entropy of T is defined by

hµ(T ) = sup
P

hµ(T,P)
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where P ranges over the finite measurable partitions of X. For a Bernoulli shift T :
(Y, ν)Z → (Y, ν)Z, where (Y, ν) is a probability space and the action is by translation, the
entropy is the logarithm of the entropy of Y , which is defined as H(P) if Y is atomic and
P is the partition of Y into its atoms, and +∞ otherwise. Ornstein showed that entropy
is a complete invariant for Bernoulli shifts. Prior to the introduction of entropy, all of
the known measure-dynamical invariants (e.g., ergodicity, mixing, weak mixing) were of a
spectral nature in the sense that they depend on the associated unitary representation of
Z on L2(X,µ) given by composition with the powers of T . For a nontrivial Bernoulli shift
one always obtains the regular representation with infinite multiplicity on the orthogonal
complement of the constant functions.

Although one could define an invariant for measure-preserving actions G y (X,µ)
of any countable discrete group by averaging as above but over arbitrary but fixed finite
subsets of G instead of the intervals {0, 1, . . . , n− 1} in Z, it is only by taking these finite
sets to be Følner sets that one can compare the values of entropy on different partitions,
which is crucial for the purpose of computation. Thus this approach works most generally
for actions of amenable groups.

For homeomorphisms of compact Hausdorff spaces, Adler, Konheim, and McAndrew
introduced a notion of topological entropy modelled on the Kolmogorov-Sinai definition.
One replaces the computation of the Shannon entropy of a partition with the counting
of the minimal cardinality of a subcover of an open cover. Thus for a homeomorphism
T : X → X of a compact Hausdorff space we define

htop(T ) = sup
U

lim
n→∞

1

n
logN(U ∨ T−1U ∨ · · · ∨ T−n+1U)

where U ranges over the finite open covers of X and N(·) denotes the minimum cardinality
of a subcover. The limit exists by the subadditivity of N(·) with respect to joins. As for
Kolmogorov-Sinai entropy, the internal averaging over subsets of Z can be done more
generally over Følner sets for an amenable acting group G in order to obtain a meaningful
invariant htop(X,G). In this case the entropy of the shift G y {1, . . . , k}G is easily
computed to be log k.

R. Bowen subsequently gave an equivalent formulation in terms of ε-separated partial
orbits with respect to a compatible metric. This facilitates computation in many cases and
runs as follows. Let X be a compact space with compatible metric d and let T : X → X
be a homeomorphism. For ε > 0 and n ∈ N we say that a set E ⊆ X is (n, ε)-separated if
maxk=0,...,n−1 d(T kx, T ky) > ε for any two distinct x, y ∈ E. Then

htop(T ) = sup
ε>0

lim sup
n→∞

1

n
log sepn(ε)

where sepn(ε) is the maximum cardinality of an (n, ε)-separated subset of X.
The classical variational principle asserts that, for an action G y X of a countable

amenable group on a compact metrizable space, the topological entropy is equal to the
supremum of the measure entropies over all invariant Borel probability measures on X.
This is one expression of the fact that topological entropy is really a measure-theoretic con-
struct. Compare the equivalence, for a C∗-algebra A, of nuclearity with the hyperfiniteness
of π(A)′′ for every representation π of A.
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R. Bowen’s (n, ε)-separated set formulation gives us a hint of how entropy can be ex-
tended to actions of sofic groups by externalizing the averaging to some finite set on which
the group approximately acts. In the case of an amenable group we can take these finite
sets to be Følner sets in order to recover the classical definition. This idea of sofic entropy
was introduced by L. Bowen, who showed that one can generate a computable invariant
for a measure-preserving action by modelling orbits of partitions inside sofic approxima-
tions for the group [15]. Kerr and Li subsequently demonstrated that sofic entropy can be
expressed, in the spirit of R. Bowen, by using points instead of partitions [53, 54]. This
approach also produces a topological dynamical invariant, and the variational principle
extends to this context. For an action G y X one fixes a sequence of sofic approxima-
tions for the acting group G and then measures the exponential growth of the number
of approximately equivariant maps from the sofic approximations into X, which one only
distinguishes up to an observational ε-error. The precise definition is as follows.

Let X be a compact metrizable space and Gy X an action of a countable sofic group.
Let ρ be a continuous pseudometric on X. For d ∈ N we define on the set of all maps from
{1, . . . , d} to X the pseudometric

ρ2(ϕ,ψ) =

(
1

d

d∑
a=1

(ρ(ϕ(a), ψ(a)))2

)1/2

.

Write Sym(d) for the group of permutations of {1, . . . , d}. Given a nonempty finite set
F ⊆ G, a δ > 0, and a map σ : G→ Sym(d), we define Map(ρ, F, δ, σ) to be the set of all
maps ϕ : {1, . . . , d} → X such that ρ2(ϕ ◦ σs, αs ◦ ϕ) < δ for all s ∈ F .

Definition 2.1. Let Σ = {σi : G → Sym(di)} be a sofic approximation sequence for
G. Let F be a nonempty finite subset of G and δ > 0. For ε > 0 we define, writing
Nε(·, ρ2) for the maximum cardinality of an ε-separated set with respect to ρ2,

hεΣ(ρ, F, δ) = lim sup
i→∞

1

di
logNε(Map(ρ, F, δ, σi), ρ2),

hεΣ(ρ, F ) = inf
δ>0

hεΣ(ρ, F, δ),

hεΣ(ρ) = inf
F
hεΣ(ρ, F ),

hΣ(ρ) = sup
ε>0

hεΣ(ρ),

where F in the third line ranges over the nonempty finite subsets of G. If Map(ρ, F, δ, σi)
is empty for all sufficiently large i, we set hεΣ(ρ, F, δ) = −∞.

We note that one could substitute the pseudometric

ρ∞(ϕ,ψ) = max
a=1,...,d

ρ(ϕ(a), ψ(a))

for ρ2 without changing the value of hΣ(ρ).
We say that the continuous pseudometric ρ is dynamically generating if for any distinct

points x, y ∈ X one has ρ(sx, sy) > 0 for some s ∈ G. It is easily checked that hΣ(ρ) has a
common value over all dynamically generating continuous pseudometrics ρ, and we define
the topological entropy hΣ(X,G) of the system to be this common value. Note that this
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could depend on Σ. The prototypical example of the shift action G y {1, . . . , k}G has
entropy log k, independently of Σ.

In the case that G is amenable, every sofic approximation for G approximately de-
composes into copies of Følner sets (and is therefore essentially internal to G), so that the
elements of Map(ρ, F, δ, σi) are essentially unions of partial orbits. As a result hΣ(X,G)
reduces to the classical topological entropy, and in particular does not depend on Σ [54].
For general G an element of Map(ρ, F, δ, σi) can be viewed as a system of interlocking
approximate partial orbits.

Example 2.2. Let G be a countable discrete group, and let f be an element in the
integral group ring ZG. Then G acts on ZG/ZGf by left translation, and this yields by
Pontrjagin duality an action αf of G by automorphisms on the compact Abelian dual

group Xf := ̂ZG/ZGf . When f is equal to k times the unit this gives the shift action

G y {1, . . . , k}G. Now if G is residually finite and {Gi}∞i=1 is a sequence of finite-index
normal subgroups of G with

⋂∞
j=1

⋃∞
i=j Gi = {e}, and f is invertible as an element in

the full group C∗-algebra C∗(G), then the topological entropy of αf with respect to the
sofic approximation sequence Σ arising from {Gi}∞i=1 via left translations on the quotients
G/Gi is equal to the exponential growth rate of the number of Gi-fixed points and to the
logarithm of the Fuglede-Kadison determinant of f in the group von Neumann algebra
of G [53]. The topologcal entropy is also equal to logarithm of the Fuglede-Kadison
determinant of f when G is amenable and f is invertible in C∗(G) [65].

The above examples are natural from the viewpoint of entropy structure but are far
from being minimal, and one would like to be able to say something about the prevalence
or even possibility of nonzero entropy for minimal actions on various spaces. In Section 5
we will construct minimal homeomorphisms that have nonzero mean dimension, which
implies infinite entropy.

If in addition to an actionGy X we have aG-invariant Borel probability measure µ on
X, then one can define the sofic measure entropy hΣ,µ(X,G) in the same way as hΣ(X,G),
except that now one must ask that the push forward to X of the uniform measure on the
sofic approximation space be weak∗ close to µ. One can moreover show that hΣ,µ(X,G) is
in fact a measure-dynamical invariant, i.e., for an abstract probability-measure-preserving
action G y (X,µ) we obtain the same value over all topological models for the action.
Extending the classical variational principle, for an action Gy X on a compact metrizable
space one has

hΣ(X,G) = sup
µ
hΣ,µ(X,G)

where µ ranges over all G-invariant Borel probability measures on X. In particular, for
hΣ(X,G) not to be −∞ there must exist a G-invariant Borel probability measure on X.
Thus if G is nonamenable then hΣ(X,G) = −∞ for all amenable actions of G.

In the case that X is zero-dimensional (e.g., a Cantor set) and G is amenable, one has

htop(X,G) = sup
U

lim sup
n→∞

1

n
log |U ∨ T−1U ∨ · · · ∨ T−n+1U|
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where U ranges over all clopen partitions of X. Thus the computation reduces to merely
counting sets, as opposed to the subtler problem of trying determine minimum cardi-
nalities of subcovers, and we have an internal expression of topological entropy that is
structurally the nicest possible from a C∗-algebra viewpoint, in the sense of the algebraic
finite-dimensional approximation that defines an AF algebra (see Section 1). In [105]
Voiculescu introduced another approach to formulating topological entropy that uses the
completely positive approximation property and works most generally for amenable G,
and this provides a clear manifestation of the internal viewpoint for general X.

3. Combinatorial independence

Does knowing the value of entropy give us any structural information about the dy-
namical system, especially as it might impact the structure of the crossed product? As
a single number, entropy by itself tells us little about global structure, although one can
localize its study (“local entropy theory” [34]) in order to identify phenomena that collec-
tively say something about the system as a whole. It turns out that, for amenable acting
groups, nonzero entropy occurs precisely when the dynamics exhibits a product structure
along a positive density subset of the group. Something similar happens for sofic groups,
with the positive density condition being externalized to the sofic approximation space.
The shift G y {1, . . . , k}G exhibits this product structure in a prototypical way along
the whole group. The formal notion is what we call combinatorial independence, which
since the 1970s has played an important role in Banach space theory via the study of `1
and its relation to other spaces. For simplicity we will now restrict our attention to single
homeomorphisms, although one can develop the theory for amenable acting groups, and
also to a certain extent for sofic acting groups.

A collection {(Ai,0, Ai,1)}i∈I of pairs of disjoint subsets of a given set is said to be
independent if for every finite set F ⊆ I and σ ∈ {0, 1}F we have

⋂
i∈F Ai,σ(i) 6= ∅. Given a

compact Hausdorff space X, if one takes an independent collection {(Ai,0, Ai,1)}i∈I of pairs
of disjoint closed subsets of X and functions fi ∈ C(X,R) satisfying ‖fi‖ ≤ 1, fi|Ai,0 = 1,

and fi|Ai,1 = −1, then the map that sends the ith coordinate basis vector in `1R to fi is
easily seen to extend to an isometric linear embedding. In fact it is only by uniformly
separating the values of functions in this way over an independent collection that one can
embed `1R (which has the largest norm among sequence spaces) isomorphically in C(X,R)
(which is a continuous analogue of `∞R , which has the smallest norm among sequence
spaces).

Let X be a compact metric space and T : X → X a homeomorphism. We say that
a set I ⊆ Z is an independence set for a pair (A0, A1) of subsets of X if the collection
{(T−iA0, T

−iA1) : i ∈ I} is independent. The upper density of a set I ⊆ Z≥0 is the
quantity lim supn→∞ |I ∩ {0, . . . , n − 1}|/n. Now suppose that there is a pair (A0, A1)
of disjoint nonempty closed subsets of X with an independence set I ⊆ Z≥0 of positive
upper density. Take an ε > 0 which is smaller than the Hausdorff distance between A0

and A1. Given an n ∈ N, for every σ ∈ {0, 1}I∩{0,...,n−1} we can find an xσ ∈ X such that
T ix ∈ Aσ(i) for all i ∈ I∩{0, . . . , n−1}, and the collection of all such xσ is (n, ε)-separated
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and has cardinality 2|I∩{0,...,n−1}|. It follows that

htop(T ) ≥ lim sup
n→∞

1

n
log sepn(ε) ≥ lim sup

n→∞

1

n
|I ∩ {0, . . . , n− 1}| log 2 > 0.

This gives one direction of the following theorem.

Theorem 3.1. htop(T ) > 0 if and only if there is a pair of disjoint nonempty closed
subsets of X which has an independence set of positive upper density.

The forward direction can be established by means of a hard combinatorial argument
that will not be reproduced here [52]. When X is zero-dimensional the combinatorics
are simpler and one can appeal to the classical Sauer-Shelah lemma, which in crude form
asserts the following.

Lemma 3.2. For every β > 0 there is a d > 0 such that, for all n ∈ N, if S ⊆
{0, 1}{1,...,n} has cardinality at least eβn then there is an I ⊆ {1, . . . , n} such that |I| ≥ dn
and S|I = {0, 1}I .

To complete the proof of the forward direction in Theorem 3.1 under the assump-
tion that X is zero-dimensional, take a clopen partition U with htop(T,U) > 0, where
htop(T,U) = lim supn→∞ n

−1 log |U∨T−1U∨· · ·∨T−n+1U|. By refining U we may assume
that it has the form U1∨· · ·∨Uk for some two-element clopen partitions U1, . . . ,Uk. Then

one can verify that htop(T,U) ≤
∑k

i=1 htop(T,Ui) so that htop(T,Ui) > 0 for some i, and
so we may assume that U itself is a two-element clopen partition {A0, A1}. Now apply the
Sauer-Shelah lemma to a suitable sequence of intervals in N to construct an independence
set of positive upper density for the pair (A0, A1).

In fact, using some ergodic theory one can show that the existence of an independence
set of positive upper density for disjoint nonempty closed sets of an arbitrary X implies
the existence of an independence set of positive lower density.

As mentioned in Section 2, for minimal homeomorphisms of the Cantor set the entropy
gives absolutely no information about the crossed product. In particular, the product
behaviour that is manifest through combinatorial independence along positive density
sets of iterates cannot be detected. On the other hand, if this kind of independence occurs
at a dimensional level as exhibited by the shift Gy [0, 1]G, then this touches directly on
some of the key issues in the classification program for nuclear C∗-algebras. This brings
us to the concept of mean dimension.

4. Mean dimension

As for entropy, mean dimension has one version that uses open covers (“topological
mean dimension”, or just “mean dimension”) and another that counts partial orbits or em-
bedded sofic approximations that are ε-separated with respect to a metric (“metric mean
dimension”). Unlike for entropy, however, the relationship between these two versions is
not completely understood in general, although it is known in some important cases.

Topological mean dimension is a dynamicization of covering dimension and was intro-
duced by Gromov in [39] and further developed by Lindenstrauss and Weiss in [74, 73].
One can also formulate it in terms of Urysohn width, and both flavours appear in Gro-
mov’s paper. Let X be a compact Hausdroff space, and let U be a open cover of X. We
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set

ord(U) = max
x∈X

∑
U∈U

1U (x)− 1

and define D(U) to be the minimum of ord(V) over all open covers V refining U. The
covering dimension dim(X) of X is defined as the minimum of D(U) over all open covers
U of X.

Now let T : X → X be a homeomorphism. We define its mean dimension by

mdim(T ) = sup
U

lim
n→∞

1

n
D(U ∨ T−1U ∨ · · · ∨ T−n+1U).

where U ranges over all finite open covers of X. The limit exists because of the sub-
additivity of D(·) with respect to joins of finite open covers. We can similarly define
mdim(X,G) for an action G y X of an amenable group by averaging over Følner sets.
We can furthermore define mdim(X,G) for an action G y X of a sofic group by exter-
nalizing the averaging to finite sets on which a sofic group approximately acts according
to the definition of soficity. In the latter case one pulls back open covers to the finite sofic
approximation space and computes ord(·) there [66]. For a finite-dimensional compact
metrizable space K the left shift action Gy KG satisfies mdim(KG, G) ≤ dim(K), and if
K = [0, 1]d then mdim(KG, G) = d. Since mean dimension does not increase under pass-
ing to subsystems, this means that systems with mean dimension larger than d cannot be
embedded into the shift Gy ([0, 1]d)G. At the other extreme, if X itself has finite covering
dimension then the mean dimension of every action on X is zero. Since our applications
in the next chapter concern integer actions, we will concentrate on that case from now on.

We next define the metric version of mean dimension. Let T : X → X be a home-
omorphism, and let d be a compatible metric on X. Recall from the section on entropy
that sepn(ε) denotes the maximal cardinality of a subset A of X which is (n, ε)-separated
in the sense that maxi=0,...,n−1 d(T ix, T iy) > ε for all distinct x, y ∈ A. The metric mean
dimension of T is defined by

mdimM(T, d) = lim inf
ε→0

1

| log ε|

(
lim sup
n→∞

1

n
log sepn(ε)

)
.

This is a measure of how fast the entropy at the scale ε grows as ε → 0. One has
mdim(T ) ≤ mdimM(T, d) for all compatible metrics onX [74], and if (X,T ) is an extension
of a free minimal action, and in particular if T itself is minimal, then

mdim(T ) = min
d

mdimM(T, d)

where d ranges over all compatible metrics on d [73].
For entropy one has a stark internal interpretation in the zero-dimensional case using

clopen partitions. Because of its dimensional scale, it is not so clear what circumstances
might permit an analogous internal description for mean dimension. This is especially
relevant to the study of crossed product structure within the terms of classification theory.
On the other hand, one should think of mean dimension itself as being the abstract object
of study, without viewing the space as something separate from the action on which we
might impose conditions to facilitate a more definitive but less general analysis. This is
consistent with the fact that mean dimension is a dynamical version of covering dimension.
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As such, for C∗-classification purposes we are most interested in the problem of when the
mean dimension is zero, given that zero-dimensionality for C∗-algebras as expressed in
various different ways (tracial rank zero, finite decomposition rank or nuclear dimension,
Z-stability, zero radius of comparison) is closely tied to K-theoretic classifiability.

In [71] it is shown that if X is a compact metrizable space with finite covering dimen-
sion and T : X → X is a minimal homeomorphism such that the image of K0(C(X)oZ)
in the space of affine functions space over the tracial state space of C(X)oZ is dense, then
C(X)oZ has tracial rank zero, and hence by classification theory is an AH algebra with
real rank zero. To verify tracial rank zero, crucial use is made of the fact that X, having
finite covering dimension, contains an abundant supply of closed sets whose boundaries
all have measure zero for every T -invariant Borel probability measure on X. In fact such
a small boundary property is, among minimal homeomorphisms, characteristic of mean
dimension zero. Given a compact metric space X and a homeomorphism T : X → X,
the orbit capacity of a set E ⊆ X is defined as limn→∞ supx∈X n

−1
∑n−1

i=0 1E(T ix), with
the limit existing by subadditivity. We say that T has the small boundary property if for
every x ∈ U and open neighbourhood U of x there is a neighbourhood of x contained in
U whose boundary has zero orbit capacity. The first part of the following was established
in [74], and the second part in [73].

Theorem 4.1. If T has the small boundary property then it has mean dimension zero,
and the converse holds in the case that (X,T ) is an extension of a free minimal system.

The converse in the above theorem does not hold in general, as the presence of periodic
points can create an obstruction. Consider for example the homeomophism T : (R/Z)2 →
(R/Z)2 given by T (x, y) = (x, y+ x mod 1), which has zero mean dimension since (R/Z)2

has finite covering dimension. The boundary of every small enough neighbourhood of the
point (0, 0) contains at least two points of the form (0, y), which are fixed by T , and so T
fails to have the small boundary property.

In Section 5 we will give a construction of a minimal Z-action with nonzero mean
dimension as in [74] and show that the structure that is responsible for the lower bound
in this example produces nonzero radius of comparison in the crossed product.





CHAPTER 4

Internal topological phenomena

1. Locally finite groups and AF algebras

The topological analogue of amenability for discrete groups is local finiteness. In
contrast to the setting of C∗-algebras, which we will turn to below, for discrete groups the
topological notion of perturbation is trivial and thus, unlike the combinatorial measure-
theoretic viewpoint, does not give us anything new beyond the merely group-theoretic. The
group G is said to be locally finite if every finite subset of G generates a finite subgroup.
Equivalently, G is the increasing union of finite subgroups. Obviously every finite group
is locally finite. An example of a countably infinite locally finite group is the group of all
permutations of N which fix all but finitely many elements. There are uncountably many
pairwise nonisomorphic countable locally finite groups, and there is a countable locally
finite group U which has the universal property that it contains a copy of every finite
group and any two monomorphisms of a finite group into U are conjugate by an inner
automorphism [50]. Note that every locally finite group is torsion. The converse is the
general Burnside problem and is false, as was shown by Golod. In fact a torsion group
need not even be amenable, which is the measure-theoretic analogue of local finiteness to
be discussed below. It is true however that torsion implies local finiteness for subgroups
of GL(n,K) for an n ∈ N and a field K. Also, solvable torsion groups are locally finite.

AF algebras are the C∗-algebraic analogue of locally finite groups and are the proto-
type of internal finite-dimensional approximation in C∗-algebra theory. A C∗-algebra is
approximately finite-dimensional or is an AF algebra if it can be written as the closure of
an increasing union of (or, equivalently, as an inductive limit of) finite-dimensional C∗-
algebras, i.e., of finite direct sums of matrix algebras. These were classified first by Bratteli
in terms of diagrams [18], and then by Elliott using K-theory in a step that opened the
door to the classification program [26]. Like local finiteness for groups, approximate finite-
dimensionality for C∗-algebras also has a purely local description: A separable C∗-algebra
is AF if and only if for every finite set F ⊆ A and ε > 0 there is a finite-dimensional
∗-subalgebra B of A such that F ⊆ε B, by which we mean that for every a ∈ F there is
a b ∈ B with ‖a − b‖ < ε. To produce an inductive limit representation from this local
approximability one uses the fact that sufficiently good approximate containment of one
finite-dimensional C∗-algebra in another implies that the smaller algebra can be conju-
gated into the larger one by a unitary close to 1. One of the major obstacles in C∗-algebra
classification theory is that while one can often show local approximation by more general
but still manageable building blocks this does not necessarily imply an inductive limit rep-
resentation of the algebra in terms of the same type of building blocks. The implication
does still hold in the case of direct sums of matrix algebras tensored with the algebra of

45
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continuous functions over the circle, but is not clear if one substitutes compact spaces of
higher dimension.

If G is locally finite then C∗λ(G) is an AF algebra. This follows from the observation
that if H is subgroup of a group G then setting π(us)δt = δst for all s ∈ H and t ∈ G,
where δt is the canonical basis element in `2(G) associated to t, defines an injective ∗-
homomorphism π : C∗λ(H) → C∗λ(G) since the unitary representation s 7→ π(us) of H
decomposes as a direct sum of copies of the left regular representation via the restrictions
to the right coset subspaces `2(Hs) ⊆ `2(G) for s ∈ G. The following problem however
seems to be unresolved.

Question 1.1. If C∗λ(G) is an AF algebra, must G be locally finite?

Note that if C∗λ(G) is both AF and commutative then G is locally finite by Pontrjagin
duality theory.

In [64] it is shown that a large class of inductive limits of finite alternating groups,
including the simple ones, can be classified in terms of the Bratteli diagram that is asso-
ciated to both the group and its group C∗-algebra, so that the relation to AF algebras is
rigidly structural in this case.

2. Dimension and K-theoretic classification

As far as classifying crossed products is concerned, the most immediate interest is
in minimal Z-actions, where we now have a fairly broad, yet still far from complete,
understanding. In this section we will lay out the classification background that will set
the stage for our study of crossed products of such actions, which will be the focus of the
remainder of the chapter. Of particular importance will be the idea of noncommutative
topological dimension in the various forms of tracial rank, decomposition rank, nuclear
dimension, and radius of comparison.

For a homeomorphism T : X → X of a compact metrizable space, one can see from the
Pimsner-Voiculescu exact sequence [9, Thm. V.1.3.1] that the crossed product always has
nontrivial K1 group, and this prevents C(X) o Z from being an AF algebra. When T is
minimal and X is zero-dimensional, the K1 class of the canonical unitary is in some sense
the only obstruction to approximate finite-dimensionality and, as shown by Putnam [83],
the crossed product turns out to be an AT algebra with real rank zero, as will be explained
in the next section. Recall that an AT algebra an inductive limit of algebras of the form
Mj1(C(T))⊕· · ·⊕Mjm(C(T)), while real rank zero means that self-adjoint elements can be
approximated by self-adjoint elements with finite spectrum. For irrational rotations of the
circle, Elliott and Evans showed that the crossed product is also an AT algebra with real
rank zero [28]. These examples are all captured by Elliott’s classification theorem from
[27]. Q. Lin and Phillips [72] proved that the crossed product of a minimal diffeomorphism
of a compact smooth manifold is an inductive limit of recursive subhomogeneous algebras,
as defined in Section 4. As a consequence, many of these crossed products fall under the
purview of the classification of real rank zero AH algebras with slow dimension growth.

As more powerful classification methods have developed, it has become no longer
necessary to directly exhibit inductive limit decompositions in order to be able to sit-
uate various crossed products within certain classes of K-theoretically classifiable C∗-
algebras. The key to verifying K-theoretic classifiability along more abstract lines is to



2. DIMENSION AND K-THEORETIC CLASSIFICATION 47

show that the C∗-algebra satisfies a suitable noncommutative version of topological zero-
dimensionality, which in conjunction with other hypotheses will permit the appeal to an
appropriately high-powered classification theorem. In particular this will actually imply
that the crossed product has certain inductive limit structure in view of the cumulative
way in which classification theory has developed. Thus for higher-dimensional X we would
like to know when the crossed product still exhibits the kind of noncommutative topo-
logical zero-dimensionality that one sees in the strictest sense in AF algebras and to a
slightly weaker degree in AT algebras. What topological dimension might mean in this
noncommutative context, especially as it impacts classification, has been the subject of
much investigation and has led to the development of the various notions of real rank, sta-
ble rank, tracial rank, radius of comparison, decomposition rank, and nuclear dimension.
The long established notions of real rank zero and stable rank zero are finite spectrum
approximability conditions on single elements and thus do not provide enough structural
leverage in themselves to lead to classification results. On the other hand, tracial rank,
decomposition rank, and nuclear dimension, like the venerable concept of approximate
finite-dimensionality, all involve the modelling of arbitrary finite subsets of the C∗-algebra
by finite-dimensional structure in a robust enough way to be directly consequential for
classification.

As we will see in the following sections, the basic strategy for estimating the dimension
of a crossed product is to obtain a Rokhlin tower decomposition via a first return time map.
The additive dynamical structure that is thereby revealed takes on a matricial form in the
crossed product. What is also of interest is the tension between this additive structure
and the multiplicative structure that underlies entropy and mean dimension, and indeed
we will see how multiplicative structure at the dimensional scale affects classifiability via
the radius of comparison in Section 5.

A simple unital C∗-algebra has tracial rank zero if for every finite set Ω ⊆ A, ε > 0, and
nonzero positive element c ∈ A there is a projection p ∈ A and a unital finite-dimensional
subalgebra B of pAp such that

(1) ‖[a, p]‖ < ε for all a ∈ Ω,
(2) pΩp ⊆ε B, and
(3) 1− p is Murray-von Neumann equivalent to a projection in cAc.

Building on ideas from the inductive limit classification work of Elliott and Gong [29], H.
Lin proved the following classification theorem in [67]. Recall that the Elliott invariant
for a unital C∗-algebra consists of (i) the ordered K0 group with the class of the unit, (ii)
the K1 group, (iii) the tracial state space, and (iv) the pairing between the K0 group and
the tracial state space given by evaluation. In this case ordered K-theory ((i) and (ii)) is
sufficient as an invariant.

Theorem 2.1. Simple unital nuclear C∗-algebras which have tracial rank zero and
satisfy the UCT are classified by their Elliott invariant.

The C∗-algebras in the above theorem turn out to be the simple unital AH algebras
(AH meaning an inductive limit of homogeneous algebras) with real rank zero and slow
dimension growth. Slow dimension growth refers to the asymptotic vanishing of the ratios
of the dimensions of the space to the rank of the cut-down projections in some inductive
limit presentation with homogeneous building blocks, and among the simple unital AH
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algebras with real rank zero it is equivalent to the existence of an inductive limit pre-
sentation with homogeneous building blocks whose spaces have dimension at most three
[22]. In [71] H. Lin and Phillips proved that, for a minimal homeomophism of an infinite
compact metrizable space X with finite covering dimension, if the canonical map from
K0(C(X)oZ) to the space of affine functions on the tracial state space of C(X)oZ has
dense image then C(X)o Z has tracial rank zero. By appealing to H. Lin’s classification
theorem they deduced that such crossed products are AH algebras with real rank zero.
This extends the classification of crossed products of minimal homeomorphisms of the
Cantor set and of irrational rotations of the circle.

Meanwhile Winter introduced the idea of refining the completely positive approxi-
mation property that is characteristic of nuclearity so that it additionally picks up some
topological (i.e., multiplicative) information in a way that can be used to extend the no-
tion of covering dimension to noncommutative C∗-algebras. There are some variations on
how this can be done, the most important of which for classification purposes are decom-
position rank [62] and the more flexible nuclear dimension [114], both of which we now
review.

Let A be a C∗-algebra.

(1) A completely positive map ϕ from a C∗-algebra B to A is said to have order zero if
ϕ(a)ϕ(b) = 0 for all self-adjoint a, b ∈ B satisfying ab = 0. It turns out these are
precisely the maps ϕ : B → A that arise as a 7→ π(a)h for some ∗-homomorphism
π : B → A and positive element h in the commutant of C∗(ϕ(B)) inside its
multiplier algebra.

(2) We say that a completely positive map ϕ from a finite-dimensional C∗-algebra B
to A is n-decomposable if we can write B = B0 ⊕ · · · ⊕Bn so that the restriction
of ϕ to each Bi has order zero.

(3) The decomposition rank of A is the least integer n such that for every finite set
Ω ⊆ A and ε > 0 there are a finite-dimensional C∗-algebra B and completely
positive contractions ϕ : A→ B and ψ : B → A such that ‖ψ ◦ ϕ(a)− a‖ < ε for
all a ∈ Ω and ψ is n-decomposable.

(4) The nuclear dimension of A is the least integer n such that for every finite set
Ω ⊆ A and ε > 0 there are a finite-dimensional C∗-algebra B, a completely
positive contraction ϕ : A → B, and a completely positive map ψ : B → A such
that ‖ψ ◦ ϕ(a) − a‖ < ε for all a ∈ Ω and ψ is n-decomposable with contractive
order zero components.

(5) A has locally finite nuclear dimension if for every finite set Ω ⊆ A and ε > 0
there is a C∗-subalgebra D ⊆ A with finite nuclear dimension such that Ω ⊆ε D.

Incorporating the notions of decomposition rank and nuclear dimension, Winter initi-
ated an innovative approach to classification in the stably finite realm whose broad scheme
parallels what was done in the settings of injective II1 factors and purely infinite nuclear
C∗-algebras, with a new twist involving the passage from UHF-stable classification to
Z-stable classification. The outcome is the following result [111, 113].

Theorem 2.2. The class of unital simple separable nonelementary C∗-algebras with
finite decomposition rank which satisfy the UCT and have the property that projections
separate traces is classified by the Elliott invariant.
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The strategy of the proof can be broken into two parts:

(1) Show that if A is unital, simple, and separable, has finite decomposition rank,
and its projections separate traces, then A ⊗ U has tracial rank zero for every
UHF algebra U of infinite type, and then apply a tracial rank zero classification
theorem [68, 70] to deduce that such C∗-algebras are classified by their Elliott
invariant up to stabilization by Z.

(2) Show that every unital simple separable nonelementary C∗-algebra with finite
nuclear dimension is Z-stable.

Step (2) was originally established for finite decomposition rank in [113] but later the
more flexible nuclear dimension was shown to be sufficient [112]. However, decomposition
rank is still at present needed to clinch the first part of step (1), and one would like to be
able to replace it here as well with nuclear dimension.

Toms and Winter showed that, for a minimal homeomophism of an infinite compact
metrizable space X with finite covering dimension, the crossed product has nuclear di-
mension at most 2 dim(X)+1. Although this is not sufficient to be able to appeal directly
to Theorem 2.2, which requires finite decomposition rank, Toms and Winter were never-
theless able, by applying an argument of H. Lin and Phillips from [71], to verify step (1)
above under the extra assumption that projections separate the traces, which is automatic
if the action is uniquely ergodic. Toms and Winter also proved Z-stability under the same
hypotheses, but this now follows from the general result of Winter on nuclear dimension
and Z-stability. We will present the argument of Toms and Winter for nuclear dimension
in Section 4, after first analyzing minimal homeomorphisms of the Cantor set and their
crossed products in the next section.

Despite the remarkable successes discussed above, examples of Villadsen, Rørdam,
and Toms have shown that the classification program for nuclear C∗-algebras in its K-
theoretic formulation necessarily requires some regularity assumptions like Z-stability, or
the addition of finer invariants. In these examples, topological behaviour of a dimensional
nature also plays an important role. Villadsen showed how perforation in the ordered K0

of certain manifolds like T4 can be propagated across building blocks in an AH algebra so
as to persist in the limit. Toms did the same but in the Cuntz semigroup instead of K0,
and was thereby able to produce a simple AH algebra A whose tensor product with the
universal UHF algebra is a simple AI algebra with the same Elliott invariant as A but is
not isomorphic to A. The perforation exhibited by the Cuntz semigroup of the C∗-algebra
A means that it lies outside of the class of Z-stable C∗-algebras. The C∗-algebra A also
has the related property that the ordering on the Cuntz semigroup is not determined by
the ordering on lower semicontinuous dimension functions. Toms introduced the radius of
comparison as a numerical measure of the failure of the ordering to be determined in this
way.

To explain these notions, we first recall the definition of the Cuntz semigroup W (A)
for a C∗-algebra A. Write M∞(A) for

⋃∞
n=1Mn(A) viewing Mn(A) as an upper left-hand

corner in Mm(A) for m > n, and write M∞(A)+ for the set of positive elements in M∞(A).
For elements a, b ∈ M∞(A)+ we write a - b if there is a sequence {tk} in M∞(A) such
that limk→∞ t

∗
kbtk = a, and a ∼ b if a - b and b - a. Set W (A) = M∞(A)+/ ∼ and write

〈a〉 for the equivalence class of a. For a ∈Mn(A)+ and b ∈Mm(A)+ set 〈a〉+ 〈b〉 = 〈a⊕ b〉
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where a⊕ b = diag(a, b) ∈Mn+m(A)+. We declare that 〈a〉 ≤ 〈b〉 when a - b. This gives
W (A) the structure of a positively ordered Abelian semigroup.

Associated to a quasitrace τ on A is the lower semicontinuous map sτ : M∞(A)+ → R+

given by sτ (a) = limn→∞ τ(a1/n). The value sτ (a) depends only on the Cuntz equivalence
class of a, and we thereby regard sτ as a state on W (A). These states are called lower
semicontinuous dimension functions. WhenA is exact the states onW (A) can be identified
with the quasitraces on A [10] and hence with the tracial states on A [41, 42].

The Cuntz semigroup W (A) is almost unperforated if for all a, b ∈W (A) we have a - b
whenever (n + 1)a ≤ nb for some n ∈ N. We say that A has strict comparison if for all
a, b ∈M∞(A)+ we have a - b whenever s(a) < s(b) for all lower semicontinuous dimension
functions s on W (A). Rørdam proved in [90] that Z-stability implies strict comparison,
and that, for a simple unital exact C∗-algebra A, if W (A) is almost unperforated then A
has strict comparison.

A theorem of Kirchberg asserts that, for traceless simple separable nuclear C∗-algebras,
Z-stability and strict comparison are equivalent (see [90]). It is conjectured that for
simple unital separable nuclear C∗-algebras the following are equivalent: (i) finite nuclear
dimension, (ii) Z-stability, and (iii) strict comparison. The implication (i)⇒(ii) is a result
of Winter that goes into the proof of his Theorem 2.2, while (ii)⇒(iii) is contained in the
results of Rørdam mentioned above [90]. For AH algebras the equivalence of all three
conditions was proved in [98, 99].

We say that A has r-comparison if for all a, b ∈M∞(A)+ we have 〈a〉 ≤ 〈b〉 whenever
s(〈a〉) + r < s(〈b〉) for all lower semicontinuous dimension functions s on W (A). The
radius of comparison of A is the infimum of the set of all r ∈ R+ for which A has r-
comparison, unless this set is empty, in which case it is defined to be ∞. Note that if
A is simple, unital, and exact then Z-stability implies that the radius of comparison is
zero. The radius of comparison scales under tensoring with a matrix algebra, and indeed
the asymptotic ratio between the matrix size and the topological dimension of the base
spaces controls the value from above in an inductive limit of homogeneous algebras. In
contrast, decomposition rank and nuclear dimension are stable under tensoring with matrix
algebras, and one might argue, especially in view of Theorem 2.2, that finite values of these
invariants in the simple case should be thought of as a manifestation of zero-dimensionality
in the way that we conceive of it for ordinary spaces.

In the next three sections we will see how all of these ideas play out in the study of
crossed products of minimal Z-actions.

3. Minimal homeomorphisms of zero-dimensional spaces

The topological setting in which one has the most direct analogue of the Rokhlin tower
lemma for measure-preserving transformations is that of minimal homeomorphisms of the
Cantor set (or more generally zero-dimensional compact metric spaces, but by minimal-
ity the only extra examples we would obtain are the cyclic permutations of a finite set).
This Rokhlin lemma, which unlike the measure-preserving case must admit several tow-
ers in general, establishes the link to matricial structure in the crossed product. Since
the canonical unitary in the crossed product yields, via the Pimsner-Voiculescu exact se-
quence, a K1 obstruction to approximate finite-dimensionality, the crossed product will
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not be an AF algebra, but rather the next closest thing, namely an AT algebra whose
K1 group is equal to Z. By erasing that part of the crossed product that reflects the
dynamics connecting the tops of the Rokhlin towers to the base, one effectively cuts the
K1 obstruction and obtains a finite-dimensional subalgebra of the crossed product. (As
will be discussed in the next section, these ideas can be applied more generally, and to
great effect, to homeomorphisms of finite-dimensional compact metric spaces with finite-
dimensional subalgebras being replaced by recursive subhomogeneous subalgebras.) By
taking a sequence of finer and finer Rokhlin tower decompositions one can construct an
AF algebra out of these finite-dimensional subalgebras which contains all of the ordered
K0 information of the crossed product in a canonical way. However, if we are only con-
cerned with showing that C(X)o Z is an AT algebra, one can apply Berg’s technique in
conjunction with two nested iterations of the Rokhlin lemma to get local approximabil-
ity of a prescribed finite set of crossed product elements by some subalgebra of the form
(Mn0⊗C(T))⊕Mn1⊕· · ·⊕Mnl

. Such “circle” subalgebras are semiprojective and thus can
be assembled, with the appropriate unitary twisting, into an inductive limit that expresses
C(X) o Z as an AT algebra. We will now show how to produce the local approximation
by circle algebras, as demonstrated by Putnam in [83].

Theorem 3.1. Let T : X → X be a minimal homeomorphism of the Cantor set. Then
for every finite set Ω ⊆ C(X) o Z and ε > 0 there is a unital C∗-algebra A of C(X) o Z
which is ∗-isomorphic to

(Mn1 ⊗ C(T))⊕Mn2 ⊕ · · · ⊕Mnl

for some n1, . . . , nl ∈ N and approximately contains Ω to within ε.

Proof. The result will follow upon showing that, given an ε > 0 and a clopen partition
P of X, there is an A as in the theorem statement such that C(P) ⊆ A and ‖u − ũ‖ < ε
for some unitary ũ ∈ A. The idea is to first generate one Rokhlin tower decomposition
to produce a unital finite-dimensional C∗-subalgebra A0 of C(X)o Z that contains C(P)
diagonally, and then generate a second tower decomposition nested in the first from which
we can produce a unitary u1 which commutes with A0 and contains all of the first return
information in the second tower. This unitary will be responsible for the C(T) part in the
circle algebra, and by multiplying it by the permutation unitary v1 that mirrors the second
tower decomposition without the first return information we recover the canonical crossed
product unitary u. The only problem is that v1 will not be approximately contained in
the C∗-subalgebra generated by A0 and u1. To fix this one applies Berg’s technique to
construct a unitary z that gradually exchanges the actions of v1 and its counterpart v0 for
the first tower decomposition along sufficiently long segments of the towers in the second
decomposition. This done by applying the functional calculus to v∗1v0, which lies in the
finite-dimensional C∗-subalgebra generated by the second tower decomposition with the
first return information erased. The unitary z will commute with u1, and zA0z

∗ will
approximately contain v1 and hence also u = u1v1, and so the C∗-subalgebra A we are
looking for is generated by zA0z

∗ and u1. We now describe how all of this works in more
detail.

Starting with an ε > 0 and a clopen partition P, choose an m ∈ N such that π/m < ε.
Take a nonempty clopen subset Y of X such that the sets Y, TY, . . . , TmY are pairwise
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disjoint and for each n = 0, . . . ,m the set TnY is contained is some member of P. We
build Rokhlin towers over Y by considering the first return time map γ : Y → N given by

γ(x) = inf{n ∈ N : Tnx ∈ Y }.

Since Y is clopen this map is continuous and hence takes on only finitely many values
n1, . . . , nl. For k = 1, . . . , l define Yk to be the clopen set γ−1(nk). Thus we have for each
k = 1, . . . , l a tower whose levels TYk, T

2Yk, . . . , T
nkY we can picture as being shifted

upward under T except for the top one. The union
⋃l
k=1 T

nkY of the tops of all of the

towers, which is equal to Y , gets mapped under T to the union
⋃l
k=1 TYk of all of the

bases, and by minimality this operation will involve some mixing between different towers.
Note that since the union of all of the towers is closed and T -invariant, by minimality the
collection P0 of all towers must be a partition of X. We may moreover assume, by dividing
up towers if necessary, that P0 refines P.

Now we construct the unital finite-dimensional C∗-subalgebra A0
∼= Mn1 ⊕ · · · ⊕Mnl

of C(X) o Z by defining for each k = 1, . . . , l the matrix units e
(k)
ij = 1T iYku

i−j where

1 ≤ i, j ≤ nk. Then C(P0) is the span of the diagonals of these l matricial summands,
which therefore contains C(P). Since Mn is generated as a C∗-algebra by the diagonal
matrices and the matrix with ones on the subdiagonal and zeros elsewhere, we see that
A0 is the C∗-algebra generated by C(P0) and u1X\Y .

Define the unitary

v0 =

l∑
k=1

nk∑
i=2

(
e

(k)
i,i−1 + e

(k)
1,nk

)
∈ A0,

which acts via conjugation on C(P0) by shifting all but the top levels of each tower upward,
just like u, but with the top level of the each tower shifted to the bottom level of the same
tower so as to produce the identity on the base after cycling through all of the levels. Then
the unitary u0 = v−1

0 u contains all of the first return information of u and is the identity
in the cut-down of the crossed product by the characteristic function of the complement
of the unions of the tower tops.

Now set Z = Tn1Y1 and construct a second Rokhlin tower decomposition P1 = {T iZk :
1 ≤ k ≤ l′ and 1 ≤ i ≤ n′k} over Z. We may assume that P1 is finer than P0 and that
1Y ∈ C(P1). As before we define the finite-dimensional C∗-subalgebra A1 generated by
C(P1) and u1X\Z , and unitaries v1 and u1 such that u = v1u1. The unitary u1 conjugates
each of the characteristic functions of the levels of the first tower decomposition to itself,
and thus commutes with A0. To complete the argument we will show that there is a
unitary z ∈ A1 which commutes with u1 and C(P) and conjugates v0 to an element close
to v1. The C∗-algebra generated by zA0z

∗ and u1 will then have the properties that we
are seeking.

Since v1v
∗
0 is contained in the finite-dimensional algebra A1 and hence has finite spec-

trum, we can apply the functional calculus to produce a unitary w ∈ A1 such that
wm = v1v

∗
0 and ‖w− 1‖ < π/m ≤ ε. We then define the unitary z ∈ A1 so that (i) its cut-

down by 1X\TY ∪···∪TmY is equal to 1X\TY ∪···∪TmY , and (ii) its cut-down by 1TY ∪···∪TmY ,
viewed as an m × m block diagonal matrix with respect to the levels TY, . . . , TmY , is
diagonal with the (n− 1)st entry down the diagonal equal to unwm−nu−n. One can then
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verify that for each n = 0, . . . ,m− 1 we have

(zv0 − v1z)1TnY = unwm−n(1− w)u1−n

and hence ‖(zv0 − v1z)1TnY ‖ < π/m ≤ ε. Since (zv0 − v1z)1X\TY ∪···∪TmY = 0 it follows
that ‖zv0 − v1z‖ < ε.

Now define A to be the C∗-algebra generated by zA0z
∗ and u1. Then C(P) ⊆ A since

C(P) ⊆ A0 and z commutes with C(P). Furthermore, the unitary ũ = (zv0z
∗)u1 ∈ A

satisfies ‖u− ũ‖ = ‖zv0 − v1z‖ < ε. It remains to show that A ∼= (Mn1 ⊗ C(T))⊕Mn2 ⊕
· · · ⊕Mnl

.
Via conjugation by z, the C∗-algebra A is ∗-isomorphic to the C∗-algebra B generated

by A0 and u1. In B we define the unitary

u′ =

n1∑
i=1

e
(1)
i,n1

u1e
(1)
i1,n

+

l∑
k=2

pk

where pk is the characteristic function of the union of the levels of the kth tower in the first
decomposition. Then A0 and u′ generate B, u′ commutes with A0, and u′pk = pku

′ = pk
for all k = 2, . . . , l. Finally we check that the spectrum of u′ is the entire unit circle. Note
that in K1 we have [v1] = 0 since v1 has finite spectrum and [u] 6= 0 by the Pimsner-
Voiculescu exact sequence [9, Thm. V.1.3.1], so that [u1] 6= 0. Therefore u1, and hence
also u′, has spectrum equal to the unit circle. �

The problem of establishing local approximation by subhomogeneous C∗-algebras as
in the above proof becomes substantially more difficult for homeomorphisms of higher-
dimensional spaces. Additionally, we do not expect the crossed products to be AT algebras,
whose circle algebra building blocks are semiprojective, and hence local approximation will
not by itself be enough to obtain an inductive limit decomposition. On the other hand,
C∗-classification technology has been developed to such a great degree that to establish
classifiability of the crossed product it is sufficient to verify some abstract properties like
tracial rank zero, finite nuclear dimension, or Z-stability, and this does not need anywhere
near the full strength of an inductive limit decomposition, or even local approximation in
the strictest sense. One can then conclude the existence of an inductive limit decomposi-
tion for the crossed product by applying classification results. To show that many crossed
products possess one or more of the above abstract properties, one uses the analogue of
the C∗-algebra A0 in the proof of Theorem 3.1 in a way that avoids having to locally ap-
proximate the canonical unitary itself, specifically as it reflects the first return information
in a Rokhlin tower decomposition. This we discuss next.

4. Minimal homeomorphisms of finite-dimensional spaces

Let X be a compact metric space and let T : X → X be a minimal homeomorphism.
Let Y be a closed subset of X with nonempty interior. By generating Rokhlin towers
according to the first return to Y as in the Cantor set case in the last section, we would
like to build a C∗-subalgebra of C(X) o Z with a simple structure that reflects the ap-
proximate periodicity of the Rokhlin decomposition with the information about the first
return dynamics erased. The problem is that if Y is not clopen then we will have over-
lapping boundaries amongst the levels of different towers. However, this overlapping can



54 4. INTERNAL TOPOLOGICAL PHENOMENA

be controlled as one moves from shorter towers to taller ones in such a way that we can
realize the desired subalgebra by a recursive procedure involving pullbacks of subhomoge-
neous C∗-algebras. C∗-algebras that arise in this way are called recursive subhomogeneous
algebras and they form a particularly tractable and rather broad class of subhomogeneous
algebras.

If A, B, and C are C∗-algebras and ϕ : A → C and ψ : B → C are homomorphisms
then the pullback A ⊕C B = A ⊕C,ϕ,ψ B is defined as {(a, b) ∈ A ⊕ B : ϕ(a) = ψ(b)}.
This is the noncommutative generalization of the operation of gluing together two locally
compact Hausdorff spaces along a common closed subspace. If we are given a C∗-algebra
A, a compact Hausdorff space X, a closed subset X(0) ⊆ X, and a unital homomor-
phism ϕ : A→ C(X(0),Mn), then taking the restriction homomorphism ψ : C(X,Mn)→
C(X(0),Mn) we can form the associated pullback A ⊕C(X(0),Mn) C(X,Mn). A recursive

subhomogeneous algebra is a C∗-algebra that can be obtain by the recursive application of
such pullbacks starting with a homogeneous algebra C(X,Mn) and taking the algebra A
in the construction of the (k + 1)st pullback to be the kth pullback. As a special case we

can produce a direct sum C(X0,Mn0)⊕ · · · ⊕ C(Xr,Mnr) by taking X(0) to be empty at
every stage.

Recursive subhomogeneous algebras form a subclass of the subhomogeneous C∗-algebras,
which are defined by the existence of a finite bound on the dimension of the irreducible
representations. It is shown in [110] that a subhomogeneous C∗-algebra has decomposition
rank n if and only if it has a recursive subhomogeneous decomposition with topological
dimension n, which means that the maximum covering dimension of the spaces appearing
in the decomposition is n. We will need this fact in the proof of Theorem 4.6, which,
although the conclusion concerns nuclear dimension, requires an appeal to the global con-
tractivity of n-decomposable maps in the definition of decomposition rank as applied to
the recursive subhomogeneous algebras that we now describe.

Let X be a compact metrizable space and T : X → X a minimal homeomorphism.
For a closed set Y ⊆ X we define AY to be the C∗-subalgebra of C(X)o Z generated by
C(X) and uC0(X \ Y ).

Theorem 4.1. Let X be an infinite compact metrizable space and T : X → X a
minimal homeomorphism. Let Y be a closed subset of X with nonempty interior. Then
the C∗-subalgebra AY ⊆ C(X) o Z has a recursive subhomogeneous decomposition with
topological dimension equal to dim(X).

The proof of this theorem of Q. Lin, which we will briefly outline, relies on a Rokhlin
tower decomposition as in the Cantor set situation. Define the first return time map
γ : Y → N by

γ(x) = inf{n ∈ N : Tnx ∈ Y }.
Since Y is closed this map is upper semi-continuous and hence takes on only finitely
many values n1, . . . , nl. This determines a partition Y1, . . . , Yl of Y . These sets are not
necessarily closed, although Y1∪ · · · ∪Yk is closed for every k = 1, . . . , l. The sets T jYk for

k = 1, . . . , l and j = 1, . . . , jk partition X into l towers, and the union
⋃l
k=1 Yk of the tops

of all of the towers, which is equal to Y , gets mapped under T to the union
⋃l
k=1 TYk of

all of the bases.



4. MINIMAL HOMEOMORPHISMS OF FINITE-DIMENSIONAL SPACES 55

Now set BY =
⊕l

k=1C(Y k,Mnk
). Then one has a canonical unital embedding ρ :

AY → BY where in C(Y k,Mnk
) ∼= Mnk

(C(Y k)) the component of ρ(f) for f ∈ C(X) is
the diagonal matrix 

f |TYk ◦ T 0 · · · 0
0 f |T 2Yk ◦ T

2 · · · 0
...

...
. . .

...
0 0 · · · f |TnkYk ◦ Tnk


and the component of ρ(u) in C(Y k,Mnk

) is the subdiagonal matrix
0 0 · · · 0 0
1 0 · · · 0 0
0 1 · · · 0 0
...

...
. . .

...
...

0 0 · · · 1 0

 .

Since BY is homogeneous this shows that AY is subhomogeneous, but we would like to
know that AY is in fact recursive subhomogeneous. To this end, for each m = 1, . . . , l
we define the projection map πm : BY →

⊕m
k=1C(Y k,Mnk

) onto the first k summands
and set Am = πm(AY ). One can then demonstrate, as an effect of how the points in ∂Ym
return to Y at times before nm, that

ϕm(b1, . . . , bm−1) = bm|∂Ym∩(Y1∪···∪Ym)

gives a well-defined homomorphism ϕm : Am−1 → C(∂Ym ∩ (Y1 ∪ · · · ∪ Ym),Mnm), and
that the pullback Am−1 ⊕C(∂Ym∩(Y1∪···∪Ym),Mnm ) C(Y m,Mnm) obtained from ϕm and the

restriction map C(Y m,Mnm)→ C(∂Ym ∩ (Y1 ∪ · · · ∪ Ym),Mnm) is isomorphic to Am. As
AY = Al, this yields Theorem 4.1.

Using Theorem 4.1, H. Lin and Phillips proved the following [71].

Theorem 4.2. Let X be an infinite compact metrizable space with finite covering
dimension and T : X → X a minimal homeomorphism. Suppose that the canonical map
from K0(C(X)oZ) to the space of affine functions on the tracial state space of C(X)oZ
has dense image. Then C(X)o Z has tracial rank zero.

Theorem 4.3. The class of crossed products in Theorem 4.2 is classified by the Elliott
invariant, and they are all AH algebras with real rank zero.

We will now give a proof of a more recent result of Toms and Winter that says that if
X is an infinite compact metrizable space with finite covering dimension and T : X → X
is a minimal homeomorphism then C(X)oZ has nuclear dimension at most 2 dim(X)+1.
This relies on the recursive subhomogeneous structure described above, and it leads to
the crossed product classification result recorded below as Theorem 4.8. Note that the
hypotheses that X is infinite and the homeomorphism T is minimal imply that the action
is free, so that C(X)o Z simple by Theorem 0.1.

Lemma 4.4. Let A be a separable C∗-algebra. Let d ∈ N. Suppose that for every finite
set Ω ⊆ A and ε > 0 there are C∗-subalgebras A0, A1 ⊆ A with decomposition rank at most
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d and an h ∈ A such that dist(ah,A0) < ε, dist(a(1− h), A1) < ε, and ‖[a, h]‖ < ε for all
a ∈ Ω. Then A has nuclear dimension at most 2d+ 1.

Proof. Let Ω be a finite subset of A and let ε > 0. By hypothesis there are C∗-
subalgebras A0, A1 ⊆ A with decomposition rank at most d, an h ∈ A, and ba,0 ∈ A0 and
ba,1 ∈ A1 for a ∈ Ω such that for every a ∈ Ω the quantities ‖ah−ba,0‖ and ‖a(1−h)−ba,1‖
are less than ε/8 and ‖[a, h]‖ is sufficiently small to guarantee that ‖h1/2ah1/2−ah‖ < ε/8

and ‖(1− h)1/2a(1− h)1/2 − a(1− h)‖ < ε/8. Since A0 and A1 have decomposition rank
at most d, we can find for each i = 0, 1 a finite-dimensional C∗-algebra Bi and completely
positive contractions ϕi : Ai → Bi and ψi : Bi → Ai such that ψi is d-decomposable and
‖ψi◦ϕi(ba,i)−ba,i‖ < ε/8 for all a ∈ Ω. For each i = 0, 1 apply Arveson’s extension theorem
to extend ϕi to a completely positive contraction ϕ̃i : A→ Bi. Define a completely positive
contraction ϕ : A→ B0 ⊕B1 by

ϕ(a) =
(
ϕ̃0

(
h1/2ah1/2

)
, ϕ̃1

(
(1− h)1/2a(1− h)1/2

))
.

and a completely positive map ψ : B0 ⊕B1 → A by

ψ((b0, b1)) = ψ0(b0) + ψ1(b1).

Then for a ∈ Ω we have

‖ψ0 ◦ ϕ̃0(h1/2ah1/2)− ah‖ ≤ ‖ψ0 ◦ ϕ̃0(h1/2ah1/2 − ah)‖+ ‖ψ0 ◦ ϕ̃0(ah− ba,0)‖
+ ‖ψ0 ◦ ϕ̃0(ba,0)− ba,0‖+ ‖ba,0 − ah‖

<
ε

2

and similarly ‖ψ1 ◦ ϕ̃1((1− h)1/2a(1− h)1/2)− a(1− h)‖ < ε/2, so that

‖ψ ◦ ϕ(a)− a‖ ≤ ‖ψ0 ◦ ϕ̃0(h1/2ah1/2)− ah‖

+ ‖ψ1 ◦ ϕ̃1((1− h)1/2a(1− h)1/2)− a(1− h)‖
< ε.

Since ψ0 and ψ1 are d-decomposable we see that ψ is (2d + 1)-decomposable, and thus,
since ϕ is contractive, we conclude that A has nuclear dimension at most 2d+ 1. �

Lemma 4.5. Let X be an infinite compact metrizable space and T : X → X a minimal
homeomorphism. Let Ω be a finite subset of C(X) o Z and δ > 0. Then there is an
h ∈ C(X) with 0 ≤ h ≤ 1 such that ‖[h, a]‖ < δ for all a ∈ Ω and h−1({0}) and h−1({1})
both have nonempty interior.

Proof. By a straightforward approximation argument using the fact that elements of
C(X)oZ can be approximated by polynomials in u with coefficients in C(X), it is enough
to find a positive h ∈ C(X) such that ‖[h, u]‖ < ε for a sufficiently small ε > 0 depending
on δ and Ω. Set n = d1/εe+ 1. Since X is infinite T has no periodic points and so we can
find a nonempty open set U ⊆ X which is small enough so that the sets U, TU, . . . , T 2nU
are pairwise disjoint. Take a nonempty open set V such that V ⊆ U and then take an
f ∈ C0(U) with 0 ≤ f ≤ 1 such that f |V = 1. Define h ∈ C0(U ∪ TU ∪ · · · ∪ T 2nU) so
that on T iU it is equal to (k/n)(f ◦ T−k) for k = 0, . . . , n and (2 − k/n)(f ◦ T−k) for
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k = n+ 1, . . . , 2n. Then 0 ≤ h ≤ 1, h|V = 0, and h|TnV = 1. Finally, since uhu∗ = h◦T−1

we see that ‖[u, h]‖ = ‖uhu∗ − h‖ = ‖f‖/n = 1/n < ε. �

Theorem 4.6. Let X be an infinite compact metrizable space with finite covering
dimension and let T : X → X be a minimal homeomorphism. Then C(X)oZ has nuclear
dimension at most 2 dim(X) + 1.

Proof. To establish the result we verify the hypotheses of Lemma 4.4 for A = C(X)o
Z and d = dim(X). Let Ω be a finite subset of C(X) o Z and ε > 0. In order to derive
the conclusion of Lemma 4.4 we may assume by perturbing Ω that there is an m ∈ N such
that each element of Ω is a sum of at most m elements of the form f1u

j1f2u
j2 · · · fmujm

where f1, . . . , fm ∈ C(X) and j1, . . . , jm ∈ {−1, 0, 1}. By Lemma 4.5 there are closed sets
Y0, Y1 ⊆ X with nonempty interior and an h ∈ C(X) with 0 ≤ h ≤ 1, h|Y0 = 0, and
h|Y1 = 1 such that ‖[u, h]‖ is small enough to ensure by a functional calculus argument

that ‖[u, h1/m]‖ are in turn small enough so that (f1u
j1f2u

j2 · · · fmujm)h is within distance

ε/m to the element f1v1f2v2 · · · fmvm of AY0 , where vk is equal to h1/mujk if jk = −1 and

ujkh1/m otherwise. Summing up we then obtain for every a ∈ Ω a ba,0 ∈ AY0 such that

‖ah − ba,0‖ < ε. By a similar argument we may assume that ‖[u, (1 − h)1/m]‖ is small
enough so that we can find a ba,1 ∈ AY1 such that ‖a(1 − h) − ba,1‖ < ε. Since AY0 and
AY1 have decomposition rank equal to dim(X), we conclude by Lemma 4.4 that C(X)oZ
has nuclear dimension at most 2 dim(X) + 1. �

In view of the above theorem we ask the following.

Question 4.7. Does the crossed product of a minimal homeomorphism of a compact
metrizable space X with zero mean dimension have finite nuclear dimension?

As mentioned in Section 2, using classification theory one deduces from Theorem 4.6
the following result of Toms and Winter. This also requires adapting the argument that
H. Lin and Phillips used in the proof of Theorem 4.2 in order to show that the tensor
products of C(X)o Z with certain UHF algebras have tracial rank zero.

Theorem 4.8. Let C be the class of C∗-algebras whose members (i) arise as crossed
products of minimal homeomorphisms of infinite compact metrizable spaces with finite
covering dimension, and (ii) have the property that projections separate traces. Then C is
classified by the Elliott invariant, and each member is an AH algebra with real rank zero.

5. Mean dimension and comparison in the Cuntz semigroup

Here we construct a minimal homeomorphism whose crossed product has nonzero
radius of comparison [32], in the spirit of the AH algebra examples of Toms from [97].
This crossed product will have the same Elliott invariant as an AT algebra to which it is not
isomorphic. The strategy, which was pioneered by Villadsen [101] and refined by Toms,
is to propagate an Euler class obstruction across building blocks by ensuring, roughly
speaking, that the topological dimension growth outpaces the matricial growth. We do
this by means of a standard recursive blocking procedure that enables one to construct
minimal subsystems of a shift system Z y KZ. Using this construction, Lindenstrauss and
Weiss exhibited examples of minimal Z-actions with nonzero mean dimension [74]. Mean
dimension, as we saw in Section 4, is an entropy-like invariant that measures dimension
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growth in dynamical systems, in close analogy with the radius of comparison, and for these
minimal subshifts it is the same underlying structure that is responsible for nonzero values
of both invariants. However, it is an open problem to determine the precise relationship
between mean dimension and the radius of comparison of the crossed product. For minimal
Z-actions at least, one might expect them to be roughly the same.

Question 5.1. For minimal homeomorphisms of compact metrizable spaces, what
is the relation between the mean dimension of the homeomorphism and the radius of
comparison of the crossed product?

To construct our minimal subshift, start with a compact metrizable space Y with a
compactible metric ρ that gives Y diameter at most one. Define a compatible metric
d on Y Z by d(x,w) =

∑
k∈Z 2−|k|ρ(xk, wk) where x = (xk)k and w = (wk)k. Let T :

Y Z → Y Z be the shift (xk)k 7→ (xk+1)k. By a block we mean a subset of some Cartesian
power Y l which has the form D1 × · · · ×Dl for closed sets D1, . . . , Dl ⊆ Y . For a block
B ⊆ Y l and an i ∈ {1, . . . , l} we write XB,i for the set of all (xk)k ∈ Y Z such that
(xi+sl, xi+sl+1, . . . , xi+sl+l−1) ∈ B for every s ∈ Z. Thus XB,i is the set of sequences that
can be partitioned, with a fixed phase described by i, into segments of length l belonging
to B. Note that the sets XB,i might not be disjoint. Write XB for the closed T -invariant

subset
⋃l
i=1XBi of Y Z.

Let 0 < d < 1. Our minimal subshift will be defined as the intersection of a decreasing
sequence XB1 ⊇ XB2 ⊇ . . . where the Bn are blocks of the form Yn,1 × · · · × Yn,ln where
ln divides ln+1 and

(1) for all x,w ∈ XBn there is a k ∈ Z such that d(T kx,w) ≤ 2−n+3, and
(2) Yn,i is equal to Y for all i in a subset of {1, . . . , ln} of cardinality greater than dln

and is a singleton otherwise.

The block Bn+1 will be constructed as a subset of B
ln+1/ln
n formed by taking the product

of a large number of copies of Bn along with some singletons in Y . These singletons
are needed to ensure condition (1), which guarantees that the restriction of T to the
intersection of the XBn is minimal.

To begin with, set l1 = 1 and B1 = Y . Suppose next that we have constructed ln
and Bn = Yn,1 × · · · × Yn,ln satisfying (1) and (2) above. Take a (zk)k ∈ XBn which
contains as a substring the concatenation of a finite collection of ln-tuples in Bn×Bn×Bn
which is sufficiently dense to guarantee the existence of an integer b ≥ 2 such that for
all w = (wk)k ∈ XBn there are an s ∈ {1, . . . , b − 2} and a j ∈ {1, . . . , ln} for which
ρ(zsln+j+k, wk) ≤ 2−n−3 for all k in the interval En = {−ln,−ln + 1, . . . , ln}. Let a be a
positive integer to be specified in a moment. Set Yn+1,sln+i = Yn,i for s = 0, . . . , a − 1
and i = 1, . . . , ln, and Yn+1,(a+s)ln+i = {zsln+i} for s = 0, . . . , b− 1 and i = 1, . . . , ln. Put
ln+1 = (a+ b)ln and Bn+1 = Yn+1,1 × · · · × Yn+1,ln+1 . Then by taking a sufficiently large
relative to b we can arrange for condition (2) to hold for Yn+1,1, . . . , Yn+1,ln+1 given that
it holds for Yn,1, . . . , Yn,ln .

Finally, to verify (1) let w = (wk)k, x = (xk)k ∈ XBn+1 . Since w ∈ XBn we can find an

s ∈ {1, . . . , b− 2} and a j ∈ {1, . . . , ln} such that ρ(zsln+j+k, wk) ≤ 2−n−3 for all k ∈ En.
Since x is contained in one of the sets XBn+1,1, . . . , XBn+1,ln+1 we can find an integer m
such that xm+sln+j+k ∈ Yn+1,(a+s)ln+j+k for all k ∈ En. Thus, since Y has ρ-diameter at
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most one and assuming that ln ≥ n as we may,

d(Tm+sln+jx,w)

≤
∑
k∈En

2−|k|
[
ρ(xm+sln+j+k, zsln+j+k) + ρ(zsln+j+k, wk)

]
+

∑
k∈Z\En

2−|k|

≤ 3 · 2−n−2 + 2 · 2−ln ≤ 2−n+2,

completing the recursive construction.
Now set X =

⋂∞
n=1Xn, which a closed T -invariant subset of Y Z. The restriction of T

to X will again be written T . By (1) the system (X,T ) is minimal. Since there are no
periodic points by construction, the system (X,T ) is also free, and so C(X)oZ is simple
by Theorem 0.1.

In the case that Y is the cube [0, 1]3q, we will show that, for d above satisfying 1−1/q <
d < 1, the radius of comparison is bounded below by q − 1. To do this we proceed in two
steps:

(1) Represent C(X) o Z as an inductive limit of the crossed products C(XBn o Z)
via the quotients C(X)→ C(XBn) given by restriction.

(2) By using an Euler class obstruction for vector bundles over spheres embedded
into Y , construct two positive elements a and b in M2q(C(Y )) such that a has
small rank compared to b but fails to be Cuntz subequivalent to b in a uniform
way under the canonical embedding of C(Y ) in each C(XBn)oZ. The failure of
Cuntz subequivalence then passes to the limit C(X) o Z. In each C(XBn) o Z
one witnesses the Euler class obstruction by mapping into Mln ⊗ C(Bn).

Step 1 is contained in the following lemma.

Lemma 5.2. Let X1 be a compact Haudorff space and T : X1 → X1 a homeomorphism.
Let X2 ⊆ X3 ⊆ . . . be closed T -invariant subsets of X1 and set X =

⋂∞
n=1Xn. Let

C(X1)o Z ϕ1−→ C(X2)o Z ϕ2−→ C(X3)o Z ϕ3−→ . . .

be the inductive system with connecting maps induced from the quotients C(Xn)→ C(Xn+1)
via the universal property of the full crossed product. Let γ : lim−→C(Xn)o Z→ C(X)o Z
be the map arising from the maps γn : C(Xn) o Z → C(X) o Z induced by the univer-
sal property of the full crossed product from the quotients C(Xn) → C(X). Then γ is a
∗-isomorphism.

Proof. We write u for the canonical unitary in C(X) o Z and un for the canonical
unitary in C(Xn) o Z. Given a finite sum

∑
k∈I fku

k where fk ∈ C(X), by Tietze’s
extension theorem we can find, for every k ∈ I, a gk ∈ C(X1) which restricts to fk on
X . For each n the element

∑
k∈I(gk|Xn)ukn ∈ C(Xn) o Z is sent to

∑
k∈I(gk|Xn+1)ukn+1

under ϕn. Thus
∑

k∈I fku
k lies in the image of γ, and since such finite sums are dense in

C(X)o Z and the image of γ is closed we deduce that γ is surjective.
To establish injectivity, first observe that C(X) can be expressed as the inductive limit

lim−→C(Xn). Consider on each of our crossed products the dual action of the circle [80,

Prop. 7.8.3] which on the canonical unitary is given by (λ, u) 7→ λu and has the canonical
commutative C∗-subalgebra as its fixed point subalgebra. We also have a circle action on
lim−→C(Xn)o Z as induced by he dual actions on the crossed products C(Xn)o Z.



60 4. INTERNAL TOPOLOGICAL PHENOMENA

Let a be a positive element in the kernel of γ. The map γ intertwines the circle actions,
and so if we integrate the orbit of a over the circle we obtain a positive element b which
is contained in both the fixed point subalgebra of lim−→C(Xn)o Z and the kernel of γ. To
conclude that γ is faithful it is then enough to show that b = 0, since integration with
respect to the dual action is faithful. Now given an ε > 0 there are an m ∈ N and a
c ∈ C(Xm) o Z such that ‖γm(c) − b‖ < ε. We may assume, by integrating with respect
to the dual action, that c ∈ C(Xm). It follows that γm(c) lies in lim−→C(Xn) viewed as a

C∗-subalgebra of lim−→C(Xn)o Z, whence

‖b‖ ≤ ‖γm(c)‖+ ε = ‖γ(γm(c)− b)‖+ ε < 2ε.

Since ε was an arbitrary positive number we conclude that b = 0, as desired. �

Now return to our minimal homeomorphism T of X =
⋂∞
n=1XBn and complete step 2.

We write θr to refer to the trivial vector bundle of rank r over the space in question and ξ×r

for the r-fold Cartesian product of the vector bundle ξ. When regarding vector bundles
as projections in matrix algebras over a space, the Cartesian product ξ×r translates into
the sum (p⊗ 1⊗ · · ·⊗ 1) + (1⊗ p⊗ 1⊗ · · ·⊗ 1) + · · ·+ (1⊗ · · ·⊗ 1⊗ p) of r-fold elementary
tensors where p is the projection representing ξ.

Theorem 5.3. Let q ≥ 2 and suppose that 1 − 1/q < d < 1 where d is as in the
construction. Then for Y = I3q the radius of comparison of C(X) o Z is bounded below
by q − 1.

Proof. We first construct positive elements a, b ∈M2q(C(Y )) in the same manner as
in [97]. Take a rank one vector bundle ξ on S2 with nonzero Euler class and a continuous
embedding ε of (S2× [0, 1])q into Y . Let f be a continuous function on Y with 0 ≤ f ≤ 1
such that f is 1 on ε((S2×{1

2})
q) and 0 outside of ε((S2×(0, 1))q). Writing π : S2×[0, 1]→

S2 for the projection onto the first coordinate and viewing vector bundles as projections,
define a and b to be the positive elements θ1 and (1 − f)θq + fπ∗(ξ)×q, respectively, of
M2q(C(Y )).

Let λ : C(Y )→ C(X)oZ be the composition of the embedding C(Y ) ↪→ C(X) arising
from the projection X → Y onto the zeroeth coordinate and the canoncial emebdding
C(X) ↪→ C(X) o Z. Consider the positive elements a∞ = (idM2q ⊗ λ)(a) and b∞ =
(idM2q ⊗ λ)(b) in M2q ⊗ (C(X) o Z). Since the system (X,T ) is minimal, the tracial
states on C(X)oZ are precisely the compositions of the canonical conditional expectation
C(X)oZ→ C(X) with T -invariant states on C(X), which correspond via integration to
T -invariant Borel probability measures on X (see Section VIII.3 [23]). Hence s(〈a∞〉) = 1
and s(〈b∞〉) ≥ q for every state s on W (C(X)oZ). It thus remains to show that 〈a∞〉 6-
〈b∞〉.

Given an n ∈ N, write ψn for the composition C(Y ) → C(Xn) ↪→ C(Xn) o Z where
the second ∗-homomorphism is the canonical embedding and the first ∗-homomorphism is
the restriction map. Set an = (idM2q ⊗ ψn)(a) and bn = (idM2q ⊗ ψn)(b). Then an and
bn map to a∞ and b∞, respectively, under the canonical quotient M2q ⊗ (C(Xn) o Z) →
M2q ⊗ (C(X)oZ). It is now enough to prove that for each n we have ‖t∗bnt− an‖ ≥ 1/2
for all t ∈M2q⊗ (C(Xn)oZ), since this permits us to deduce, in view of Lemma 5.2, that
‖t∗b∞t− a∞‖ ≥ 1/2 for all t ∈M2q ⊗ (C(X)o Z) and hence that 〈a∞〉 6- 〈b∞〉.
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Let Kn be the set of all k ∈ {1, . . . , ln} such that Yn,k = Y . Let γn : C(Bn) →
C(((S2)q)Kn) be the ∗-homomorphism induced from the continuous embedding ((S2)q)Kn →
Bn under which the kth coordinate of the image of (xj)j∈Kn ∈ ((S2)q)Kn is ε(xk,

1
2) if

k ∈ Kn and yk otherwise, where yk is the unique point in Yn,k.
Let ω : Bn → XBn be the continuous injection which sends (x1, . . . , xln) to the sequence

whose sln + i coordinate is xi for every s ∈ Z and i = 1, . . . , ln. The image of ω is the
set of ln-periodic points in XBn,1. By the universal property of the full crossed product
there is a ∗-homomorphism ϕn : C(XB) o Z → Ml ⊗ C(Bn) ∼= Ml(C(Bn)) which sends a
function f ∈ C(XBn) to the diagonal matrix

f ◦ ω 0 · · · 0
0 f ◦ T−1 ◦ ω · · · 0
...

...
. . .

...
0 0 · · · f ◦ T 1−ln ◦ ω


and the canonical unitary u to the shift matrix

0 1 0 · · · 0
0 0 1 · · · 0
...

...
...

. . .
...

0 0 0 · · · 1
1 0 0 · · · 0

 ,

as we clearly have ϕn(u)ϕn(f)ϕn(u)∗ = ϕn(f ◦ T−1). Write ζn for the composition

C(Y )
ψn−→ C(XBn)o Z ϕn−→Mln ⊗ C(Bn)

id⊗γn−→ Mln ⊗ C(((S2)q)Kn).

Viewing bundles as projections in matrix algebras, we have (idM2q ⊗ ζn)(a) = θln
and (idM2q ⊗ ζn)(b) = ξ×q|Kn| ⊕ θq(ln−|Kn|). Since ξ has nonzero Euler class, dim θln =

ln > qln(1− d) ≥ q(ln− |Kn|) = dim θq(ln−|Kn|) by our hypothesis on d, and dim ξ×q|Kn| =

q|Kn| ≥ dim θln−dim θq(ln−|Kn|), by Lemma 1 of [101] the trivial bundle θln on ((S2)q)Kn is

not subequivalent to ξ×q|Kn|⊕θq(ln−|Kn|). It follows by Lemma 2.1 of [97] that ‖t∗(ξ×q|Kn|⊕
θq(ln−|Kn|))t − θln‖ ≥ 1/2 for all t ∈ M2q ⊗Mln ⊗ C(((S2)q)Kn). Since ∗-homomorphisms
are contractive, we thus obtain ‖t∗bnt − an‖ ≥ 1/2 for all t ∈ M2q ⊗ (C(Xn) o Z), as
desired. �

If Y is contractible then K1(X) = lim−→K1(Xn) = 0 and one can deduce from the

Pimsner-Voiculescu exact sequence [9, Thm. V.1.3.1] that K1(C(X)oZ) ∼= Z. In general
the K0 group of C(X) o Z will be complicated. Suppose however that for each n the
sets XBn,1, . . . , XBn,ln are pairwise disjoint, which can be arranged by replacing Y with
Y × [0, 1] and the factors equal to Y in the blocks Bn by sets of the form Y × {x} for
different x ∈ [0, 1]. One can then check in this case that the system (X,T ) is an extension
of the odometer system defined as addition by (1, 0, 0, . . . ) with carry over on the sequence
space

∏∞
n=1{1, . . . , ln+1/ln}, and that the ordered K0 group of C(X) o Z is identical to

that of the crossed product of this odometer. If, for example, every positive integer divides
some ln, then this ordered K0 group, along with the class of the unit, will be naturally
isomorphic (Q,Q+, 1). It follows by classification theory that there is a simple AT algebra
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which has the same Elliott invariant as C(X) o Z but, in view of Theorem 5.3, is not
isomorphic to it. One can also see that C(X)oZ does not have real rank zero, since this
would mean that the linear span of the projections is dense and hence that K0 separates
tracial states, contradicting the fact that K0(C(X)o Z) has a unique state.

For Y = I3q one can show using Brouwer’s fixed point theorem that the mean dimen-
sion of the system (X,T ) is at least 3qd (see Proposition 3.3 of [74]).



CHAPTER 5

External topological phenomena

1. Groups which are locally embeddable into finite groups

Complementing the internal finite modelling property of local finiteness is the external
property of local embeddability into finite groups, which is the topological (i.e., purely
group-theoretic, since our groups are discrete) analogue of soficity. The group G is said
to be LEF (locally embeddable into finite groups) if for every finite set F ⊆ G there is a
finite group H and a map σ : G → H such that σ(st) = σ(s)σ(t) for all s, t ∈ F and σ|F
is injective. This notion was introduced by Gordon and Vershik in [36].

Local embeddability into finite groups is a purely local version of residual finiteness,
which requires global multiplicativity of the maps to finite groups. The group G is resid-
ually finite if it has a separating family of finite quotients, i.e., for every finite set F ⊆ G
there is a finite group H and a homomorphism π : G → H such that π(s) 6= π(t) for
all distinct s, t ∈ F . Equivalently, there exists a sequence {Gn} of finite-index normal
subgroups of G such that

⋂∞
n=1

⋃∞
j=nGn = {e}.

The C∗-algebraic analogue of an LEF group is an MF algebra, which is defined in [11,
Defn. 3.2.1] as an inductive limit of a generalized inductive system of finite-dimensional
C∗-algebras. Assuming that A is separable, this is equivalent to each of the following
conditions:

(1) A embeds into
∏∞
n=1Mkn/

⊕∞
n=1Mkn for some sequence {kn}∞n=1 in N,

(2) for every finite set Ω ⊆ A and ε > 0 there are a k ∈ N and a ∗-linear map
ϕ : A → Mk such that ‖ϕ(ab) − ϕ(a)ϕ(b)‖ < ε and

∣∣‖ϕ(a)‖ − ‖a‖
∣∣ < ε for all

a, b ∈ Ω.

Condition (2) makes clear the analogy with LEF groups, and that being an MF algebra is
a local property in the strictest possible sense. Condition (1) is the topological analogue
of Rω-embeddability. In comparison with the relationship between soficity/hyperlinearity
and Rω-embeddability, the technical passage from LEF groups to MF algebras does not
factor in such a direct way through the left regular representation, which is understandable
given that the ultrapower Rω is defined with respect to the trace norm. Thus we cannot
derive a general result about the MF structure of C∗λ(G) itself, unless G is amenable.

Theorem 1.1. Let G be a countable discrete LEF group. Then there is a unitary
representation π of G such that C∗(π(G)) is an MF algebra and factors canonically onto
C∗λ(G).

Proof. Let F1 ⊆ F2 ⊆ . . . be an increasing union of finite subsets of G whose union is
equal to G. Since G is LEF, for every n ∈ N there is a finite group Hn and a map σn : G→
Hn such that σn(st) = σn(s)σn(t) for all s, t ∈ Fn and σn|Fn is injective. Define for each

63
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n a map ρn from G to the unitary group of MHn = B(`2(Hn)) by setting ρn(s)δt = δσn(s)t

for all s ∈ G and t ∈ Hn, where {δt}t∈Hn is the standard orthonormal basis of `2(Hn).
Let π : G→

∏∞
n=1MHn/

⊕∞
n=1MHn be the composition of the map s 7→ (ρ1(s), ρ2(s), . . . )

from G to
∏∞
n=1MHn with the quotient map

∏∞
n=1MHn →

∏∞
n=1MHn/

⊕∞
n=1MHn . Then

π is a group homomorphism into unitaries and thus extends to a ∗-homomorphism Φ :
C∗(G) →

∏∞
n=1MHn/

⊕∞
n=1MHn , whose image is an MF algebra by definition. Finally,

to show that C∗(π(G)) factors canonically onto C∗λ(G) we need only verify that if a =∑
s∈F csus is a finite linear combination of canonical unitaries in C∗(G) then ‖Φ(a)‖ ≥

‖
∑

s∈F csλs‖. This can be done spatially by approximating the norm of a with ‖aξ‖ for

some norm-one vector ξ =
∑

s∈E dsδs ∈ `2(G) having finite support with respect to the
standard orthonormal basis, and then showing that for all sufficiently large n the vector
ξn =

∑
s∈E dsδσn(s) ∈ `2(Hn) has norm one and ‖(

∑
s∈F csρn(s))ξn‖ ≥ ‖aξ‖ − ε for a

prescribed ε > 0. �

Corollary 1.2. Let G be a countable discrete amenable LEF group. Then C∗λ(G) is
an MF algebra.

Proof. By the theorem there is a unitary representation π of G such that C∗(π(G))
is an MF algebra and there is a surjective ∗-homomorphism C∗(π(G)) → C∗λ(G) sending
π(s) to λs for each s ∈ G. By the universal property of the full group C∗-algebra there
is a canonical surjective ∗-homomorphism C∗(G) → C∗(π(G)). Composing these two ∗-
homomorphisms we obtain the canonical ∗-homomorphism C∗(G) → C∗λ(G), which is an
isomorphism since G is amenable (Theorem 1.1). It follows that the map C∗(π(G)) →
C∗λ(G) is an isomorphism, yielding the result. �

IfG is residually finite then in Theorem 1.1 the maps σn can be taken to be group homo-
morphisms, in which case one already gets a ∗-homomorphism C∗(G)→

∏∞
n=1MHn with-

out having to pass to the quotient
∏∞
n=1MHn/

⊕∞
n=1MHn . One deduces from this that

C∗λ(G) is residually finite-dimensional, i.e., has a separating family of finite-dimensional
quotients. Note that residually finite-dimensionality, like residual finiteness, is not a local
property in the strictest sense.

The free groups on two or more generators are residually finite but not amenable. By
a result of Choi, C∗(G) is residually finite-dimensional. For the reduced group C∗-algebra
we have the following deep theorem of Haagerup and Thorbjørnsen [43].

Theorem 1.3. C∗λ(Fr) is an MF algebra for r ∈ {2, 3, . . . ,∞}.

Question 1.4. Is there a countable discrete G for which C∗λ(G) fails to be an MF
algebra?

The introduction of MF algebras in [11] was motivated by the study of quasidiago-
nality, a much older concept which has its origins in operator theory. A set Ω of bounded
operators on a separable Hilbert space H is quasidiagonal if there is an increasing se-
quence P1 ≤ P2 ≤ . . . of finite-rank orthogonal projections on H converging strongly to
1 such that limn→∞ ‖Pna− aPn‖ = 0 for all a ∈ Ω. A representation π : A → B(H) of a
C∗-algebra on a separable Hilbert space is quasidiagonal if π(A) is a quasidiagonal set of
operators. A separable C∗-algebra A is quasidiagonal if it admits a faithful quasidiagonal
representation on a separable Hilbert space. As shown by Voiculescu, this is equivalent
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to the condition that for every ε > 0 and finite set Ω ⊆ A there are a k ∈ N and a
contractive completely positive map ϕ : A → Mk such that ‖ϕ(ab) − ϕ(a)ϕ(b)‖ < ε and∣∣‖ϕ(a)‖ − ‖a‖

∣∣ < ε for all a, b ∈ Ω. This is a local property, since by Arveson’s extension
theorem every contractive completely positive map from an operator system V ⊆ A to
matrix algebra Mk admits a contractive completely positive extension from A to Mk.

Notice that the only difference between Voiculescu’ abstract characterization of qua-
sidiagonality and characterization (2) above for MF algebras is the condition that the
maps be contractive and completely positive, which situates quasidiagonality as a kind
of hybrid property that combines topology (approximate multiplicativity) and measure
theory (complete positive maps into matrix algebras, which are the matrix-valued version
of positive functionals). The measure-theoretic aspect is manifest in the following link to
amenability observed by Rosenberg [44].

Theorem 1.5. Let G be a countable discrete group such that C∗λ(G) is quasidiagonal.
Then G is amenable.

Under the measure-theoretic assumption of nuclearity, quasidiagonality is equivalent
to being an MF algebra. Blackadar and Kirchberg defined a separable C∗-algebra A to be
an NF algebra if it can be expressed as the inductive limit of a generalized inductive system
with contractive completely positive connecting maps, and showed that the following are
equivalent:

(1) A is an NF algebra,
(2) A is a nuclear MF algebra,
(3) A is nuclear and quasidiagonal.

If A is nuclear and MF, then taking an embedding A ↪→
∏∞
n=1Mkn/

⊕∞
n=1Mkn as in

characterization (2) for MF algebras one can apply the Choi-Effros lifting theorem to
produce a contractive completely positive lift A→

∏∞
n=1Mkn which can then be cut-down

to suitable finite sets of coordinates farther and farther out in order to verify Voiculescu’s
characterization of quasidiagonality.

Question 1.6. Is there a countable discrete amenable group for which C∗λ(G) fails to
be quasidiagonal?

2. Chain recurrence, residually finite actions, and MF algebras

Let X be a compact metrizable space and T : X → X a homeomorphism. Let d be
a compatible metric on X. For x, y ∈ X and ε > 0, an ε-chain from x to y is a finite
sequence {x1 = x, x2, . . . , xn = y} in X such that n > 1 and d(Txi, xi+1) < ε for every
i = 1, . . . , n − 1. The point x is said to be chain recurrent if for every ε > 0 there is an
ε-chain from x to itself. This is equivalent to x being pseudo-nonwandering in the sense
of [82]. Note that the set of chain recurrent points is a closed T -invariant subset of X.
We say that T is chain recurrent if every point in X is chain recurrent. This occurs for
example if there is a dense set of recurrent points, and in particular if T is minimal. In
[82] Pimsner established the following.

Theorem 2.1. Let X be a compact metrizable space and T : X → X a homeomor-
phism. Then the following are equivalent:
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(1) T is chain recurrent,
(2) C(X)oλ Z can be embedded into an AF algebra,
(3) C(X)oλ Z is quasidiagonal,
(4) C(X)oλ Z is stably finite.

Note that quasidiagonality here is equivalent to being an MF algebra, since all of
the above crossed products are nuclear. The implications (2)⇒(3)⇒(4) hold for any
C∗-algebra. The implications (3)⇒(2) and (4)⇒(3) are false for general C∗-algebras, as
witnessed by C∗(F2) (which is not exact, and hence is not a C∗-subalgebra of a nuclear
C∗-algebra by a theorem of Kirchberg) and C∗λ(F2), respectively. To prove (4)⇒(1) one
uses the following characterization of chain recurrence in terms of the incompressibility of
open sets.

Proposition 2.2. A homeomorphism T : X → X of a compact metric space is chain
recurrent if and only if there is a nonempty open set U ⊆ X such that TU is a proper
subset of U .

Proof. Suppose first that there is a nonempty open set U ⊆ X such that TU is a
proper subset of U . Take an x ∈ U \ TU . Then there is no ε-chain from x to itself for ε
equal to the distance between x and TU .

Conversely, suppose that there exists an x ∈ X and an ε > 0 such that there is no
ε-chain from x to itself. Let U be the open set consisting of all points y ∈ X such that
there is an ε′-chain from x to y for every 0 < ε′ < ε. Then one can easily check that
TU ⊆ U and x ∈ U \ TU . �

Supposing that T is not chain recurrent, Pimsner uses the above proposition along
with some index theory to construct a nonunitary isometry in C(X)oλZ, the existence of
which obstructs stable finiteness. This can be done more directly when X is the Cantor set,
as the proposition then easily implies the existence of a nonempty clopen set U ⊆ X such
that TU is a proper subset of U , in which case v = 1X\U + 1TUu is an isometry satisfying
vv∗ = 1X\U + 1TU 6= 1. We will not delve into the much more involved argument for
(1)⇒(2), although we will abstract some of its ideas to obtain a generalization of (1)⇒(3)
in Theorem 2.8 below (see the discussion following the proof of Theorem 2.8 for the relation
to quasidiagonality).

Quasidiagonality can be usefully strengthened in certain ways, especially through its
conjunction with internal approximation so as to capture more rigid finite-dimensional
structure. As applied to Z-crossed products, these properties can also be characterized
dynamically in terms of chain recurrence. First we record the following theorem of Hadwin
[44, Thm. 25], whose proof makes use of Berg’s technique and the theory of induced repre-
sentations. A C∗-algebra is said to be strongly quasidiagonal if each of its representations
is quasidiagonal.

Theorem 2.3. Let T be a homeomorphism of a compact metrizable space X. Then
C(X)oλZ is strongly quasidiagonal if and only every restriction of T to a closed invariant
subset of X is chain recurrent.

Recall from the previous section that a separable C∗-algebra A is an NF algebra if it
can be expressed as the inductive limit of a generalized inductive system with contrac-
tive completely positive connecting maps. We say that A is a strong NF algebra if the
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connecting maps in the definition of NF algebra can be chosen to be complete order em-
beddings [11]. We say that A is inner quasidiagonal if for every finite set Ω ⊆ A and ε > 0
there is a representation π : A → B(H) and a finite-rank projection p ∈ π(A)′′ such that
‖pπ(a)p‖ > ‖a‖ − ε and ‖[p, π(a)]‖ < ε for all a ∈ A [13]. By [11, 13, 12] the following
are equivalent:

(1) A is a strong NF algebra,
(2) for every finite set Ω ⊆ A and ε > 0 there are a finite-dimensional C∗-algebra B

and a complete order embedding ϕ : B → A such that for each a ∈ Ω there is a
b ∈ B with ‖a− ϕ(b)‖ < ε,

(3) A is nuclear and inner quasidiagonal,
(4) A is nuclear and has a separating family of irreducible quasidiagonal representa-

tions.

For a λ > 1, a C∗-algebra A is said to be an OL∞,λ space if for every finite set
Ω ⊆ A and ε > 0 there is a finite-dimensional C∗-algebra B and an injective linear map
ϕ : B → A with Ω ⊆ ϕ(B) such that ‖ϕ‖cb‖ϕ−1 : ϕ(B) → B‖cb < λ. Write OL∞(A)
for the infimum over all λ > 1 for which A is an OL∞,λ space. These notions were
introduced in [49] so as to furnish a quantitative means for analyzing the relationships
between properties like nuclearity, quasidiagonality, inner quasidiagonality, and stable
finiteness using local operator space structure. A straightforward perturbation argument
shows that if A is a strong NF algebra then OL∞(A) = 1. It is not known whether the
converse is true, although in [25] it was shown to hold under the assumption that A has a
finite separating family of primitive ideals. By localizing the arguments used by Hadwin
in proving Theorem 2.3, one can show the following [55].

Theorem 2.4. Let T : X → X be a homeomorphism of a compact metrizable space.
Then the following are equivalent:

(1) there is a collection {Xi}i∈I of T -invariant closed subsets of X such that
⋃
i∈I Xi

is dense in X and the restriction of T to each Xi has a dense orbit and is chain
recurrent,

(2) C(X)oλ Z is strong NF,
(3) OL∞(C(X)oλ Z) = 1.

Using Theorem 2.4 one can give dynamical constructions of C∗-algebras which are NF
but not strong NF (compare Examples 5.6 and 5.19 of [13]). Perhaps the simplest such
example consists in taking two copies of translation on Z each compactified with two fixed
points ±∞ and identifying +∞ from each copy with −∞ of the other copy. The resulting
homeomorphism is chain recurrent, but its restriction to the closure of each copy of Z fails
to be chain recurrent, so that C(X)oλ Z is NF but not strong NF. This is the dynamical
analogue of Example 3.2 in [25].

For actions of groups other than Z it quickly becomes difficult to say anything very
general relating external finite approximation and C∗-algebra structure. Some of the main
difficulties occur in the modelling of relations within the group itself. For instance, given a
pair of unitaries in a matrix algebra that almost commute to within a prescribed tolerance,
no matter how small, it might not be possible to perturb them to commuting unitaries
[103]. Thus already for the group Z2 we will have difficulty extracting finite models for
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the dynamics given finite-dimensional topological models for the crossed product. In fact
the following question of Voiculescu from [104] is still open.

Question 2.5. Let Z2 act on a compact metrizable space X. What dynamical condi-
tion is equivalent to C(X)o Z2 being embeddable into an AF algebra?

However, H. Lin has obtained a definitive result about embeddability into simple AF
algebras by analyzing the structure of iterated crossed products [69]:

Theorem 2.6. Let r ∈ N and let Zr act on a compact metrizable space X. Then
C(X) o Zr embeds into a simple AF algebra if and only if there is a Zr-invariant Borel
probability measure on X with full support.

When the acting group is free, we do not have to worry about handling approximate
relations, and so we might expect to be able to extract dynamical information from matri-
cal approximation of the crossed product. For actions on the Cantor set this can be done
(Theorem 2.9 below), and the relevant dynamical notion is the following generalization
of chain recurrence, which is the topological analogue of soficity for measure-preserving
actions.

Definition 2.7. An action of a countable discrete group G on a compact metrizable
space with compatible metric d is said to be residually finite if for every finite set F ⊆ G
and ε > 0 there are a finite set E, an action of G on E, and a map ζ : E → X such that
ζ(E) is ε-dense in X and d(ζ(sz), sζ(z)) < ε for all z ∈ E and s ∈ F .

Residual finiteness is easily seen not to depend on the metric d, and thus is a topological-
dynamical invariant. Note also that in the definition it suffices to quantify F over the finite
subsets of a prescribed generating set for G.

Residual finiteness implies that C(X) oλ G is an MF algebra whenever C∗λ(G) is an
MF algebra [55]:

Theorem 2.8. Let Gy X be a residually finite action on a compact metrizable space.
Suppose that C∗λ(G) is an MF algebra. Then C(X)oλ G is an MF algebra.

Proof. Write α for the induced action of G on C(X) as given by αs(f)(x) = f(s−1x).
By the separability of X we can construct a sequence {xn}∞n=1 in X such that {n ∈ N :
xn ∈ U} is infinite for every nonempty open set U ⊆ X. View C(X) o G as acting on
`2(N) ⊗ `2(G) by fus(δn ⊗ δt) = f((st)−1xn)δn ⊗ δst where {δn}n∈N and {δs}s∈G are the
standard orthonormal bases for `2(N) and `2(G), respectively. Since the action is residually
finite we can find for each n ∈ N a finite set En, an action γn of G on C(En), and a unital
∗-homomorphism ϕn : C(X)→ C(En) such that

(1) limn→∞ ‖ϕn(f)‖ = ‖f‖ for all f ∈ C(X), and
(2) limn→∞ ‖ϕn(αs(f))− γn,s(ϕn(f))‖ = 0 for all f ∈ C(X) and s ∈ G.

The action γn gives rise to a unitary representation wn : G → MEn by permutation
matrices, and so by viewing C(En) as the diagonal in the matrix algebra MEn we may
write γn,s(f) as wn,sfw

∗
n,s for all f ∈ C(En) and s ∈ G.

Let Ω be a finite subset of the algebraic crossed product C(X)oalgG and let ε > 0. To
conclude that C(X)oλG is MF it suffices to show the existence of a d ∈ N and a ∗-linear
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map β : C(X)oalg G→Md such that ‖β(ab)− β(a)β(b)‖ < ε and |‖β(a)‖ − ‖a‖| < ε for
all a, b ∈ Ω.

We regard MEn as acting on `2(En). For N ∈ N define the ∗-homomorphism ΦN :
C(X) →

⊕∞
n=N MEn by ΦN (f) = (ϕN (f), ϕN+1(f), . . . ). Let Dn be the C∗-subalgebra

of B(`2(En) ⊗ `2(G)) generated by MEn ⊗ 1 and the operators wn,s ⊗ λs for s ∈ G. Let
ΘN : C(X)oalg G→

⊕∞
n=N Dn be the ∗-linear map defined by setting

ΘN (fus) = (ϕN (f)wN,s ⊗ λs, ϕN+1(f)wN+1,s ⊗ λs, . . . )
for f ∈ C(X) and s ∈ G, which can be done since the subspaces C(X)us for s ∈ G are
orthogonal with respect to the canonical conditional expectation from C(X) oλ G onto
C(X). We will now argue that if N is large enough then we will have |‖ΘN (a)‖−‖a‖| < ε/2
for all a, b ∈ Ω.

Let ε′ > 0 be such that, for all n ∈ N and a ∈ Ω, if |‖|Θn(a)‖2 − ‖a‖2| < ε′ then
|‖|Θn(a)‖ − ‖a‖| < ε/2. Take a finite set F ⊆ G such that for every a ∈ Ω we can write
a =

∑
s∈F fa,sus where fa,s ∈ C(X) for every s ∈ F . Put M = maxa∈Ω,s∈F ‖fa,s‖. For

each a ∈ Ω we can find a unit vector ηa ∈ `2(N)⊗ `2(G) such that ‖a‖ ≤ ‖aηa‖+ ε/2 and
ηa =

∑
t∈K ξa,t ⊗ δt for some finite set K ⊆ G and vectors ξa,t ∈ `2(N). We may assume

K to be the same for all a ∈ Ω.
Choose a δ > 0 such that (1 + 2|F ||K|)|F |2δ2 ≤ ε′/2. Set E =

∐∞
n=N En. The

conditions on the sequence {xn}∞n=1 and the ∗-homomorphisms ϕn permit us, assuming N
is large enough, to find a bijection σ : N→ E such that d(S ◦ σ(n), xn) < δ for all n ∈ N
where d is a fixed compatible metric on X and S : E → X is the map whose restriction to
a given En corresponds spectrally to ϕn. By taking δ small enough we may ensure that
the unitary operator U : `2(N)→ `2(E) defined on standard basis vectors by Uδn = δσ(n)

satisfies ∥∥UΦN (α−1
st (fa,s))U

−1 − α−1
st (fa,s)

∥∥ < δ

2

for all a ∈ Ω, s ∈ F , and t ∈ K (this is an embryonic case of Voiculescu’s theorem). For
s ∈ G set ws = (wN,s, wN+1,s, . . . ) ∈

⊕∞
n=N MEn . By the asymptotic equivariance of the

maps ϕk, we may assume that N is large enough so that∥∥ΦN (α−1
st (fa,s))− w∗stΦN (fa,s)wst

∥∥ < δ

2

and hence ∥∥wstU−1α−1
st (fa,s)− ΦN (fa,s)wstU

−1
∥∥ < δ

for all a ∈ Ω, s ∈ F , and t ∈ K. As is clear from the definition Θ, we may additionally
assume that N is large enough so that ‖ΘN (ab)−ΘN (a)ΘN (b)‖ < ε/2 for all a, b ∈ Ω.

Let a ∈ Ω. Write Ũ for the unitary operator from (
⊕∞

n=N `2(En))⊗`2(G) to H⊗`2(G)

given by Ũ(ζ ⊗ δt) = Uw−1
t ζ ⊗ δt. Using the crude bound

‖ΘN (a)Ũ−1ηa‖ =

∥∥∥∥∑
s∈F

∑
t∈K

ΦN (fa,s)wstU
−1ξa,t ⊗ δst

∥∥∥∥
≤
∑
s∈F

∑
t∈K
‖ΦN (fa,s)‖ ≤ |F ||K|.
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and applying the general inequality∥∥∥∥ n∑
i=1

xi

∥∥∥∥2

≤
∥∥∥∥ n∑
i=1

yi

∥∥∥∥2

+

(
1 + 2

∥∥∥∥ n∑
i=1

yi

∥∥∥∥)∥∥∥∥ n∑
i=1

(xi − yi)
∥∥∥∥2

we then have

‖aηa‖2 =

∥∥∥∥Ũ−1
∑
s∈F

∑
t∈K

α−1
st (fa,s)ξa,t ⊗ δst

∥∥∥∥2

=

∥∥∥∥∑
s∈F

∑
t∈K

wstU
−1α−1

st (fa,s)ξa,t ⊗ δst
∥∥∥∥2

≤ ‖ΘN (a)Ũ−1ηa‖2 +
(
1 + 2‖ΘN (a)Ũ−1ηa‖

)
×
(∑
s∈F

∥∥∥∥∑
t∈K

(
wstU

−1α−1
st (fa,s)− ΦN (fa,s)wstU

−1
)
ξa,t ⊗ δst

∥∥∥∥)2

≤ ‖ΘN (a)‖2 + (1 + 2|F ||K|)|F |2δ2

= ‖ΘN (a)‖2 +
ε′

2
.

so that
∥∥ΘN (a)

∥∥2 ≥ ‖aηa‖2 − ε′/2 ≥ ‖a‖2 − ε′.
Next let us show that ‖a‖2 ≥ ‖ΘN (a)‖2−ε′. Take a unit vector η in (

⊕∞
n=N `2(En))⊗

`2(G) such that ‖ΘN (a)‖ ≤ ‖ΘN (a)Ũ−1η‖+ε′/2. We argue as in the above paragraph, only
reversing the roles of a and ΘN (a) and replacing ηa with η. Unlike for ηa we have no control

of the support of η with respect to the standard basis, but the bound on ‖ΘN (a)Ũ−1ηa‖
which required this control for ηa can be replaced here simply by ‖Ũ−1aη‖ ≤ ‖a‖, in which
case

‖ΘN (a)Ũ−1η‖2

=

∥∥∥∥∑
s∈F

∑
t∈K

ΦN (fa,s)wstU
−1ξa,t ⊗ δst

∥∥∥∥2

≤ ‖Ũ−1aη‖2 +
(
1 + 2‖Ũ−1aη‖

)
×
(∑
s∈F

∥∥∥∥∑
t∈K

(
ΦN (fa,s)wstU

−1 − wstU−1α−1
st (fa,s)

)
ξa,t ⊗ δst

∥∥∥∥)2

≤ ‖a‖2 + 3|F |2δ2

= ‖a‖2 +
ε′

2

and hence ‖a‖2 ≥ ‖ΘN (a)Ũ−1η‖2− ε′/2 ≥ ‖ΘN (a)‖2− ε′. By our choice of ε′ we conclude
that

∣∣‖ΘN (a)‖ − ‖a‖
∣∣ < ε/2 for all a ∈ Ω, so that the map ΘN satisfies the desired

properties.
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Now let M be an integer greater than or equal to N to be determined shortly. Set
D =

⊕M
n=N Dn. Define the ∗-linear map θ : C(X)oalg G→ D by declaring that

θ(fus) = (ϕN (f)wn,s ⊗ λs, . . . , ϕM (f)wn,s ⊗ λs)

for f ∈ C(X) and s ∈ G and extending linearly. In view of the properties of ΘN we have
‖θ(ab)− θ(a)θ(b)‖ < ε/3 for all a, b ∈ Ω and, by taking M large enough,

∣∣‖θ(a)‖− ‖a‖
∣∣ <

ε/2 for all a ∈ Ω.

Set k =
∑M

n=N |En|. Note that D is a C∗-subalgebra of B(
⊕M

n=N `2(En))⊗ C∗λ(G) as

canonically represented on (
⊕M

n=N `2(En))⊗`2(G) where the latter is identified in the stan-

dard way with
⊕M

n=N (`2(En)⊗ `2(G)). Via some fixed identification of B(
⊕M

n=N `2(En))
with Mk we view D as a C∗-subalgebra of Mk ⊗C∗λ(G). By hypothesis C∗λ(G) is MF, and
hence so is Mk⊗C∗λ(G), for if C∗λ(G) ↪→

∏∞
n=1Mjn

/⊕∞
n=1Mjn is an embedding witnessing

the fact that C∗λ(G) is MF then we obtain an embedding of Mk ⊗ C∗λ(G) into

Mk ⊗

( ∞∏
n=1

Mjn

/ ∞⊕
n=1

Mjn

)
∼=
∞∏
n=1

(
Mk ⊗Mjn

)/ ∞⊕
n=1

(
Mk ⊗Mjn

)
.

Thus we can find an l ∈ N and a ∗-linear map ϕ : Mk ⊗ C∗λ(G) → Ml such that, for all
a, b ∈ Ω,

(1) ‖ϕ(θ(a)θ(b))− ϕ(θ(a))ϕ(θ(b))‖ < ε/3,
(2) ‖ϕ(θ(ab)− θ(a)θ(b))‖ < ‖θ(ab)− θ(a)θ(b)‖+ ε/3, and
(3) |‖θ(a)‖ − ‖a‖

∣∣ < ε/2.

Set β = ϕ ◦ θ. Then β is ∗-linear, and for all a, b ∈ Ω we have

‖β(ab)− β(a)β(b)‖ ≤ ‖ϕ(θ(ab)− θ(a)θ(b))‖+ ‖ϕ(θ(a)θ(b))− ϕ(θ(a))ϕ(θ(b))‖

≤ ‖θ(ab)− θ(a)θ(b)‖+
ε

3
+
ε

3
< ε

and ∣∣‖β(a)‖ − ‖a‖
∣∣ ≤ ∣∣‖ϕ(θ(a))‖ − ‖θ(a)‖

∣∣+
∣∣‖θ(a)‖ − ‖a‖

∣∣ < ε

2
+
ε

2
= ε,

completing the proof. �

Suppose that C∗λ(G) is assumed to be quasidiagonal in the above theorem. Then one
can conclude that C(X)oλ G is quasidiagonal. Indeed, by a result of Rosenberg (see the
appendix of [44]) G must be amenable, which implies that C(X) oλ G is nuclear (see
Section IV.3.5 of [9]). Since quasidiagonality imples MF, by the theorem C(X)oλG is an
MF algebra, and thus, since separable nuclear MF algebras are quasidiagonal [11, Thm.
5.2.2], we conclude that C(X)oλ G is quasidiagonal.

Theorem 2.8 yields one direction of the next result from [55]. For the other direction
one extracts the finite dynamical approximations directly from the matricial structure by
a series of perturbation arguments.

Theorem 2.9. Let r be an integer greater than one and let Fr y X be an action on
a zero-dimensional compact metrizable space. Then the action is residually finite if and
only if C(X)oλ Fr is an MF algebra.
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Question 2.10. Can the zero-dimensional hypothesis be removed in the above theo-
rem?

Lemma 2.11. Let X be a compact metrizable space and Fr y X an action. Suppose
there exists an Fr-invariant Borel probability measure µ on X with full support. Then the
action is residually finite.

Proof. In view of the definition of residual finiteness, we may assume that r is finite.
Write S for the standard generating set for Fr. Let ε > 0. Take a finite measurable
partition P of X whose elements have nonzero measure and diameter less than ε. Write Q

for the collection of sets in the join
∨
s∈S sP which have nonzero measure. For each P ∈ P

and s ∈ S we have a homogeneous linear equation
∑

Q∈Q,Q⊆P xQ =
∑

Q∈Q,Q⊆sP xQ in the

variables xQ for Q ∈ Q. The resulting system of equations has the solution xQ = µ(Q)
for Q ∈ Q. Moreover, since the rational solutions are dense in the set of real solutions by
virtue of the rationality of the coefficients, we can find a solution consisting of rational xQ
which are close enough to the corresponding quantities µ(Q) to be all nonzero. Choose
an M ∈ N such that MxQ is an integer for every Q ∈ Q. For each Q ∈ Q take a set EQ
of cardinality MxQ and define E to be the disjoint union of these sets. Let ζ : E → X
be a map which sends EQ into Q for each Q ∈ Q. Now for every P ∈ P and s ∈ S the
sets

⋃
Q∈Q,Q⊆P EQ and

⋃
Q∈Q,Q⊆sP EQ have the same cardinality and so we can define an

action of Fr on E by having a generator s send
⋃
Q∈Q,Q⊆P EQ to

⋃
Q∈Q,Q⊆sP EQ in some

arbitrarily chosen way for each P ∈ P. Then ζ and this action on E witness the definition
of residual finiteness with respect to ε and the generating set S. �

Theorem 2.12. Let X be a compact metrizable space and Fr y X a minimal action.
Then the following are equivalent:

(1) the action is residually finite,
(2) there is an Fr-invariant Borel probability measure on X,
(3) C(X)oλ Fr is an MF algebra,
(4) C(X)oλ Fr is stably finite.

If moreover X is zero-dimensional then we can add the following conditions to the list:

5. every nonempty clopen subset of X is completely (Fr,CX)-nonparadoxical.
6. there exists a nonempty clopen subset of X which is completely (Fr,CX)-nonparadoxical.

Proof. (1)⇒(2). Every residually finite action admits an invariant Borel probability
measure, as can be obtained by pushing forward the uniform measure under the maps
witnessing residual finiteness and taking a weak∗ cluster point.

(2)⇒(1). By minimality every G-invariant Borel probability measure on X has full
support, and so Lemma 2.11 applies.

(1)⇒(3). By Theorem 2.8.
(3)⇒(4). By Proposition 3.3.8 of [11].
(4)⇒(2). Stable finiteness implies the existence of a quasitrace (see Section V.2 of [9])

and restricting a quasitrace on C(X)oλFr to C(X) yields a G-invariant Borel probability
measure on X.

Finally, in the case that X is zero-dimensional (2)⇔(5)⇔(6) is a special case of Propo-
sition 3.7. �
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Question 2.13. For minimal actions Fr y X, is the crossed product always either
purely infinite or an MF algebra? When X is the Cantor set, is the type semigroup always
unperforated? This would yield a purely infinite/MF dichotomy by Theorem 3.9.
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