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Abstract. We develop a dynamical version of some of the theory surrounding the Toms–
Winter conjecture for simple separable nuclear C∗-algebras and study its connections to
the C∗-algebra side via the crossed product. We introduce an analogue of hyperfiniteness
for free actions of amenable groups on compact spaces and show that it plays the role of
Z-stability in the Toms–Winter conjecture in its relation to dynamical comparison, and
also that it implies Z-stability of the crossed product. This property, which we call almost
finiteness, generalizes Matui’s notion of the same name from the zero-dimensional setting.
We also introduce a notion of tower dimension as a partial analogue of nuclear dimension
and study its relation to dynamical comparison and almost finiteness, as well as to the
dynamical asymptotic dimension and amenability dimension of Guentner, Willett, and Yu.

1. Introduction

Two of the cornerstones of the theory of von Neumann algebras with separable predual
are the following theorems due to Murray–von Neumann [31] and Connes [5], respectively:

(i) there is a unique hyperfinite II1 factor,
(ii) injectivity is equivalent to hyperfiniteness.

Injectivity is a form of amenability that gives operator-algebraic expression to the idea of
having an invariant mean, while hyperfiniteness means that the algebra can be expressed
as the weak operator closure of an increasing sequence of finite-dimensional ∗-subalgebras
(or, equivalently, that one has local ∗-ultrastrong approximation by such ∗-subalgebras [12]).
The basic prototype for the relation between an invariant-mean-type property and finite
or finite-dimensional approximation is the equivalence between amenability and the Følner
property for discrete groups, and indeed Connes’s proof of (ii) draws part of its inspiration
from the Day–Namioka proof of this equivalence.

In the theory of measured equivalence relations on standard probability spaces one has the
following analogous pair of results, the first of which is a theorem of Dye [8] and the second
of which is the Connes–Feldmann–Weiss theorem [6] (here p.m.p. stands for probability-
measure-preserving):

(iii) there is a unique hyperfinite ergodic p.m.p. equivalence relation,
(iv) amenability is equivalent to hyperfiniteness.

Again amenability is defined as the existence of a suitable type of invariant mean, while
hyperfiniteness means that the relation is equal a.e. to an increasing union of subrelations
with finite classes. Thus among both II1 factors and p.m.p. equivalence relations there
is a unique amenable object and it can be characterized via a finite or finite-dimensional
approximation property. The two settings are furthermore linked in a direct technical way
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by the equivalence of the following three conditions for a free p.m.p. action of a countably
infinite group:

(v) the orbit equivalence relation of the action is hyperfinite,
(vi) the crossed product is isomorphic to the unique hyperfinite II1 factor,

(vii) the group is amenable.

The implication (vii)⇒(v) was established by Ornstein and Weiss as a consequence of their
Rokhlin-type tower theorem [33, 34] and can also be deduced from the Connes–Feldman–
Weiss theorem. The implication (vii)⇒(vi) was established by Connes as an application of his
result that injectivity implies hyperfiniteness and can also be derived in a more elementary
way using the Ornstein–Weiss tower theorem (it is interesting to note however that one needs
the full force of Connes’s theorem in order to show that the group von Neumann algebra of
an amenable group is hyperfinite).

In the type III case there is a similarly definitive theory, with the isomorphism classes
being much more abundant but still classifiable in a nice way. For the present discussion
however we will leave this aside, since our focus will be on amenable type II phenomena in the
topological-dynamical and C∗-algebraic realms, where the uniqueness in (i) and (iii) already
gets replaced by a vast array of possible behaviour for which a complete classification is likely
hopeless without the addition of further regularity hypotheses. In fact our principal aim has
been to clarify what kind of regularity properties on the dynamical side match up, at least
through analogy and one-way implications, with the key regularity properties of finite nuclear
dimension, Z-stability, and strict comparison that have helped set the stage for the dramatic
advances made over the last few years in the classification program for simple separable
nuclear (i.e., amenable) C∗-algebras. In the process we will try to reimagine the equivalence
of (v) and (vi) in the context of actions on compact metrizable spaces by introducing an
analogue of hyperfiniteness and relating it to the Z-stability of the crossed product.

For C∗-algebras, the strictest and simplest technical analogue of a hyperfinite von Neu-
mann algebra would be an AF algebra, which similarly means that the algebra can be
expressed as the closure of an increasing union of finite-dimensional ∗-subalgebras (or, equiv-
alently, that one has local approximation by such ∗-subalgebras), but with the weak operator
topology replaced by the norm topology. In the 1970s, separable AF algebras were shown to
be classified by their ordered K-theory (Elliott) as well as by related combinatorial objects
called Bratteli diagrams (Bratteli). This reinforced the affinity with von-Neumann-algebraic
hyperfiniteness by revealing a parallel structural tractability, however different the nature of
the invariants.

What is remarkable is that the classification of AF algebras ended up being only the
beginning of a much more ambitious program that was launched in the 1980s by Elliott,
who realized that C∗-inductive limits of more general types of building blocks could be
classified by ordered K-theory paired with traces and suggested that a similar classification
might hold for even larger classes of (or perhaps even all) separable nuclear C∗-algebras.
The Elliott program has experienced many successes and several surprising twists over the
last twenty-five years through the efforts of many researchers and has recently culminated,
in the simple unital UCT case, with a definitive classification which merely assumes the
abstract regularity hypothesis of finite nuclear dimension (this result combines theorems of
Gong–Lin–Niu [15], Elliott–Gong–Lin–Niu [10], and White–Winter–Tikuisis [48], while also
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incorporating the earlier Kirchberg–Phillips classification on the purely infinite side [23, 36]).
The UCT (universal coefficient theorem) is a homological condition relating K-theory and
KK-theory which is possibly redundant and is automatic for crossed products of actions of
countable amenable groups on compact metrizable spaces by a result of Tu [51].

That classifiability of simple separable unital C∗-algebras in the UCT class now boils
down to the simple question of whether the nuclear dimension is finite belies the critical role
that several other regularity properties have played and continue to play in classification
theory. The most important among these are Z-stability (i.e., tensorial absorption of the
Jiang–Su algebra Z), strict comparison, and tracial rank conditions. Strict comparison is a
C∗-algebraic version of the property that the comparability of projections in a type II von
Neumann algebra is determined on traces and applies more generally to positive elements in
a C∗-algebra with respect to the relation of Cuntz subequivalence. The notion of tracial rank,
which has its roots in work of Gong [9] and Popa [38] and was formalized and applied by Lin
in his seminal work of the 1990s as a way to circumvent inductive limit hypotheses in the
stably finite case [26, 27, 28], continues to do much of the technical legwork in classification.
The simple unital projectionless C∗-algebra Z was introduced in the 1990s by Jiang and Su,
who observed the parallel between its tensorial behaviour and that of the hyperfinite II1

factor R [20].
Winter’s approach to classification, which was developed in the 2000s and has greatly

impacted the course of the subject [57], made novel use of the operation of tensoring with
Z, rendering greater urgency to the problem of recognizing when a C∗-algebra is Z-stable
and strengthening the analogy with R through the latter’s use in Connes’s classification
work, which served as an inspiration. Winter was also the first to realize the significance
of dimensional invariants based on nuclearity-type finite-dimensional approximation, among
which nuclear dimension has become the most eminent, and the connection between such
invariants and Z-stability has become a centerpiece of his program. In fact, it is a conjecture
of Toms and Winter that for infinite-dimensional simple separable unital nuclear C∗-algebras
the following three conditions are equivalent:

(i) finite nuclear dimension,
(ii) Z-stability,
(iii) strict comparison.

The implications (i)⇒(ii) and (ii)⇒(iii) are theorems of Winter [56] and Rørdam [39], re-
spectively. Matui and Sato proved (iii)⇒(ii) when the set of extremal tracial states is finite
and nonempty [30], and this was later generalized to the case where the extreme traces form
a nonempty compact set with finite covering dimension [24, 42, 50]. The implication (ii)⇒(i)
was first established by Sato, White, and Winter in the case of a unique tracial state [43] and
then more generally by Bosa, Brown, Sato, Tikuisis, White, and Winter when the extreme
tracial states form a nonempty compact set [2]. Thus the Toms–Winter conjecture has been
fully confirmed in the case that the extreme tracial states form a nonempty compact set with
finite covering dimension, and in particular when there is a unique tracial state.

The goal of these notes is to promote the development of a dynamical version of this theory
surrounding the Toms–Winter conjecture, including connections to the C∗-algebra side via
the crossed product. This program requires first of all identifying the appropriate analogues
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of nuclear dimension, strict comparison, and Z-stability. There is a natural dynamical ver-
sion of strict comparison which has appeared in lectures of Winter and has been studied by
Buck in the case G = Z [3] (see also [14] for an earlier application of this concept to minimal
transformations of the Cantor set). In parallel with [55], we simply refer to it as comparison,
and also define the useful higher-order notions of m-comparison for integers m ≥ 0, with
comparison representing the case m = 0 (Definition 3.2). There are also by now several
analogues of nuclear dimension, including the dynamic asymptotic dimension and amenabil-
ity dimension of Guentner, Willett, and Yu [17], and we will introduce here another, called
tower dimension, whose connections to nuclear dimension and dynamical comparison are
particularly stark, as shown in Sections 6 and 7. Although dynamic asymptotic dimension,
amenability dimension, and tower dimension do not coincide in general, there are inequal-
ities relating them in the finite-dimensional case, and they are all equal when the space is
zero-dimensional (see Section 5).

What has been missing is a dynamical substitute for Z-stability. We introduce here a
notion of almost finiteness for group actions on compact metrizable spaces that will play the
role of Z-stability in the Toms–Winter conjecture and of hyperfiniteness in the p.m.p. setting.
We have adopted the terminology from Matui’s almost finiteness for groupoids, seeing that in
the case of free actions on zero-dimensional compact metrizable spaces our definition reduces
to Matui’s (Section 10). As a comparison with the measure-theoretic framework, we recall
that, for a free p.m.p. action G y (X,µ) of a countable amenable group, we can express
the property of hyperfiniteness, in accordance with the original proof of Ornstein and Weiss,
by saying that for every ε > 0 there are measurable sets V1, . . . , Vn ⊆ X and finite sets
S1, . . . , Sn ⊆ G with prescribed approximate invariance (in the Følner sense) such that

(i) the sets sVi for i = 1, . . . , n and s ∈ Si are pairwise disjoint, and
(ii) µ(X \

⊔n
i=1 SiVi) < ε.

The pair (Vi, Si) we refer to as a tower, the set Vi as the base of the tower, the set Si as the
shape of the tower, and the sets sVi for s ∈ Si as the levels of the tower. In the definition of
almost finiteness, the sets Vi are replaced by open sets and the smallness of the remainder in
(ii) is expressed topologically in terms of comparison with a portion of the tower levels. Note
in particular that almost finiteness implies that the acting group is amenable because of the
Følner requirement on the shapes of the towers. In Theorem 12.4 we prove that, for actions
of countably infinite groups on compact metrizable spaces, almost finiteness implies that the
crossed product is Z-stable. As we discuss at the end of Section 12, this can be used to give
new examples of classifiable crossed products for which dynamical techniques connected to
nuclear dimension (such as in [17] or Section 6) are inapplicable due to finite-dimensionality
requirements on the space. What is particularly novel from the classification perspective is
that many of these examples can exhibit both infinite asymptotic dimension in the group
and positive topological entropy in the dynamics.

It is important to point out that almost finiteness is not an analogue of Z-stability by itself,
but rather of the conjunction of Z-stability and nuclearity. In view of classification theory,
this combination (or its conjectural Toms–Winter equivalent, finite nuclear dimension) could
be argued to be the true topological analogue of hyperfiniteness, as opposed to just nuclearity,
which is the direct technical translation of hyperfiniteness into the realm of C∗-algebras and
as such is an essentially measure-theoretic property. The interpretation of almost finiteness
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as a combination of Z-stability and nuclearity is illustrated at a technical level in the proof of
Theorem 12.4, which relies on a criterion for Z-stability that is special to the nuclear setting,
due to Hirshberg and Orovitz (Theorem 12.1). The general characterization of Z-stability
from which the Hirshberg–Orovitz result is derived (Proposition 2.3 of [55]) involves an
additional approximate centrality requirement that does not seem to translate into dynamical
terms, and in particular does not seem to be amenable to the kind of tiling techniques that
are integral to the proof of Theorem 12.4.

Consider now the following triad of properties for a free minimal action G y X of a
countably infinite amenable group on a compact metrizable space:

(i) finite tower dimension,
(ii) almost finiteness,
(iii) comparison.

In Theorem 9.2 we establish the implication (ii)⇒(iii), as well as the converse (iii)⇒(ii)
in the case that the set EG(X) of ergodic G-invariant Borel probability measures is finite.
This precisely parallels the results of Rørdam [39] and Matui–Sato [30] mentioned above.
Moreover, the argument for (iii)⇒(ii), like that of Matui and Sato, relies on an appeal to
measure-theoretic structure, which in our case is the Ornstein–Weiss tower theorem. In our
proof of (iii)⇒(ii) it is enough that the action have m-comparison for some m ≥ 0, which is
important as we also prove in Theorem 7.2 that if the covering dimension dim(X) is finite
then (i) implies m-comparison for some m ≥ 0, and hence comparison in the case that EG(X)
is finite. Thus if EG(X) and dim(X) are both finite then we have (i)⇒(ii)⇔(iii), which we
record as Theorem 9.3.

In [29] Matui showed that his property of almost finiteness for groupoids has several nice
consequences for the homology of the groupoid and its relation to both the topological full
group and the K-theory of the reduced groupoid C∗-algebra. In particular, if the groupoid
is furthermore assumed to be principal (which amounts to freeness in the case of actions)
then the first homology group is canonically isomorphic to the quotient of the topological
full group by the subgroup generated by the elements of finite order. Matui observes in
Lemma 6.3 of [29] that the groupoids associated to free actions of Zd on zero-dimensional
compact metrizable spaces are almost finite. By combining the work of Szabó, Wu, and
Zacharias in [47] with Theorems 10.2 and Theorem 9.3 we deduce that this also holds for
free minimal actions G y X of finitely generated nilpotent groups on zero-dimensional
compact metrizable spaces with EG(X) finite (Remark 10.3).

While our results suggest that almost finiteness and comparison are full-fledged dynami-
cal analogues of their Toms–Winter counterparts, tower dimension and its relatives unfortu-
nately fall short on this account, despite their utility in establishing finite nuclear dimension
for crossed products of large classes of actions. The problem is that tower dimension, dy-
namical asymptotic dimension, and amenability dimension are too much affected by the
dimensionality of the acting group and too little affected by the dimensionality of the space
and its interaction with the dynamics (as captured by an invariant like mean dimension). On
the side of the space, if we drop the assumption of finite-dimensionality then the implication
(i)⇒(ii) fails, even for G = Z (Example 12.5). One can attempt to rectify this by imposing
a small diameter condition on the tower levels in the definition of tower dimension (we call
the resulting invariant the fine tower dimension) but one would not gain anything in the
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effort to relate dimensional invariants to almost finiteness and comparison since finite fine
tower dimension already implies that dim(X) is finite. Even more serious is the structural
restriction imposed from the side of the group: the tower dimension, dynamical asymptotic
dimension, and amenability dimension are always infinite whenever G has infinite asymptotic
dimension, which occurs frequently in the amenable case, an example being the Grigorchuk
group. In contrast, a generic free minimal action of any countably infinite amenable group
on the Cantor set is almost finite [4]. Given that tower dimension seems as close as we can
come in dynamics to being able to formally mimic the definition of nuclear dimension, and
that it connects naturally to dynamical m-comparison and nuclear dimension in one direc-
tion of logical implication, we will perhaps have to be content with the prospect that the
Toms–Winter conjecture cannot be fully analogized within the coordinatized framework of
group actions. On the other hand, it is conceivable that the tower dimension of a free mini-
mal action Gy X is always finite when G is amenable and has finite asymptotic dimension
and X has finite covering dimension. This is indeed what happens if we furthermore assume
G to be finitely generated and nilpotent (see Example 4.9).

One more curious fact worth mentioning here is the possibility, suggested by the work
of Elliott and Niu [11], that for free minimal actions the small boundary property (or,
alternatively, zero mean dimension) is equivalent to Z-stability of the crossed product. Elliott
and Niu showed that for free minimal Z-actions the small boundary property (which is
equivalent to zero mean dimension in this case) implies Z-stability. The small boundary
property and mean dimension are formally very different from either nuclear dimension or
Z-stability and are more akin to slow dimension growth in inductive limit C∗-algebras, as
demonstrated by the proof in [11], which employs arguments from an article of Toms on the
equivalence of slow dimension growth and Z-stability for unital simple ASH algebras [49].

We begin in Section 2 by laying down some basic notation and terminology used through-
out the paper. In Section 3 we define (dynamical) comparison, and also more generally
m-comparison. Section 4 introduces tower dimension and Section 5 establishes inequalities
relating it to dynamical asymptotic dimension and amenability dimension. In Section 6 we
show how to derive an upper bound for the nuclear dimension of the crossed product of
a free action of an amenable group in terms of the tower dimension of the action and the
covering dimension of the space. In Section 7 we prove that if the acting group is amenable
and the tower dimension and covering dimension are both finite, with values d and c, then
the action has ((c + 1)(d + 1) − 1)-comparison. In Section 8 we introduce almost finite-
ness and in Section 9 we establish Theorem 9.2 relating it to comparison. In Section 10
we prove that, for free actions on the Cantor set, almost finiteness is equivalent to having
clopen tower decompositions of the space with almost invariant shapes, so that it reduces
to Matui’s notion of almost finiteness in this setting. The behaviour of almost finiteness
under extensions is investigated in Section 11. In Section 12 we show that almost finiteness
implies Z-stability and use it to give new examples of classifiable crossed products. Finally,
in Section 13 we prove that, for free minimal actions of an amenable group on the Cantor set,
almost finiteness implies that the clopen type semigroup is almost unperforated, that this
almost unperforation in turn implies comparison, and that all three of these properties are
equivalent when the set EG(X) of ergodic G-invariant Borel probability measures is finite.
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2. General notation and terminology

Throughout the paper G is a countable discrete group.
For a compact Hausdorff space X, we write C(X) for the unital C∗-algebra of continuous

complex-valued functions on X. For an open set V ⊆ X we denote by C0(V ) the C∗-algebra
of continuous complex-valued functions on V which vanish at infinity, which can be naturally
viewed as a sub-C∗-algebra of C(X). We write M(X) for the convex set of all regular Borel
probability measures on X, which is compact as a subset of the dual C(X)∗ equipped with
the weak∗ topology. We denote the indicator function of a set A ⊆ X by 1A. The covering
dimension of X is written dim(X).

Actions on compact Hausdorff spaces are always assumed to be continuous. Let G y X
be such an action. The image of a point x ∈ X under a group element s is expressed as sx.
For A ⊆ X, s ∈ G, and K ⊆ G we write sA = {sx : x ∈ A} and KA = {sx : s ∈ K, x ∈ A}.
We write MG(X) for the convex set of G-invariant regular Borel probability measures on X,
which is a weak∗ compact subset of M(X). We write EG(X) for the set of extreme points
of MG(X), which are precisely the ergodic measures in MG(X).

The chromatic number of a family C of subsets of a given set is defined as the least d ∈ N
such that there is a partition of C into d subcollections each of which is disjoint.

For any of the various notions of dimension which will appear, we will add a superscript
+1 to denote the value of the dimension plus one, so that dim+1(X) = dim(X) + 1, for
example. This “denormalization” serves to streamline many formulas.

3. Comparison and m-comparison

Throughout Gy X is an action on a compact metrizable space.

Definition 3.1. Let m ∈ N. Let A,B ⊆ X. We write A ≺m B if for every closed set C ⊆ A
there exist a finite collection U of open subsets of X which cover C, an sU ∈ G for each
U ∈ U, and a partition U = U0 t · · · t Um such that for each i = 0, . . . ,m the images sUU
for U ∈ Ui are pairwise disjoint subsets of B. When m = 0 we also write A ≺ B.

Note that the relation ≺ is transitive, as is straightforward to check.

Definition 3.2. Let m ∈ N. The action G y X is said to have m-comparison if A ≺m B
for all nonempty open sets A,B ⊆ X satisfying µ(A) < µ(B) for every µ ∈ MG(X). When
m = 0 we will also simply say that the action has comparison.

The condition of nonemptiness on A and B above is included so as to cover the situation
when MG(X) is empty and can otherwise be dropped, as for example when G is amenable.

The following lemma will be used repeatedly throughout the paper and will be needed
here to verify Proposition 3.4.
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Lemma 3.3. Let X be a compact metrizable space with compatible metric d and let Ω be
a weak∗ closed subset of M(X). Let A be a closed subset of X and B an open subset of X
such that µ(A) < µ(B) for all µ ∈ Ω. Then there exists an η > 0 such that the sets

B− = {x ∈ X : d(x,X \B) > η},
A+ = {x ∈ X : d(x,A) ≤ η}

satisfy µ(A+) + η ≤ µ(B−) for all µ ∈ Ω.

Proof. Suppose that the conclusion does not hold. Then for every n ∈ N we can find a
µn ∈ Ω such that the sets

Bn = {x ∈ X : d(x,X \B) > 1/n},
An = {x ∈ X : d(x,A) ≤ 1/n}

satisfy µn(An) + 1/n > µn(Bn). By the compactness of Ω there is a subsequence {µnk} of
{µn} which weak∗ converges to some µ ∈ Ω. For a fixed j ∈ N we have, for every k ≥ j,

µnk(Anj ) +
1

nk
≥ µnk(Ank) +

1

nk
> µnk(Bnk) ≥ µnk(Bnj ),

and since Anj is closed and Bnj is open the portmanteau theorem ([21], Theorem 17.20) then
yields

µ(Anj ) ≥ lim sup
k→∞

µnk(Anj ) ≥ lim inf
k→∞

µnk(Bnj ) ≥ µ(Bnj ).

Note that B is equal to the increasing union of the sets Bnj for j ∈ N, while A is equal to
the decreasing intersection of the sets Anj for j ∈ N. Thus

µ(A) = lim
j→∞

µ(Anj ) ≥ lim
j→∞

µ(Bnj ) = µ(B),

contradicting our hypothesis. �

In practice, we will use the following characterization as our effective definition of m-
comparison, usually without saying so.

Proposition 3.4. Let m ∈ N. The action Gy X has m-comparison if and only if A ≺m B
for every closed set A ⊆ X and nonempty open set B ⊆ X satisfying µ(A) < µ(B) for all
µ ∈MG(X).

Proof. For the nontrivial direction, suppose that the action has m-comparison. Let A be
a closed subset of X and B a nonempty open subset of X such that µ(A) < µ(B) for all
µ ∈MG(X). Fixing a compatible metric d on X, by Lemma 3.3 there is an η > 0 such that
the open set A′ = {x ∈ X : d(x,A) < η} satisfies µ(A′) < µ(B) for all µ ∈ MG(X). Then
A′ ≺m B by m-comparison, and so A ≺m B, as desired. �

The remainder of the section is aimed at showing that if X is zero-dimensional then we can
express comparison using clopen sets and clopen partitions, as asserted by Proposition 3.6.

Proposition 3.5. Suppose that X is zero-dimensional. Let m ∈ N, and let A and B be
clopen subsets of X. Then A ≺m B if and only if there exist a clopen partition P of A, an
sU ∈ G for every U ∈ P, and a partition P = P0 t · · · t Pm such that for each i = 0, . . . ,m
the images sUU for U ∈ Pi are pairwise disjoint subsets of B.
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Proof. For the nontrivial direction, suppose that A ≺m B. Then there exist j0, . . . , jm ∈ N,
open sets Ui,j for 0 ≤ i ≤ m and 1 ≤ j ≤ ji which cover A, and si,j ∈ G such that for each
i = 0, . . . ,m the images si,jUi,j for j = 1, . . . , ji are pairwise disjoint subsets of B. By the
normality of X we can then find, for all i, j, a closed set Ci,j ⊆ Ui,j such that the sets Ci,j for
all i, j still cover A. By compactness and zero-dimensionality, for given i, j we can produce
finitely many clopen sets contained in Ui,j which cover Ci,j , and so we may assume that Ci,j
is clopen by replacing it with the union of these clopen sets. We now recursively define, with
respect to the lexicographic order on the pairs i, j,

Ai,j =

((
A \

i−1⊔
k=0

ji⊔
l=1

Ak,l

)
∩ Ci,j

)
\ (Ci,1 ∪ · · · ∪ Ci,j−1).

These sets form a clopen partition of A and for each i = 0, . . . ,m the images si,jAi,j for
j = 1, . . . , ji are pairwise disjoint subsets of B, as desired. �

Proposition 3.6. Suppose that X is zero-dimensional. Let m ∈ N. Then the action Gy X
has m-comparison if and only if for all nonempty clopen sets A,B ⊆ X satisfying µ(A) <
µ(B) for every µ ∈MG(X) there exist a clopen partition P of A, an sU ∈ G for every U ∈ P,
and a partition P = P0t· · ·tPm such that for each 0 = 1, . . . ,m the images sUU for U ∈ Pi
are pairwise disjoint subsets of B.

Proof. The forward direction is immediate from Proposition 3.5. Suppose conversely that
the action satisfies the condition in the proposition statement involving clopen sets and let
us establish m-comparison. Let A be a closed subset of X and B a nonempty open subset
of X satisfying µ(A) < µ(B) for all µ ∈ MG(X). By Lemma 3.3 there exists an η > 0 such
that the sets

B− = {x ∈ X : d(x,X \B) > η},
A+ = {x ∈ X : d(x,A) ≤ η}

satisfy µ(A+) < µ(B−) for all µ ∈ Ω. By an argument as in the proof of Proposition 3.5, we
can find clopen sets A′, B′ ⊆ X such that A ⊆ A′ ⊆ A+ and B− ⊆ B′ ⊆ B, in which case
µ(A′) ≤ µ(A+) < µ(B−) ≤ µ(B′) for all µ ∈ Ω. It follows by our hypothesis that there exist
a clopen partition P of A′, an sU for every U ∈ P, and a partition P = P0t· · ·tPm such that
for each i = 0, . . . ,m the images sUU for U ∈ Pi are pairwise disjoint subsets of B′. Since
A ⊆ A′ and B′ ⊆ B, we conclude (by Proposition 3.4) that the action has m-comparison. �

4. Tower dimension

Throughout Gy X is a free action on a compact Hausdorff space.

Definition 4.1. A tower is a pair (V, S) consisting of a subset V of X and a finite subset S
of G such that the sets sV for s ∈ S are pairwise disjoint. The set V is the base of the tower,
the set S is the shape of the tower, and the sets sV for s ∈ S are the levels of the tower. We
say that the tower (V, S) is open if V is open, clopen if V is clopen, and measurable if V is
measurable. A collection of towers {(Vi, Si)}i∈I is said to cover X if

⋃
i∈I SiVi = X.

Definition 4.2. Let E be a finite subset of G. A collection of towers {(Vi, Si)}i∈I covering
X is E-Lebesgue if for every x ∈ X there are an i ∈ I and a t ∈ Si such that x ∈ tVi and
Et ⊆ Si.
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Definition 4.3. The tower dimension dimtow(X,G) of the action Gy X is the least integer
d ≥ 0 with the property that for every finite set E ⊆ G there is an E-Lebesgue collection of
open towers {(Vi, Si)}i∈I covering X such that the family {SiVi}i∈I has chromatic number
at most d + 1 (note that we may always take the index set I to be finite in view of the
compactness of X). If no such d exists we set dimtow(X,G) =∞.

In the above definition one may assume, whenever convenient, that for each i the identity
element e is contained in Si (i.e., the base Vi is actually a level of the tower), for one can
choose a t ∈ Si (assuming that Si is nonempty, as we may) and replace Si by Sit

−1 and Vi
by tVi.

Note that if G is not locally finite then the tower dimension must be at least 1, for if E
is a symmetric finite subset of G and {(Vi, Si)}i∈I is an E-Lebesgue collection of towers for
which the sets SiVi partition X then for each i with Vi 6= ∅ the set Si contains 〈E〉Si where
〈E〉 is the subgroup of G generated by E.

Remark 4.4. When X is zero-dimensional we can equivalently restrict to clopen towers in
Definition 4.3, for we can assume I to be finite and use normality to slightly shrink the base of
each of the open towers (Vi, Ti) to a closed set without destroying E-Lebesgueness and the fact
that the collection of towers covers X, and then use compactness and zero-dimensionality
to slightly enlarge each of these closed bases to a clopen base which is contained in the
corresponding original base.

Example 4.5. Let Z y X be a minimal action on the Cantor set. This is given by
(n, x) 7→ Tnx for some transformation T and is automatically free. We can decompose X
into clopen towers by the following standard procedure. Take a nonempty clopen set V ⊆ X,
and consider the first return map which assigns to each x ∈ V the smallest nx ∈ N for which
Tnxx ∈ V , which is well defined by minimality. This map is continuous by the clopenness of
V and so there is a clopen partition {V1, . . . , Vk} of V and integers 1 ≤ n1 < n2 < · · · < nk
such that for each i the set of all points in V with return time ni is equal to Vi. Setting
Si = {0, . . . , ni − 1}, we thus have a collection of clopen towers {(Vi, Si)}ki=1 such that the

sets SiVi are pairwise disjoint, and since the union
⊔k
i=1 SiVi is closed and T -invariant it

must be equal to X by minimality. The only problem is that this collection will not satisfy
the Lebesgue condition in the definition of tower dimension. To remedy this, we produce
a second collection of towers by taking the image of the original one under some power of
T , and make sure that the numbers ni are sufficiently large. More precisely, let E be a
finite subset of Z and choose an N > 2 maxn∈E |n|. Since the action is free, by shrinking V
we can force n1 to be much larger than N , which will imply that the collection of towers
{(Vi, Si)}ki=1∪{(Vi, Si+N)}ki=1 is E-Lebesgue, as is easily verified. Thus the tower dimension
of the action is at most 1, and hence equal to 1 by the observation following Definition 4.3.

The following is verified by taking the inverse images under the extension map Y → X of
all of towers at play in the definition of tower dimension.

Proposition 4.6. Let G y Y be a free action on a compact Hausdorff space which is an
extension of G y X, meaning that there is G-equivariant continuous surjection Y → X.
Then

dimtow(Y,G) ≤ dimtow(X,G).
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Example 4.7. It was shown in [13] that there are free minimal Z-actions on compact metriz-
able spaces such that the crossed product C(X)oZ fails to be Z-stable. By Proposition 4.6
the examples given there have tower dimension at most 1 since they factor onto an odometer,
which has tower dimension 1 by Example 4.5 (note that 1 is always a lower bound for the
tower dimension of free Z-actions by the observation following Definition 4.3).

We recall that the asymptotic dimension asdim(G) of the group G [16] can be expressed
as the least integer d ≥ 0 such that for every finite set E ⊆ G there exists a family {Ui}i∈I
of subsets of G of multiplicity at most d+ 1 with the following properties:

(i) there exists a finite set F ⊆ G such that for every i ∈ I there is a t ∈ G with
Ui ⊆ Ft, and

(ii) for each t ∈ G there is an i ∈ I for which Et ⊆ Ui (Lebesgue condition).

If no such d exists then asdim(G) is declared to be infinite. It is readily seen that the
asymptotic dimension is zero if and only if the group is locally finite. The asymptotic
dimension of Zm for m ∈ N is equal to m, while the asymptotic dimension of the free group
Fm for m ∈ N is equal to 1. An example of a finitely generated amenable group with infinite
asymptotic dimension is the Grigorchuk group [44]. See [1] for a general reference on the
subject.

The following inequality is a refinement of the observation in the second paragraph follow-
ing Definition 4.3, which can be rephrased as saying that dimtow(X,G) is nonzero whenever
asdim(G) is nonzero.

Proposition 4.8. dimtow(X,G) ≥ asdim(G).

Proof. We may assume that dimtow(X,G) is finite. Let E be a finite subset of G. Setting
d = dimtow(X,G), we can then find a finite E-Lebesgue collection of open towers {(Vi, Si)}i∈I
covering X such that the family {SiVi}i∈I has chromatic number at most d + 1. Pick an
x ∈ X. For every i ∈ I set Li = {s ∈ G : sx ∈ Vi}. Then the family

⋃
i∈I{Sit : t ∈ Li} of

subsets of G is readily seen to satisfy the conditions in the above formulation of asymptotic
dimension with respect to the set E. �

Example 4.9. Let m ∈ N. It follows easily from Theorems 3.8 and 4.6 of [46] that for every
d ∈ N there is a constant C > 0 such that for every free action Zm y X on a compact
metrizable space with dim(X) ≤ d one has

dim+1
tow(X,Zm) ≤ C · dim+1(X),(1)

and that we can also relax the hypothesis dim(X) ≤ d by merely requiring that the action
have the topological small boundary property with respect to d ([46], Definition 3.2). The
arguments in Section 7 of [47] show more generally that that if G is finitely generated and
nilpotent then there exists such a C > 0 such that (1) holds for every free action Gy X on
a compact metrizable space with dim(X) ≤ d.

Finally, we define a variant of tower dimension which requires that the bases of the towers
have small diameter.

Definition 4.10. The fine tower dimension dimftow(X,G) of the action Gy X is the least
integer d ≥ 0 with the property that for every finite set E ⊆ G and δ > 0 there is an
E-Lebesgue collection of open towers {(Vi, Si)}i∈I covering X such that diam(sVi) < δ for
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all i ∈ I and s ∈ Si and the family {SiVi}i∈I has chromatic number at most d + 1 (as for
tower dimension we may take I to be finite). If no such d exists we set dimftow(X,G) =∞.

Proposition 4.11. One has

dim+1
tow(X,G) ≤ dim+1

ftow(X,G) ≤ dim+1
tow(X,G) · dim+1(X).

In particular, dimftow(X,G) <∞ if and only if dimtow(X,G) <∞ and dim(X) <∞.

Proof. The first inequality is trivial. For the second, we may suppose that dim+1
tow(X,G) and

dim+1(X) are both finite. Denote these numbers by d and c, respectively. Let E be a finite
subset of G and δ > 0. Then there is a finite E-Lebesgue collection of towers {(Vi, Si)}i∈I
covering X such that the family {SiVi}i∈I has chromatic number at most d+1. By normality
we can find open sets Ui ⊆ X with Ui ⊆ Vi such that the family {SiUi}i∈I still covers X
and the collection {(Ui, Si)}i∈I is still E-Lebesgue. Since X has covering dimension c, by
compactness we can find for each i a collection {Vi,1, . . . , Vi,ki} of open subsets of Vi which

covers Ui, satisfies diam(sVi) < δ for all s ∈ Si, and has chromatic number at most c + 1.
Then {(Vi,j , Si) : i ∈ I, 1 ≤ k ≤ ji} is an E-Lebesgue collection of towers such that each
level of each tower has diameter less than δ and the family {SiVi}i∈I has chromatic number
at most (d+ 1)(c+ 1). This establishes the second inequality. �

5. Tower dimension, amenability dimension, and dynamic asymptotic dimension

Throughout G y X is a free action on a compact metrizable space. Our aim here is to
establish inequalities connecting its tower dimension, amenability dimension, and dynamic
asymptotic dimension (Theorem 5.14). We will see in particular that when the space is
zero-dimensional, all of these dimensions are equal (Corollary 5.15).

The notions of amenability dimension and dynamic asymptotic dimension are due to
Guentner, Willett, and Yu [17] and are recalled in Definitions 5.1 and 5.3 (these do not
require freeness or metrizability). After defining amenability dimension we establish an in-
equality relating it to tower dimension in Theorem 5.2. We then turn to dynamic asymptotic
dimension and prove some lemmas which will help us link it to tower dimension in Theo-
rem 5.14.

Write ∆(G) for the set of probability measures on G, and ∆d(G) for the set of probability
measures on G whose support has cardinality at most d + 1. We view both as subsets of
`1(G).

Definition 5.1. The amenability dimension dimam(X,G) of the action Gy X is the least
integer d ≥ 0 with the property that for every finite set F ⊆ G and ε > 0 there is a continuous
map ϕ : X → ∆d(G) such that

sup
x∈X
‖ϕ(sx)− sϕ(x)‖1 < ε

for all s ∈ F .

If G is finite then every action G y X has amenability dimension at most |G|, since
we may construct a G-invariant map by sending everything in X to the uniform probability
measure on G. More generally, if G is amenable we can construct an approximately invariant
continuous map ϕ : X → ∆(G) by sending everything in X to the uniform probability
measure on a sufficiently left invariant finite subset of G. However, when G is infinite the
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cardinality of the supports of such maps will necessarily tend to infinity as the approximate
invariance becomes better and better, and so to derive bounds for the amenability dimension
in this case one must search for maps which are approximately equivariant for reasons other
than approximate invariance. Indeed the support constraint in the definition of amenability
dimension results in phenomena that are qualitatively very different from the approximate
invariance we see in an amenable group and instead involve the presence of collections of
towers as in the definition of tower dimension.

Theorem 5.2. The action Gy X satisfies

dimam(X,G) ≤ dimtow(X,G).

Proof. We denote the induced action of G on C(X) by α, that is, αs(f)(x) = f(s−1x) for all
s ∈ G, f ∈ C(X), and x ∈ X.

We may assume that dimtow(X,G) is finite, and we denote this number by d. Fix a
compatible metric d on X.

Let F be a finite subset of G and let ε > 0. In order to verify the condition in the definition
of amenability dimension we may assume that F−1 = F by replacing F with F ∪ F−1, and
also that e ∈ F . Choose an integer n > 1 such that (d+ 1)(d+ 2)/n < ε. By the definition
of tower dimension, there is a finite Fn-Lebesgue collection of towers {(Vi, Si)}i∈I such that
{SiVi}i∈I is a cover of X with chromatic number at most d+ 1.

By the Fn-Lebesgue condition and a simple compactness argument we can find a δ > 0
such that for every x ∈ X there are an i ∈ I and a t ∈ Si such that d(x,X \ tVi) > δ and
Fnt ⊆ Si. For every i ∈ I and t ∈ Si define the function ĝi,t ∈ C(X) by

ĝi,t(x) = min{1, δ−1d(x,X \ tVi)}.

For every i ∈ I set

gi = max
t∈Si

αt−1(ĝi,t),

and note that for t ∈ Si the support of the function αt(gi) is contained in tVi.
Let i ∈ I. Set Bi,n =

⋂
t∈Fn tSi and Bi,0 = G \

⋂
t∈F tSi. For k = 1, . . . , n− 1 set

Bi,k =

( ⋂
t∈Fk

tSi

)
\
⋂

s∈Fk+1

tSi.

The sets Bi,k for k = 0, . . . , n form a partition of G, and for all t ∈ F we have

(i) tBi,0 ⊆ Bi,0 ∪Bi,1,
(ii) tBi,k ⊆ Bi,k−1 ∪Bi,k ∪Bi,k+1 for every k = 1, . . . , n− 1,
(iii) tBi,n ⊆ Bi,n−1 ∪Bi,n.

For each t ∈ G take k such that t ∈ Bi,k and define the function

ĥi,t =
k

n
αt(gi)

in C(X), and note that |ĥi,t(sx)− ĥi,s−1t(x)| ≤ 1/n for all x ∈ X and s ∈ F .

Now set H =
∑

i∈I
∑

t∈G ĥi,t. By our choice of δ, for every x ∈ X there is an i ∈ I and a
t ∈ Si such that d(x,X \ tVi) > δ and Fnt ⊆ Si, in which case t ∈ Bi,n and hence, in view
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of the definition of gi,

ĥi,t(x) = αt(gi)(x) ≥ ĝi,t(x) = 1.

This shows that H ≥ 1. Setting

hi,t = H−1ĥi,t

for every i ∈ I and t ∈ G, we then define a continuous map ϕ : X → ∆d(G) by

ϕ(x)(t) =
∑
i∈I

hi,t(x)

for x ∈ X and t ∈ G.
Since for each x ∈ X the set of all i ∈ I such that x ∈ SiVi has cardinality at most d+ 1,

for s ∈ F the difference between the values of H at x and sx is at most (d + 1)/n. Since
H ≥ 1, it follows that the difference between the values of H−1 at x and sx is also at most
(d+ 1)/n. Consequently for every x ∈ X, s ∈ F , and t ∈ G we have

|hi,t(sx)− hi,s−1t(x)| ≤ H(sx)−1
∣∣ĥi,t(sx)− ĥi,s−1t(x)

∣∣
+
∣∣H(sx)−1 −H(x)−1

∣∣ĥi,s−1t(x)

≤ d+ 2

n
,

while hi,t(sx) = hi,s−1t(x) = 0 whenever x /∈ SiVi. Using again the fact that for each x ∈ X
the set of all i ∈ I such that x ∈ SiVi has cardinality at most d+ 1, it follows that for every
x ∈ X and s ∈ F we have

‖ϕ(sx)− sϕ(x)‖1 =
∑
t∈G
|ϕ(sx)(t)− ϕ(x)(s−1t)|

≤
∑
t∈G

∑
i∈I
|hi,t(sx)− hi,s−1t(x)|

≤ (d+ 1)

(
d+ 2

n

)
< ε,

from which we conclude that dimam(X,G) ≤ d. �

Definition 5.3. The dynamic asymptotic dimension dad(X,G) of the action G y X is
the least integer d ≥ 0 with the property that for every finite set E ⊆ G there are a finite
set F ⊆ G and an open cover U of X of cardinality d + 1 such that, for all x ∈ X and
s1, . . . , sn ∈ E, if the points x, s1x, s2s1x, . . . , sn · · · s1x are contained in a common member
of U then sn · · · s1 ∈ F .

Definition 5.4. Let E be a finite subset of G. An open cover U of X is said to be E-Lebesgue
if for every x ∈ X there is an 1 ≤ i ≤ n such that Ex ⊆ Ui.

Remark 5.5. The above definition should not be confused with the E-Lebesgue condition
for a collection of towers. Given a collection of towers T = {(Vi, Si}i∈I such that the family
V = {SiVi}i∈I covers X, if T is E-Lebesgue then V is E-Lebesgue, but not conversely. For
example, if E contains an element of infinite order then there is no tower (V, S) such that
the singleton {(V, S)} is E-Lebesgue and SV = X, although {X} is an E-Lebesgue cover of
X. For collections of towers the E-Lebesgue condition involves the way in which each tower
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is coordinatized by its shape, while no such coordinatization is at play when dealing with
members of an arbitrary cover.

The following is part of Corollary 4.2 in [17].

Proposition 5.6. In Definition 5.3 the open cover U can be chosen to be E-Lebesgue.

We next record some lemmas that will allow us to establish the inequality dim+1
ftow(X,G) ≤

dad+1(X,G) · dim+1(X) in Theorem 5.14.

Definition 5.7. Let Gy X be a free action on a compact metric space. A castle is a finite
collection of towers {(Vi, Si)}i∈I such that the sets SiVi for i ∈ I are pairwise disjoint. The
levels of the castle are the sets sVi for i ∈ I and s ∈ Si. We say that the castle is open if
each of the towers is open.

Definition 5.8. For sets W ⊆ X and E ⊆ G we write RW,E for the equivalence relation on
W under which two points x and y are equivalent if there exist s1, . . . , sn ∈ E ∪ E−1 ∪ {e}
such that y = sn · · · s1x and sk · · · s1x ∈W for k = 1, . . . , n−1. Note that RW,E is symmetric
because the set E ∪ E−1 ∪ {e} is symmetric.

For an equivalence relation R on a set Z and an A ⊆ Z we write [A]R for the saturation of
A, i.e., the set of all x ∈ Z for which there exists a y ∈ A such that xRy. For sets W,A ⊆ X
we write ∂AW for the boundary of A∩W as a subset of the set A equipped with the relative
topology.

We will use without comment the following properties of covering dimension for a metriz-
able space Y . The second and third are consequences of the fact that covering dimension and
large inductive dimension coincide in the metrizable setting. See [32] for more information.

(i) If A is a closed subset of Y then dim(A) ≤ dim(Y ).
(ii) For every open set U ⊆ Y and closed set C ⊆ U there exists an open set V ⊆ Y

with C ⊆ V ⊆ U and dim(∂V ) < dim(Y ).
(iii) If {C1, . . . , Cn} is a closed covering of Y then dim(Y ) ≤ maxi=1,...,n dim(Ci).

Lemma 5.9. Let A be a nonempty closed subset of X and let δ > 0. Then there is a finite
collection {B1, . . . , Bn} of pairwise disjoint relatively open subsets of A of diameter less than
δ such that the set

⊔n
j=1Bj is dense in A and dim(∂ABj) < dim(A) for every j = 1, . . . , n.

Proof. By compactness there exists a finite open cover {U1, . . . , Un} of X whose members
each have diameter less than δ, and by normality we can find closed sets Cj ⊆ Uj such that
the collection {C1, . . . , Cn} is also a cover of X. Relativizing to A, we can then find for
each j = 1, . . . , n a relatively open subset Vj of A such that Cj ∩ A ⊆ Vj ⊆ Uj ∩ A and

dim(∂AVj) < dim(A). Now recursively define B1 = V1 and Bj = Vj \ (V1 ∪ · · · ∪ Vj−1) for
j = 2, . . . , n. Then the set B =

⊔n
j=1Bj is dense in A and for every j = 1, . . . , n we have

dim(∂ABj) ≤ max{dim(∂AVj), dim(∂AVj−1), . . . ,dim(∂AV1)}
≤ max{dim(∂AVj), dim(∂AVj−1), . . . ,dim(∂AV1)}
< dim(A). �

Lemma 5.10. Let E be a finite subset of G with E−1 = E and e ∈ E. Let C be a closed
subset of X, and suppose that there is a finite set F ⊆ G such that, for all x ∈ C and
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s1, . . . , sm ∈ E, if sk · · · s1x ∈ C for all k = 1, . . . ,m then sm · · · s1 ∈ F . Let A be a closed
subset of C. Then [A]RC,E is closed.

Proof. Let x be a point in X which is the limit of some sequence {xn} in [A]RC,E , and let
us show that x ∈ [A]RC,E . Since F is finite we can assume, by passing to a subsequence,
that there are s1, . . . , sm ∈ E and an ∈ A such that for every n we have xn = sm · · · s1an
and sk · · · s1an ∈ C for k = 1, . . . ,m. By the continuity of the action, we have an =
s−1

1 · · · s−1
m xn → s−1

1 · · · s−1
m x as n→∞. Writing a = s−1

1 · · · s−1
m x, which belongs to A since

A is closed, we then have x = sm · · · s1a, and also sk · · · s1a ∈ C for k = 1, . . . ,m since C is
closed. Thus x and a are RC,E-equivalent, so that x ∈ [A]RC,E . We conclude that [A]RC,E is
closed. �

Lemma 5.11. Let E be a finite subset of G with E−1 = E and e ∈ E. Let δ > 0. Let U be
an open subset of X and F a finite subset of G such that, for all x ∈ U and s1, . . . , sm ∈ E,
if sk · · · s1x ∈ U for all k = 1, . . . ,m then sm · · · s1 ∈ F . Let C be a nonempty closed subset
of X such that C ⊆ U . Let A be a closed subset of U with A = [A]RU,E . Then there are an

open set W ⊆ X with C ⊆W ⊆W ⊆ U , an open castle {(Vi, Si)}i∈I , and sets Oi ⊆ Vi such
that

(i) diam(sVi) < δ for all i ∈ I and s ∈ Si,
(ii)

⊔
i∈I SiVi ⊆W ,

(iii) [tx]RW,E = Six for every i ∈ I, t ∈ Si, and x ∈ Oi,
(iv) the set (A ∩W ) \

⊔
i∈I SiOi is closed and has dimension strictly less than dim(A).

Proof. Take an open set W0 ⊆ X with C ⊆ W0 ⊆ W0 ⊆ U . Then we can find a relatively
open subset W1 of A with A∩C ⊆W1 ⊆ A∩W0 such that dim(∂AW1) < dim(A). Now take
an open set W ⊆W0 such that W1 = A ∩W and C ⊆W , and note that W ⊆W0 ⊆ U . Set

X0 = A \ [∂AW1]RW,E

Since A is closed the set ∂AW1 is closed, and thus by Lemma 5.10 the set [∂AW1]RW,E

is closed, so that X0 is relatively open in A. Moreover, since [∂AW1]RW,E
is contained in

F∂AW1 we have

dim([∂AW1]RW,E
) ≤ dim(F∂AW1) = dim(∂AW1) < dim(A).(2)

Define a map ϕ : X0 →P(F ) (the power set of F ) by

ϕ(x) = {s ∈ F : sx ∈ [x]RW,E},
which by freeness is determined by the equation ϕ(x)x = [x]RW,E . Let us verify that ϕ
is continuous. Let x ∈ X0. Since W is open and the action is continuous, we can find
a relatively open subset V of X0 containing x such that ϕ(x) ⊆ ϕ(y) for every y ∈ V .
Suppose that there exists a sequence {xn} in X0 converging to x such that ϕ(x) 6= ϕ(xn)
for every n. We may assume, by passing to a subsequence, that there is a t ∈ F such that
t /∈ ϕ(x) and t ∈ ϕ(xn) for every n. Since the cardinality of each equivalence class of R is
bounded above by |F |, we can also assume, by passing to a further subsequence, that there
are s1, . . . , sm ∈ E such that sm · · · s1 = t and sk · · · s1xn ∈ W for k = 1, . . . ,m. Then by
the continuity of the action we have sk · · · s1x ∈ W for k = 1, . . . ,m. Now if it were the
case that sk · · · s1x /∈ W for some 1 ≤ k ≤ m, then since sk · · · s1x ∈ [A]RU,E = A and
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sk · · · s1xn ∈ [A]RU,E ∩W = A ∩W for every n it would follow that sk · · · s1x ∈ ∂AW1 and

hence x ∈ [∂AW1]RW,E
, contradicting the membership of x in X0. Therefore sk · · · s1x ∈ W

for k = 1, . . . ,m, showing that t ∈ ϕ(x), a contradiction. We conclude from this that ϕ
is constant on some open neighbourhood of x, and hence that ϕ is continuous on X0, as
desired.

Enumerate the subsets of F containing e as S1, . . . , Sq. Recursively define subsetsO1, . . . , Oq
of X0 by setting O1 = ϕ−1(S1) and, for i = 2, . . . , q,

Oi = ϕ−1(Si) \
(
Si−1ϕ−1(Si−1) ∪ · · · ∪ S1ϕ−1(S1)

)
.

The sets SiOi for i = 1, . . . , q are pairwise disjoint because RW,E is an equivalence relation.
Note also that each set SiOi is contained in X0 since [A]RW,E ⊆ [A]RU,E = A and [x]RW,E ⊆
[∂AW1]RW,E

for every x ∈ [∂AW1]RW,E
. Moreover, for every i = 1, . . . , q we have, using the

relative openness of ϕ−1(Si) in A and the closedness of A and appealing to (2),

dim(∂ASiϕ
−1(Si)) = dim(Si∂Aϕ

−1(Si))

= dim(∂Aϕ
−1(Si)) ≤ dim([∂AW1]RW,E

) < dim(A)

and hence

dim(∂AOi) ≤ max
(

dim(∂Aϕ
−1(Si)),dim(∂ASi−1ϕ−1(Si−1)), . . . ,dim(∂AS1ϕ−1(S1))

)
≤ max

(
dim(∂Aϕ

−1(Si)),dim(∂ASi−1ϕ
−1(Si−1)), . . . ,dim(∂AS1ϕ

−1(S1))
)

< dim(A).

We thus have a castle {(Oi, Si)}1≤i≤q with the following properties:

(i)
⊔q
i=1 SiOi ⊆ X0 ⊆

⊔q
i=1 SiOi,

(ii) [tx]RW,E = Six for every i = 1, . . . , q, t ∈ Si, and x ∈ Oi,
(iii) dim(∂AOi) < dim(A) for every i = 1, . . . , q.

By Lemma 5.9 and uniform continuity there is a family {B1, . . . , Bn} of pairwise disjoint
relatively open subsets of A such that the diameter of sBj is less than δ for every j =
1, . . . , n and s ∈ F , the set

⊔n
j=1Bj is dense in A, and dim(∂ABj) < dim(A) for every

j = 1, . . . , n. Replacing the castle {(Oi, Si)}1≤i≤q (the details of whose construction we
don’t care about) with the castle {(Oi ∩Bj , Si)}1≤i≤q, 1≤j≤n and relabeling, we may assume
that, in addition to satisfying (i) to (iii), the castle {(Oi, Si)}1≤i≤q has the property that
all of its levels have diameter less than δ (to see that condition (iii) still holds observe that
dim(∂A(Oi ∩Bj)) ≤ dim(∂AOi ∪ ∂ABj) ≤ max{dim(∂AOi),dim(∂ABj)} < dim(A)).

Next let 1 ≤ i ≤ q and s ∈ Si and let us show that sOi is relatively open in X0. Suppose to
the contrary that there exists a sequence {yn} in X0 \ sOi which converges to some y ∈ sOi.
Set x = s−1y ∈ Oi. Then there are s1, . . . , sm ∈ E such that s = sm . . . s1 and sk · · · s1x ∈W
for every k = 1, . . . ,m. For every n set xn = s−1yn = s−1

1 · · · s−1
m yn, and note that xn → x by

the continuity of the action. Since W is open we may assume, by passing to subsequences,
that for each n we have sk · · · s1xn ∈ W for every k = 1, . . . ,m, which means that xn
and yn are RW,E-equivalent. Since yn belongs to A but not [∂AW ]RW,E , this implies that
xn ∈ [A]RW,E ⊆ [A]RU,E = A and xn /∈ [∂AW ]RW,E . Therefore xn ∈ X0 for every n. Since

xn = s−1yn /∈ Oi for every n and xn → x, and Oi is relatively open in X0 by the continuity
of ϕ, we thus arrive at a contradiction. We therefore conclude that sOi is relatively open in
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X0. It follows that for each i = 1, . . . , q and s ∈ Si we can find an open subset Vi,s of W
which contains sOi and has diameter less than δ so that the sets Vi,s are pairwise disjoint.
For each i = 1, . . . , q set Vi =

⋂
s∈Si s

−1Vi,s Then {(Vi, Si)}1≤i≤q is an open castle such that
Oi ⊆ Vi for every i = 1, . . . , q and

(iv) dim(sVi) < δ for all i = 1, . . . , q and s ∈ Si,
(v)

⊔q
i=1 SiVi ⊆W .

Define the set

D = S1∂AO1 ∪ · · · ∪ Sq∂AOq,
which can be written as ∂A(S1O1)∪ · · · ∪ ∂A(SqOq) by the relative openness of each Oi in A
and thus by (i) satisfies X0 \D ⊆

⊔q
i=1 SiOi. Using (iii) we have

dim(D) ≤ max{dim(S1∂AO1), . . . ,dim(Sq∂AOq)}(3)

≤ max{dim(∂AO1), . . . ,dim(∂AOq)}
< dim(A).

Finally, set A′ = (A ∩W ) \
⊔q
i=1 SiOi, which is relatively closed in A and hence closed in

X. Since X0 \D ⊆
⊔q
i=1 SiOi and A ∩W = A ∩W = W1, we have

A′ ⊆ (A ∩W ) \ (X0 \D) ⊆ ∂AW1 ∪ (W1 \X0) ∪D
⊆ [∂AW1]RW,E

∪D

and hence, using (2) and (3) and the fact that [∂AW1]RW,E
and D are relatively closed in A,

dim(A′) ≤ max{dim([∂AW1]RW,E
),dim(D)} < dim(A).

This completes the verification of the required properties. �

Lemma 5.12. Let E, δ, U , F , and C be as in the statement of Lemma 5.11. Then there are
a nonnegative integer d ≤ dim(X) and for each j = 1, . . . , d+ 1 an open castle {(Vi, Si)}i∈Ij
and sets Oi ⊆ Vi such that

(i) C ⊆
⋃d+1
j=1

⊔
i∈Ij SiOi ⊆

⋃d+1
j=1

⊔
i∈Ij SiVi ⊆ U ,

(ii) [x]RC,E ⊆ Six for every i ∈ I, t ∈ Si, and x ∈ tOi ∩ C, and
(iii) for every j = 1, . . . , d+ 1 one has diam(sVi) < δ for all i ∈ Ij and s ∈ Si.

Proof. Take an open set U0 with C ⊆ U0 ⊆ U0 ⊆ U and set A0 = [U0]RU0,E
. Then A0 is

closed by Lemma 5.10, and A0 = [A0]RU0,E
. Thus by Lemma 5.11 there is an open set U1

with C ⊆ U1 ⊆ U1 ⊆ U0, an open castle {(Vi, Si)}i∈I1 , and sets Oi ⊆ Vi such that

(i) diam(sVi) < δ for all i ∈ I1 and s ∈ Si,
(ii)

⊔
i∈I1 SiVi ⊆ U1,

(iii) [tx]RU1,E
= Six for every i ∈ I1, t ∈ Si, and x ∈ Oi, and

(iv) the set A′0 = (A0 ∩ U0) \
⊔
i∈I1 SiOi is closed and satisfies

dim(A′0) < dim(A0).

Note that (iii) implies that for every i ∈ I1, t ∈ Si, and x ∈ tOi ∩ C we have

[x]RC,E ⊆ [x]RU1,E
= Six.
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Set A1 = [A′0]RU0,E
, which is closed by Lemma 5.10, and observe that since A1 ⊆ FA′0 we

have

dim(A1) ≤ dim(FA′0) = dim(A′0) < dim(A0).

Apply Lemma 5.11 again, this time using A1 and U1, to get an open set U2 with C ⊆
U2 ⊆ U2 ⊆ U1, an open castle {(Vi, Si)}i∈I2 , and sets Oi ⊆ Vi such that

(i) diam(sVi) < δ for all i ∈ I2 and s ∈ Si,
(ii)

⊔
i∈I2 SiVi ⊆ U2,

(iii) [tx]RU2,E
= Six for every i ∈ I1, t ∈ Si, and x ∈ Oi, and

(iv) the set A′1 = (A1 ∩ U1) \
⊔
i∈I2 SiOi is closed and satisfies

dim(A′1) < dim(A1).

Note that (iii) implies that for every i ∈ I2, t ∈ Si, and x ∈ tOi ∩ C we have

[x]RC,E ⊆ [x]RU2,E
= Six.

Set A2 = [A′1]RA1,E
, which is closed by Lemma 5.10, and observe that since A2 ⊆ FA′1 we

have

dim(A2) ≤ dim(FA′1) = dim(A′1) < dim(A1).

Continue this procedure by recursively applying Lemma 5.11 to produce at the jth stage
sets Uj and Aj , an open castle {(Vi, Si)}i∈Ij , and sets Oi ⊆ Vi as above, until we reach the
point that dim(Ad+1) = −1 for some d ≤ dim(X). The castles {(Vi, Si)}i∈Ij and sets Oi
then satisfy the requirements of the lemma. �

Lemma 5.13. Let E be a finite subset of G and let {U1, . . . , Un} be an E-Lebesgue open
cover of X. Then there exist closed sets Ci ⊆ Ui such that {C1, . . . , Cn} is an E-Lebesgue
cover of X.

Proof. For i = 1, . . . , n write Vi for the set of all x ∈ X such that Ex ⊆ Ui. This is an open
set since Ui is open and the action is continuous. Because {U1, . . . , Un} is E-Lebesgue, the
collection {V1, . . . , Vn} covers X. By normality we can find closed sets Di ⊆ Vi such that
{D1, . . . , Dn} still covers X. For each i define Ci =

⋃
s∈E s

−1Di, which is a closed subset of
Ui. Then {C1, . . . , Cn} is an E-Lebesgue cover of X of the required kind. �

Theorem 5.14. The action Gy X satisfies

dad+1(X,G) ≤ dim+1
am(X,G) ≤ dim+1

tow(X,G)

≤ dim+1
ftow(X,G) ≤ dad+1(X,G) · dim+1(X).

Proof. The first inequality follows from Theorem 4.11 of [17], as pointed out in Remark 4.14
of that paper. The second inequality is Theorem 5.2. The third inequality is trivial.

It remains to establish the last inequality. For this we may assume that dad(X,G) and
dim(X) are both finite. Let E be a finite subset of G with E−1 = E and e ∈ E. By
Proposition 5.6 there are a finite set F ⊆ G and an E-Lebesgue open cover {U0, . . . , Ud} of
X with d ≤ dad(X,G) such that, for all j = 0, . . . , d, if x ∈ Uj and s1, . . . , sn ∈ E satisfy
sk · · · s1x ∈ Uj for all k = 1, . . . , n then sn · · · s1 ∈ F . By Lemma 5.13 there exist closed
sets Cj ⊆ Uj for j = 0, . . . , d such that {C0, . . . , Cd} is an E-Lebesgue cover of X. By
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Lemma 5.12, for every j = 0, . . . , d there are a collection of open towers {(Vi, Si)}i∈Ij with
chromatic number at most dim(X) + 1 and levels of diameter less than δ and sets Oi ⊆ Vi
such that Cj ⊆

⋃d
j=0

⊔
i∈Ij SiOi ⊆

⋃d
j=0

⊔
i∈Ij SiVi ⊆ Uj and

[x]RCj,E ⊆ Six(4)

for every i ∈ Ij , t ∈ Si, and x ∈ tOi ∩ Cj . Note that the collection of open towers
{(Vi, Si)}i∈Ij , 0≤j≤d has chromatic number at most (d+ 1)(dim(X) + 1).

Now let x ∈ X. Since the cover {C0, . . . , Cd} is E-Lebesgue, there is a 0 ≤ j ≤ d such that
Ex ⊆ Cj . Since x ∈ Cj there are i ∈ Ij , t ∈ Si, and y ∈ Oi such that x = ty. By (4) and
our choice of j, for every s ∈ E we have sty ∈ [ty]RCj,E ⊆ Siy so that Ety ⊆ Siy and hence

Et ⊆ Si. This shows that the collection of open towers {(Vi, Si)}i∈Ij , 0≤j≤d is E-Lebesgue.

We have thus verified that dim+1
ftow(X,G) ≤ dad+1(X,G) · dim+1(X), as desired. �

Corollary 5.15. Suppose that X is zero-dimensional. Then the action Gy X satisfies

dimtow(X,G) = dimftow(X,G) = dad(X,G) = dimam(X,G).

6. Tower dimension and nuclear dimension

Let Gy X be a free action on a compact Hausdorff space. We write C(X) oλ G for the
associated reduced crossed product. In Section 8 of [17], Guentner, Willett, and Yu showed
that

dim+1
nuc(C(X) oλ G) ≤ dad+1(X,G) · dim+1(X).

By Theorem 5.14 this implies that

dim+1
nuc(C(X) oλ G) ≤ dim+1

tow(X,G) · dim+1(X).(5)

We will give here a shorter direct proof of (5) in order to illustrate the formal affinity between
tower dimension and nuclear dimension. This can be seen as a distillation of the arguments
in Section 8 of [17] into their simplest combinatorial form.

First we recall the definition of nuclear dimension [58]. We use the abbreviation c.p.c. for
“completely positive contractive”. A map ϕ : A→ B between C∗-algebras is order zero if it
preserve orthogonality, that is, ϕ(a1)ϕ(a2) = 0 for all a1, a2 ∈ A satisfying a1a2 = 0.

Definition 6.1. The nuclear dimension dimnuc(A) of a C∗-algebra A is the least integer
d ≥ 0 such that for every finite set Ω ⊆ A and ε > 0 there are finite-dimensional C∗-algebras
B0, . . . , Bd and linear maps

A
ϕ−→ B0 ⊕ · · · ⊕Bd

ψ−→ A

such that ϕ is c.p.c., ψ|Bi is c.p.c. and order zero for each i = 0, . . . , d, and

‖ψ ◦ ϕ(a)− a‖ < ε

for every a ∈ Ω. If no such d exists then we set dimnuc(A) =∞.

Let (V, S) be an open tower. Write AV,S for the C∗-subalgebra of C(X) oλ G generated
by the sets usC0(V )u∗t for s, t ∈ S. Denoting by MT the matrix algebra with entries indexed
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by pairs in T ×T and by {es,t}s,t∈T the matrix units of MT , there is a canonical isomorphism
MT ⊗ C0(V )→ AV,S determined by

es,t ⊗ f 7→ usfu
∗
t

for s, t ∈ S and f ∈ C0(V ).

Theorem 6.2. The action Gy X satisfies

dim+1
nuc(C(X) oλ G) ≤ dim+1

tow(X,G) · dim+1(X).

Proof. We denote the induced action of G on C(X) by α, that is, αs(f)(x) = f(s−1x) for all
s ∈ G, f ∈ C(X), and x ∈ X.

We may assume that dimtow(X,G) is finite. For brevity we denote this quantity by d. Let
Ω be a finite subset of C(X) oG and ε > 0. In order to verify the existence of the desired
maps in the definition of nuclear dimension which approximately factorize the identity map
on C(X)oG to within ε on the set Ω, we may assume that Ω = {fus : f ∈ Υ, s ∈ F} where
Υ is a finite set of functions in C(X) and F is a finite subset of G satisfying F−1 = F and
e ∈ F .

Let n be an integer greater than 1, to be determined. By the definition of tower dimension,
there is a finite Fn-Lebesgue collection of open towers {(Vi, Si)}i∈I covering X such that the
family {SiVi}i∈I has chromatic number at most d+ 1. For convenience we may also assume
that for each i the set Si contains e, for if necessary we can choose a t ∈ Si and replace Si
by Sit

−1 and Vi by tVi.
We next construct functions gi as in the proof of Theorem 5.2. The Fn-Lebesgue condition

and a simple compactness argument produce a δ > 0 such that for every x ∈ X there are
an i ∈ I and a t ∈ Si for which d(x,X \ tVi) > δ and Fnt ⊆ Si. For every i ∈ I and t ∈ Si
define ĝi,t ∈ C(X) by

ĝi,t(x) = min{1, δ−1d(x,X \ tVi)},
and set

gi = max
t∈Si

αt−1(ĝi,t).

Then for every i ∈ I and t ∈ Si the support of αt(gi) is contained in tVi, and αt(gi) ≥ ĝi,t,
which implies that

∑
i∈I
∑

t∈Si αt(gi) ≥ 1.
Let i ∈ I. Set Bi,n =

⋂
t∈Fn tSi and Bi,0 = Si \

⋂
t∈F tSi. For k = 1, . . . , n− 1 set

Bi,k =

( ⋂
t∈Fk

tSi

)
\
⋂

t∈Fk+1

tSi.

The sets Bi,k for k = 0, . . . , n form a partition of Si, and for all s ∈ F we have

(i) sBi,k ⊆ Bi,k−1 ∪Bi,k ∪Bi,k+1 for every k = 1, . . . , n− 1,
(ii) sBi,n ⊆ Bi,n−1 ∪Bi,n.

Since for each t ∈ Si the function αt(gi) is supported in the tower level tVi, it follows that
the function

ĥi =

n∑
k=0

∑
t∈Bi,k

k

n
αt(gi)
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satisfies supx∈X |ĥi(s−1x)− ĥi(x)| ≤ 1/n for every s ∈ F . Put H =
∑

i∈I ĥi. As in the proof

of Theorem 5.2, our choice of δ entails that H ≥ 1, and so for every i we can set hi = H−1ĥi,
which gives us a partition of unity {hi}i∈I in C(X).

Let s ∈ F . Let x ∈ X. The collection of all i ∈ I such that x ∈ SiVi has cardinality at
most d+1, and so the difference between the values of H at x and s−1x is at most (d+1)/n.
Since H ≥ 1, it follows that the difference between the values of H−1 at x and s−1x is also
at most (d+ 1)/n. We then get, for every i,

‖ushi − hius‖ = ‖ushiu−1
s − hi‖(6)

= sup
x∈X
|hi(s−1x)− hi(x)|

≤ sup
x∈X

H(s−1x)−1
∣∣ĥi(s−1x)− ĥi(x)

∣∣
+ sup
x∈X

∣∣H(s−1x)−1 −H(x)−1
∣∣ĥ(x)

≤ d+ 2

n
.

Since the collection {SiVi}i∈I has chromatic number at most d + 1, there is a partition
I0, . . . , Id of I such that for every k = 0, . . . , d the collection {SiVi}i∈Ik is disjoint. For each
k = 0, . . . , d set qk =

∑
i∈Ik hi.

For i ∈ I we write Ai for the C∗-subalgebra of C(X)oG generated by the sets usC0(Vi)u
∗
t

for s, t ∈ Si. Let k ∈ {0, . . . , d} and set Ak =
⊕

i∈Ik Ai. Since the Ai for i ∈ Ik are

pairwise orthogonal as sub-C∗-algebras of C(X) o G, we can view Ak as a C∗-subalgebra
of C(X) o G. Since Ai ∼= MSi ⊗ C0(Vi) for every i (as explained prior to the statement
of the theorem), the nuclear dimension of Ai is at most dim(X), as one can verify by a
straightforward partition of unity argument using the formulation of covering dimension in
term of the chromatic numbers of open covers (see the proof of Proposition 3.4 in [25]).

Noting that fusqk = usαs(f)qk ∈ Ak for every f ∈ Υ and s ∈ F since ĥi vanishes on Bi,0 for
each i, we can thus find finite-dimensional C∗-algebras Dk,0, . . . , Dk,mk with mk ≤ dim(X), a
c.p.c. map θk : Ak → Dk,0⊕· · ·⊕Dk,mk , and a map ψk : Dk,0⊕· · ·⊕Dk,mk → Ak ⊆ C(X)oG
whose restriction to each summand is c.p.c. and order zero such that

‖ψk ◦ θk(fusqk)− fusqk‖ <
ε

2(d+ 1)
(7)

for all f ∈ Υ and s ∈ F . By Arveson’s extension theorem we can extend θk to a c.p.c.
map C(X) o G → Dk,0 ⊕ · · · ⊕ Dk,mk , which we will again call θk. Define the c.p.c. map
ϕk : C(X) oG→ Dk,0 ⊕ · · · ⊕Dk,mk by

ϕk(a) = θk(q
1/2
k aq

1/2
k ).

Now define the maps

C(X) oG
ϕ−→

d⊕
k=0

Dk,0 ⊕ · · · ⊕Dk,mk
ψ−→ C(X) oG

by ϕ =
⊕d

k=0 ϕk and
ψ(a0, . . . , ad) = ψ0(a0) + · · ·+ ψd(ad).
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Then ϕ is c.p.c. and the restriction of ψ to each Dk,j is c.p.c. and order zero. Since m0 + · · ·+
md ≤ dim+1(X,G) · dim+1(X), to obtain the desired upper bound on dimnuc(C(X) oG) it
remains to verify that ‖ψ ◦ ϕ(fus)− fus‖ < ε for all f ∈ Υ and s ∈ F .

By a straightforward functional calculus argument that uses a polynomial approximation
to the function x 7→ x1/2 on [0, 1], we see from (6) that if n is small enough relative to d then
for each i ∈ I, f ∈ Υ, and s ∈ F we will have

‖h1/2
i fush

1/2
i − fushi‖ <

ε

2(d+ 1)
.

Let s ∈ F and k ∈ {0, . . . , d}. Since for every i ∈ Ik the element h
1/2
i fush

1/2
i −fushi belongs

to Ai and the sub-C∗-subalgebras Ai for i ∈ Ik are pairwise orthogonal, we get

‖q1/2
k fusq

1/2
k − fusqk‖ = max

i∈Ik
‖h1/2

i fush
1/2
i − fushi‖ <

ε

2(d+ 1)
.

Using (7) this yields

‖ψk ◦ ϕk(fus)− fusqk‖ ≤ ‖ψk ◦ θk(q
1/2
k fusq

1/2
k − fusqk)‖

+ ‖ψk ◦ θk(fusqk)− fusqk‖

< ‖h1/2
k fusq

1/2
k − fusqk‖+

ε

2(d+ 1)
<

ε

d+ 1
,

whence

‖ψ ◦ ϕ(fus)− fus‖ =

∥∥∥∥ d∑
k=0

(ψk ◦ ϕk(fus)− fusqk)
∥∥∥∥

≤
d∑

k=0

‖ψk ◦ ϕk(fus)− fusqk‖

< (d+ 1) · ε

d+ 1
= ε,

as desired. �

7. Tower dimension and comparison

We aim here to establish Theorem 7.2.

Lemma 7.1. Suppose that G is amenable. Let Gy X be a free action with tower dimension
d <∞. Let K be a finite subset of G and δ > 0. Then there is a finite collection {(Vi, Si)}i∈I
of open towers covering X such that Si is (K, δ)-invariant for every i ∈ I and the family
{SiVi}i∈I has chromatic number at most d+ 1.

Proof. By the main theorem of [7] there exist nonempty (K, δ)-invariant finite sets F1, . . . , Fn ⊆
G and sets C1, . . . , Cn ⊆ G such that

G =

n⊔
k=1

⊔
c∈Ck

Fkc.
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Set F = F1F
−1
1 ∪ · · · ∪ FnF−1

n . By our tower dimension hypothesis there is a finite F -
Lebesgue collection of open towers {(Vi, Ti)}i∈I covering X such that the family {SiVi}i∈I
has chromatic number at most d+ 1. For each i ∈ I set

T ′i =
⋃
{Fkc : 1 ≤ k ≤ n, c ∈ Ck, and Fkc ⊆ Ti},

T ′′i =
⋂
s∈F

s−1Ti.

Let i ∈ I. Let x ∈ Ti \ T ′i . Take 1 ≤ k ≤ n and c ∈ Ck such that x ∈ Fkc ∩ Ti. Then
there exists a y ∈ Fkc ∩ (G \ Ti). We have x = sc and y = tc for some s, t ∈ Fk, whence
ts−1x = y /∈ Ti, which shows that x /∈ T ′′i since ts−1 ∈ F . We conclude from this that
T ′′i ⊆ T ′i . It follows by the F -Lebesgue condition that the towers (Vi, T

′
i ) for i ∈ I cover X.

Finally, for each i ∈ I write T ′i =
⊔
j∈Ji Sj where each Sj has the form Fkc for some

1 ≤ k ≤ n and c ∈ Ck. Then the collection of open towers {(Vi, Sj)}i∈I,j∈Ji covers X, each of
its shapes is (K, δ)-invariant, and the family {SiVi}i∈I has chromatic number at most d+ 1,
as desired. �

Theorem 7.2. Suppose that G is amenable. Let X be a compact metric space with covering
dimension c < ∞. Let G y X be a free action with tower dimension d < ∞. Then the
action has ((c+ 1)(d+ 1)− 1)-comparison.

Proof. Let A be a closed subset of X and B an open subset of X such that µ(A) < µ(B) for
all µ ∈MG(X). By Lemma 3.3 we can find an η > 0 such that the sets

B− = {x ∈ X : d(x,X \B) > η},
A+ = {x ∈ X : d(x,A) ≤ η}

satisfy µ(A+) + η ≤ µ(B−) for all µ ∈MG(X).
We claim that there are a finite set K ⊆ G and a δ > 0 such that if F is a nonempty

(K, δ)-invariant finite subset of G then for all x ∈ X we have

1

|F |
∑
s∈F

1A+(sx) +
η

2
≤ 1

|F |
∑
s∈F

1B−(sx).(8)

Suppose that this is not possible. Then there exists a Følner sequence {Fn} and a sequence
{xn} in X such that, writing µn for the probability measure (1/|Fn|)

∑
s∈Fn δsx, we have

µn(A+) +
η

2
> µn(B−)

for all n. By passing to a subsequence we may assume that the sequence {µn} converges to
some µ ∈M(X), and the Følner property implies that µ is G-invariant, as is easily verified.
Since B− is open and A+ is closed, the portmanteau theorem yields

µ(B−) +
η

2
≤ lim inf

n→∞
µn(B−) +

η

2
≤ lim sup

n→∞
µn(A+) + η ≤ µ(A+) + η,

contradicting our choice of η. The desired K and δ thus exist.
By Lemma 7.1 there are a finite collection {(Vi, Ti)}i∈I of open towers covering X and a

partition I = I0 t · · · t Id such that for every i ∈ I the shape Ti is (K, δ)-invariant and for
every j = 0, . . . , d the sets TiVi for i ∈ Ij are pairwise disjoint. By normality we can find for
every i ∈ I a closed set V ′i ⊆ Vi such that the sets TiV

′
i for i ∈ I still cover X. Using the
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formulation of covering dimension in term of the chromatic numbers of open covers, we can
then find, for each i ∈ I, a finite collection Ui of open subsets of Vi such that

(i) the collection Ui covers V ′i ,
(ii) each of the sets sU for s ∈ Ti and U ∈ Ui has diameter less than η, and
(iii) there is a partition Ui = Ui,0 t · · · t Ui,c such that the collection Ui,j is disjoint for

each j.

For convenience we reindex the collection of towers {(U, Ti)}i∈I,U∈Ui as {(Uj , Sj)}j∈J . Then
the shapes Sj are all (K, δ)-invariant and, setting m = (c+ 1)(d+ 1)− 1, there is a partition
J = J0 t · · · t Jm such that for each k = 0, . . . ,m the sets SjUj for j ∈ Jk are pairwise
disjoint.

Let 0 ≤ k ≤ m and j ∈ Jk. Since the levels of the tower (Uj , Sj) all have diameter less
than η, if sUj ∩A 6= ∅ for some s ∈ Sj then sUj ⊆ A+, and so by (8) the sets

Sj,1 = {s ∈ Sj : sUj ∩A 6= ∅},
Sj,2 = {s ∈ Sj : sUj ∩B− 6= ∅}

must satisfy |Sj,1|/|Sj | + η/2 ≤ |Sj,2|/|Sj | and hence |Sj,1| ≤ |Sj,2|. We can thus find an
injection ϕj : Sj,1 → Sj,2. Now the sets sUj for s ∈ Sj,1 and j ∈ J cover A, while for each
k = 0, . . . ,m the pairwise disjoint sets ϕ(s)Uj = (ϕ(s)s−1)sUj for j ∈ Jk and s ∈ Sj,1 are
contained in B since the levels of the tower (Uj , Sj) all have diameter less than η. This
verifies that A ≺m B, as desired. �

8. Almost finiteness

We begin by recalling the following notion of castle from Definition 5.7.

Definition 8.1. Let Gy X be a free action on a compact metric space. A castle is a finite
collection of towers {(Vi, Si)}i∈I such that the sets SiVi for i ∈ I are pairwise disjoint. The
levels of the castle are the sets sVi for i ∈ I and s ∈ Si. We say that the castle is open if
each of the towers is open, and clopen if each of the towers is clopen.

Definition 8.2. We say that a free action G y X on a compact metric space is almost
finite if for every n ∈ N, finite set K ⊆ G, and δ > 0 there are

(i) an open castle {(Vi, Si)}i∈I whose shapes are (K, δ)-invariant and whose levels have
diameter less than δ,

(ii) sets S′i ⊆ Si such that |S′i| < |Si|/n and

X \
⊔
i∈I

SiVi ≺
⊔
i∈I

S′iVi.

Remark 8.3. Observe in the context of Definition 8.2 that if we have sets S′i ⊆ Si satisfying

X \
⊔
i∈I

SiVi ≺
⊔
i∈I

S′iVi

then any other sets S′′i ⊆ Si with |S′′i | ≥ |S′i| will similarly satisfy

X \
⊔
i∈I

SiVi ≺
⊔
i∈I

S′′i Vi.
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since the relation ≺ is transitive and
⊔
i∈I S

′
iVi ≺

⊔
i∈I S

′′
i Vi. The latter follows from the

fact that for each i we have S′iVi ≺ S′′i Vi, which can be witnessed by taking an injection
ϕ : S′i → S′′i and considering the open collections {sVi : s ∈ S′i} and {ϕ(s)Vi : s ∈ S′i}, the
first of which partitions S′iVi and the second of which partitions the subset ϕ(S′i)Vi of S′′i Vi.

Remark 8.4. Almost finiteness does not pass to extensions, the obstruction being the
diameter condition. For example, the minimal actions in [13] factor onto an odometer,
which is almost finite, but are not themselves almost finite by Theorem 12.4, since their
crossed product fails to be Z-stable. See however Theorem 11.6.

Example 8.5. Every free Zm-action on a zero-dimensional compact metrizable space is
almost finite. This was established in Lemma 6.3 of [29] in the language of groupoids, whose
translation to Definition 8.2 is discussed in the first paragraph of Section 10.

The following was shown in [4].

Theorem 8.6. Let G be a countable amenable group. Then a generic free minimal action
of G on the Cantor set is almost finite.

The following two facts are simple consequences of Definition 8.2.

Proposition 8.7. Almost finiteness is preserved under inverse limits of free actions.

Proposition 8.8. Let Gy X be a free action on a compact metrizable space, and suppose
that G can be expressed as a union of an increasing sequence G1 ⊆ G2 ⊆ . . . of subgroups
such that the restriction action Gn y X is almost finite for every n. Then the action Gy X
is almost finite.

Problem 8.9. Let Gy X be a uniquely ergodic free minimal action of a countable amenable
group on the Cantor set. Must it be almost finite?

9. Almost finiteness and comparison

In Theorem 9.2 we relate almost finiteness and comparison. By combining this with The-
orem 7.2 we are then able to give a connection between tower dimension, almost finiteness,
and comparison, which we record as Theorem 9.3.

Lemma 9.1. Let X be a compact metrizable space and let Ω be a weak∗ closed subset of
M(X). Let A be a closed subset of X such that µ(A) = 0 for all µ ∈ Ω, and let ε > 0. Then
there is a δ > 0 such that

µ({x ∈ X : d(x,A) ≤ δ}) < ε

for all µ ∈ Ω.

Proof. Suppose that the conclusion does not hold. Then for every n ∈ N we can find a µn ∈ Ω
such that the set An = {x ∈ X : d(x,A) ≤ 1/n} satisfies µn(An) ≥ ε. By the compactness
of Ω there is a subsequence {µnk} of {µn} which weak∗ converges to some µ ∈ Ω. For a
fixed j ∈ N we have µnk(Anj ) ≥ ε for every k ≥ j, and since Anj is closed the portmanteau
theorem then yields

µ(Anj ) ≥ lim sup
k→∞

µnk(Anj ) ≥ ε.

As A is closed it is equal to the intersection of the decreasing sequence of sets Anj , and so
µ(A) = limj→∞ µ(Anj ) ≥ ε, in contradiction to our hypothesis. �
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Theorem 9.2. Suppose that G is amenable. Let G y X be a free minimal action and
consider the following conditions:

(i) the action is almost finite,
(ii) the action has comparison,

(iii) the action has m-comparison for all m ≥ 0,
(iv) the action has m-comparison for some m ≥ 0.

Then (i)⇒(ii)⇒(iii)⇒(iv), and if EG(X) is finite then all four conditions are equivalent.

Proof. (i)⇒(ii). Let A be a closed subset of X and B an open subset of X such that
µ(A) < µ(B) for all µ ∈MG(X). We aim to show that A ≺ B, which will establish (ii). By
Lemma 3.3 there exists an η > 0 such that µ(A) + η ≤ µ(B) for all µ ∈MG(X). As the set
B \A must be nonempty, we can pick a y ∈ B \A. By Lemma 9.1 there is a κ > 0 such that
the closed ball C = {x ∈ X : d(x, y) ≤ κ} is contained in B \ A and satisfies µ(C) ≤ η/2
for all µ ∈ MG(X). By minimality the open ball C− = {x ∈ X : d(x, y) < κ/2} satisfies
µ(C−) > 0 for all µ ∈MG(X), and so by Lemma 3.3 (taking A = ∅ and B = C− there) there
is a θ > 0 such that µ(C−) ≥ θ for all µ ∈MG(X).

Set B̃ = B \ C. Then for all µ ∈MG(X) we have

µ(B̃) = µ(B)− µ(C) ≥ µ(A) +
η

2
> µ(A)

and so by Lemma 3.3 there exists an η′ > 0 with η′ ≤ η such that the sets

B− = {x ∈ X : d(x,X \ B̃) > η′},
A+ = {x ∈ X : d(x,A) ≤ η′}

satisfy µ(A+) + η′ ≤ µ(B−) for all µ ∈ MG(X). Note that each of the sets A+ and B− is
disjoint from C.

We claim that there are a finite set K ⊆ G and a δ > 0 such that if F is a nonempty
(K, δ)-invariant finite subset of G then for all x ∈ X the following both hold:

1

|F |
∑
s∈F

1A+(sx) +
η′

2
≤ 1

|F |
∑
s∈F

1B−(sx),(9)

1

|F |
∑
s∈F

1C−(sx) ≥ θ

2
.(10)

Suppose to the contrary that this is not possible. Then we can find a Følner sequence {Fn}
and a sequence {xn} inX such that, writing µn for the probability measure (1/|Fn|)

∑
s∈Fn δsx,

one of the following holds:

(i) µn(A+) + η′/2 > µn(B−) for all n,
(ii) µn(C−) < θ/2 for all n.

Suppose first that (i) holds. By passing to a subsequence we may assume that the sequence
{µn} converges to some µ ∈M(X), and it is readily verified using the Følner property that
µ is G-invariant. Since B− is open and A+ is closed, the portmanteau theorem then yields

µ(B−) +
η′

2
≤ lim inf

n→∞
µn(B−) +

η′

2
≤ lim sup

n→∞
µn(A+) + η′ ≤ µ(A+) + η′,
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a contradiction. If on the other hand (ii) holds, then as before we may assume that {µn}
converges to some µ ∈MG(X), and since C− is open the portmanteau theorem yields

µ(C−) ≤ lim inf
n→∞

µn(C−) ≤ θ

2
,

a contradiction. We may thus find the desired K and δ.
Set ε = min{η′, κ/2} and choose an integer n > 3/θ. Then by almost finiteness there are

(i) an open castle {(Vi, Si)}i∈I whose shapes are (K, δ)-invariant and whose levels have
diameter less than ε, and

(ii) sets S′i ⊆ Si such that |S′i| < |Si|/n and the set D :=
⊔
i∈I SiVi satisfies

X \D ≺
⊔
i∈I

S′iVi.

Let i ∈ I. Since the levels of the towers all have diameter less than both η′ and κ/2, by (9)
and (10) the sets

Si,1 = {s ∈ Si : sVi ∩A 6= ∅},
Si,2 = {s ∈ Si : sVi ∩B− 6= ∅},
Si,3 = {s ∈ Si : sVi ∩ C− 6= ∅}

satisfy

|Si,1|
|Si|

+
η′

2
≤ |Si,2|
|Si|

and
|Si,3|
|Si|

≥ θ

2

so that |Si,1| ≤ |Si,2| and |Si,3| ≥ |S′i|. We can thus find injective maps ϕi : Si,1 → Si,2 and
ψi : S′i → Si,3.

Since X \D ≺
⊔
i∈I S

′
iVi we can find a finite collection U of open subsets of X which cover

X \D and a tU ∈ G for each U ∈ U such that the images tUU for U ∈ U are pairwise disjoint
subsets of

⊔
i∈I S

′
iVi. For all U ∈ U, i ∈ I, and s ∈ S′i write WU,i,s for the (possibly empty)

open set U ∩ t−1
U sVi. These open sets cover X \D, and so in particular cover (X \D) ∩ A,

and the images ψi(tU )WU,i,s for U ∈ U, i ∈ I, and s ∈ S′i are pairwise disjoint subsets of
B∩

⊔
i∈I Si,3Vi. At the same time, the open sets sVi for i ∈ I and s ∈ Si,1 cover D∩A, while

the images ϕi(s)Vi = (ϕi(s)s
−1)sVi for i ∈ I and s ∈ Si,1 are pairwise disjoint subsets of

B ∩
⊔
i∈I Si,2Vi. Since the sets

⊔
i∈I Si,3Vi and

⊔
i∈I Si,2Vi are disjoint, we have thus verified

that A ≺ B.
(ii)⇒(iii)⇒(iv). Trivial.
Now suppose that EG(X) is finite and let us verify (iv)⇒(i). We thus suppose that there

is an m ∈ N such that the action has m-comparison. We may assume that G is infinite, for
otherwise minimality implies that X consists of a single orbit, in which case the action is
obviously almost finite. Write EG(X) = {µ1, . . . , µq} and set µ = (1/q)

∑q
k=1 µk ∈ MG(X).

Let K be a finite subset of G, δ > 0, and n ∈ N. Put ε = 1/(4nq(m+ 1)). Choose an integer
N > 1/ε. Since G is infinite and m ·4qε < 1 we can find a finite set K ′ ⊆ G with K ⊆ K and
a δ′ > 0 with δ′ ≤ δ such that every nonempty (K ′, δ′)-invariant finite set F ⊆ G has large
enough cardinality so that it has m pairwise disjoint subsets of equal cardinality κ satisfying
2qε < κ/|F | < 4qε.



DIMENSION, COMPARISON, AND ALMOST FINITENESS 29

Since the action is free, by the Ornstein–Weiss tower theorem (as formulated in Theo-
rem 4.46 of [22]) there exists a finite collection {(Mi, Ti)}i∈I of measurable towers such that
the sets TiMi for i ∈ I are pairwise disjoint, µ(

⊔
i∈I TiMi) ≥ 1 − ε/(2q), and Ti is (K ′, δ′)-

invariant for every i. By regularity we can find closed sets Ci ⊆ Mi with µ(Mi \ Ci) small
enough to ensure that µ(

⊔
i∈I TiCi) ≥ 1− ε/q. Then by compactness we can find open sets

Vi ⊇ Ci such that the sets TiVi for i ∈ I are pairwise disjoint.
Let i ∈ I. By our choice of K ′ and δ′ we can find pairwise disjoint sets Si,0, . . . , Si,m ⊆ Ti

all having the same cardinality κ satisfying 2qε < κ/|Ti| < 4qε. Set T ′i = Si,0 t · · · t Si,m.
Then

|T ′i | = (m+ 1)κ < 4(m+ 1)qε|Ti| =
1

n
|Ti|.(11)

Set A = X \
⊔
i∈I TiVi and B =

⊔
i∈I Si,0Vi. Then for every ν ∈ MG(X) we have, since ν

is convex combination of the measures µ1, . . . , µq,

ν(A) ≤ max
k=1,...,q

µk(A) ≤ qµ(A) ≤ ε,

from which we get ν(
⊔
i∈I TiVi) ≥ 1− ε ≥ 1/2 and hence

ν(B) ≥
∑
i∈I

|Si,0|
|Ti|

ν(TiVi) > 2qεν

(⊔
i∈I

TiVi

)
≥ 1

4n(m+ 1)
≥ ε.

Since A is closed and B is open we thus have A ≺m B by our m-comparison hypothesis. We
can therefore find a finite collection U of open subsets of X which cover A, an sU ∈ G for
each U ∈ U, and a partition U = U0 t · · · t Um such that for each i = 0, . . . ,m the images
sUU for U ∈ Ui are pairwise disjoint subsets of B.

For each i ∈ I and j = 0, . . . ,m choose a bijection ϕi,j : Si,0 → Si,j . For U ∈ U, i ∈ I,

and t ∈ Si,0 write WU,i,t for the open set U ∩ s−1
U tVi. For a fixed U , the sets WU,i,t for

i ∈ I and t ∈ Si,0 partition U . Moreover, writing jU for the j such that U ∈ Uj , the sets
ϕi,jU (t)t−1sUWU,i,t over all U ∈ U, i ∈ I, and t ∈ Si,0 are pairwise disjoint and contained in⊔
i∈I T

′
iVi. This shows that

A ≺
⊔
i∈I

T ′iVi.

Combined with (11) and the fact that the levels of the towers (Mi, Ti) and hence also of
the towers (Vi, Ti) can be chosen to have as small a diameter as we wish (by measurably
partitioning each base Mi to create finer towers), this verifies almost finiteness. �

Combining Theorems 7.2 and 9.2 yields:

Theorem 9.3. Suppose that G is amenable. Let G y X be a free minimal action on a
compact metrizable space such that EG(X) is finite. Consider the following conditions:

(i) dimtow(X,G) <∞ and dim(X) <∞,
(ii) dimftow(X,G) <∞,

(iii) the action is almost finite,
(iv) the action has comparison.

Then (i)⇔(ii)⇒(iii)⇔(iv).
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The implication (ii)⇒(iii) in Theorem 9.3 cannot be reversed, as the following examples
show. The obstruction in both cases is infinite-dimensionality, whether in the space (Exam-
ple 9.4) or in the group (Example 9.5).

Example 9.4. Let {θk} be a sequence of rationally independent numbers in [0, 1). Consider

the product action Z αy
∏∞
k=0Xk whose zeroeth factor is the odometer action Z y {0, 1}N

and whose kth factor for k ≥ 1 is the action (n, z) 7→ e2πinθkz on T. This action is free. It is
uniquely ergodic since each factor is uniquely ergodic (as is well known) and the factors are
mutually disjoint (because no two of them, when viewed as measure-preserving actions with
respect to the unique invariant Borel probability measure on each, have a common eigenvalue
except for 1). It is minimal since the unique invariant Borel probability measure on

∏∞
k=0Xk,

i.e., the product of the unique invariant Borel probability measures on the factors, has full
support. It is also almost finite. To see this, first note that the odometer action Z y {0, 1}N
is almost finite since for every n ∈ N the clopen set {0}{1,...,n}×{0, 1}{n+1,n+2,... } is the base
of a tower with shape {0, 1, . . . , 2n − 1} whose levels partition {0, 1}N. Now for m ≥ 1 we

can view Z y
∏m
k=0Xk as an extension of Z y

∏m−1
k=0 Xk via the natural projection map,

and so it follows by Theorem 11.6 and induction that Z y
∏m
k=0Xk is almost finite for

every m ≥ 0. One can alternatively derive this conclusion by combining the fact that the
odometer action has tower dimension 1 (Example 4.5) with Proposition 4.6 (tower dimension
is nonincreasing under taking extensions) and (i)⇒(iii) of Theorem 9.3. It follows finally by
Proposition 8.7 that α, being the inverse limit of the actions Z y

∏m
k=0Xk, is almost finite.

This example shows that, for free minimal actions of Z, almost finiteness does not imply
finite tower dimension, since the latter implies that the space has finite covering dimension,
which is not the case here.

Example 9.5. By Proposition 4.8, a necessary condition for a free action G y X to have
finite tower dimension is that the group G have finite asymptotic dimension, which fails
for many amenable groups, such as the Grigorchuk group. Since every countably infinite
amenable group admits almost finite free minimal actions by Theorem 8.6, this gives many
examples of almost finite free minimal actions which fail to have finite tower dimension.

10. Disjointness in tower closures and almost finiteness in dimension zero

In [29] Matui introduced a notion of almost finiteness for second countable étale groupoids
with compact zero-dimensional unit spaces. We show in Theorem 10.2 that when the
groupoid arises from a free action Gy X on a zero-dimensional compact metrizable space,
our notion of almost finiteness coincides with Matui’s, justifying our use of the terminology.
What we in fact prove is that the action is almost finite (in the sense of Definition 8.2) if
and only if for every finite set K ⊆ G and δ > 0 there is a clopen castle (Definition 8.1)
whose shapes are (K, δ)-invariant and whose levels partition X (a clopen castle whose levels
partition X will be called a clopen tower decomposition of X). That this characterization is
equivalent to Matui’s almost finiteness is recorded as Lemma 5.3 in [45].

The following lemma will be useful in establishing not only Theorem 10.2 but also Theo-
rem 12.4.

Lemma 10.1. In Definition 8.2 we may equivalently require each tower (Vi, Si) to have the
additional property that the sets sVi for s ∈ Si are pairwise disjoint.
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Proof. Let G y X be a free action which is almost finite. If G is finite, then by taking
n > |G|, K = G, and δ < |G|−1 in Definition 8.2 we are guaranteed the existence of an open
castle {(Vi, Si)}i∈I such that each shape is equal to G, every level has diameter smaller than
δ, and

⊔
i∈I SiVi = X. It follows that every Vi is clopen and so we obtain the assertion of

the lemma. We may thus assume that G is infinite.
Let K be a finite subset of G, n ∈ N, and δ > 0. Since G is infinite, there exists a finite set

K ′ ⊂ G with K ⊆ K ′ and a δ′ > 0 with δ′ ≤ δ such that every (K ′, δ′)-invariant nonempty
finite subset of G has cardinality greater than 2n. By almost finiteness there exist

(i) an open castle {(Vi, Si)}i∈I whose shapes are (K ′, δ′)-invariant and whose levels have
diameter less than δ,

(ii) sets S′i ⊆ Si with |S′i| < |Si|/(2n) such that

X \
⊔
i∈I

SiVi ≺
⊔
i∈I

S′iVi.

For each i the set Si has cardinality greater than 2n by our choice of K ′ and δ′, and so by
setting S′′i = S′i ∪ {s} for some arbitrarily chosen s ∈ Si \ S′i we will have |S′′i | < |Si|/n.
Given a µ ∈MG(X), from (ii) we have µ(X \

⊔
i∈I SiVi) ≤ µ(

⊔
i∈I S

′
iVi), which in particular

implies that µ(Vi) > 0 for at least one i ∈ I, and hence that

µ

(
X \

⊔
i∈I

SiVi

)
< µ

(⊔
i∈I

S′′i Vi

)
.

It follows by Lemma 3.3 there is an η > 0 such that the sets

B =

{
x ∈ X : d

(
x,X \

⊔
i∈I

S′′i Vi

)
> η

}
,

A =

{
x ∈ X : d

(
x,X \

⊔
i∈I

SiVi

)
≤ η

}
satisfy µ(A) < µ(B) for all µ ∈ MG(X). By uniform continuity we can then find an η′ > 0
such that the open sets

Ui = {x ∈ X : d(x,X \ Vi) > η′}
for i ∈ I satisfy X \

⊔
i∈I SiUi ⊆ A and B ⊆

⊔
i∈I S

′′
i Ui. Then for every µ ∈MG(X) we have

µ

(
X \

⊔
i∈I

SiUi

)
≤ µ(A) < µ(B) ≤ µ

(⊔
i∈I

S′′i Ui

)
.

Since the action is almost finite, it has comparison by Theorem 9.2, and so we deduce that

X \
⊔
i∈I

SiUi ≺
⊔
i∈I

S′′i Ui

Therefore the open castle {(Ui, Si)}i∈I and the sets S′′i ⊆ Si witness the definition of almost

finiteness with respect to n, K, and δ, and for each i ∈ I the inclusion Ui ⊆ Vi implies that
the sets sUi for s ∈ Si are pairwise disjoint, as desired. �

Theorem 10.2. A free action Gy X on a zero-dimensional compact metric space is almost
finite if and only if for every finite set K ⊆ G and δ > 0 there is a clopen castle whose shapes
are (K, δ)-invariant and whose levels partition X.
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Proof. The only issue in establishing the backward implication is arranging for the small
diameter condition in the definition of almost finiteness, and this can be done by observing
that for every ε > 0 and clopen tower (V, S) we can use uniform continuity to find a clopen
partition {Vi}i∈I of V such that the levels of the clopen castle {(Vi, S)}i∈I , which partition
SV , all have diameter less than ε.

For the forward implication, suppose that the action is almost finite. Let K be a finite
subset of G and δ > 0. Take an n ∈ N such that 2/n ≤ δ/2. By Lemma 10.1 there are

(i) an open castle {(Vi, Si)}i∈I with (K, δ/2)-invariant shapes such that for each i the
sets sVi for s ∈ Si are pairwise disjoint,

(ii) sets S′i ⊆ Si such that |S′i| < |Si|/n and the set D := X \
⊔
i∈I SiVi satisfies

D ≺
⊔
i∈I

S′iVi.

Since the sets sVi for i ∈ I and s ∈ Si are closed, by uniform continuity we can find, for each
i, an open set V ′i ⊇ Vi such that the sets sV ′i for i ∈ I and s ∈ Si are pairwise disjoint. Then,

using compactness and zero-dimensionality, for each i ∈ I we can cover Vi with finitely many
clopen subsets of V ′i , and so by replacing Vi with the union of these clopen sets we may
assume that each of the sets Vi is clopen. Note in particular that the set D = X \

⊔
i∈I SiVi,

which is now clopen, still satisfies D ≺
⊔
i∈I S

′
iVi, since each new Vi contains the original

one. By Proposition 3.5 we can then find a clopen partition U of D and elements tU ∈ G for
U ∈ U such that the images tUU for U ∈ U are pairwise disjoint subsets of

⊔
i∈I S

′
iVi. We

may assume, by splitting each tower (Vi, Si) into finitely many towers having the same shape
Si and with bases forming a suitable clopen partition of Vi, that for every U ∈ U, i ∈ I,
and s ∈ S′i such that sVi ∩ tUU 6= ∅ we in fact have sVi ⊆ tUU . By replacing U with the

clopen refinement consisting of the sets of the form t−1
U sVi where sVi is a tower level which

is contained in tUU for some U ∈ U, we may now also assume that for every U ∈ U there
are an iU ∈ I and an sU ∈ S′iU such that tUU = sUViU .

Let i ∈ I. Set S′′i = {t−1
U sU : U ∈ U and sU ∈ S′i}. Note that the map U 7→ t−1

U sU from

{U ∈ U : iU = i} to S′i is injective, for if t−1
U sU = t−1

U ′ sU ′ for U and U ′ in the domain then

U = t−1
U sUVi = t−1

U ′ sU ′Vi = U ′. Thus |S′′i | ≤ |S′i|. Define S̃i = Si t S′′i . Then for every t ∈ K
we have

|tS̃i∆S̃i| ≤ |tSi∆Si|+ |tS′′i |+ |S′′i |

<
δ

2
|Si|+ 2|S′i|

≤
(
δ

2
+

2

n

)
|Si|

≤ δ|S̃i|,

showing that S̃i is (K, δ)-invariant. Therefore {(Vi, S̃i)}i∈I is clopen tower decomposition of
X with (K, δ)-invariant shapes, as desired. �

Remark 10.3. Matui showed in [29] that almost finiteness for a second countable étale
groupoid G with compact zero-dimensional unit space has several implications for the ho-
mology groups Hn(G) and their relation to both the topological full group JGK and the
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K-theory of the reduced groupoid C∗-algebra of G. In particular, if the groupoid is principal
and almost finite then there is a canonical isomorphism H1(G) ∼= JGK/N where N is the
subgroup generated by the elements of finite order (see Section 7 of [29]). As Matui observes
in Lemma 6.3 of [29], the groupoid associated to a free action of Zm on a zero-dimensional
compact metrizable space is almost finite. By Theorem 10.2, Example 4.9, and Theorem 9.3,
we see that this is also the case for every free minimal action Gy X of a finitely generated
nilpotent group on a zero-dimensional compact metrizable space with EG(X) finite.

11. Almost finiteness and extensions

As noted in Remark 8.4, almost finiteness does not pass to extensions in general. We
will show however in Theorem 11.6 that an extension Gy Y of an almost finite free action
G y X is again almost finite whenever EG(Y ) and dim(Y ) are both finite. To this end we
will employ the following notions of coarse almost finiteness and m-almost finiteness.

Definition 11.1. We say that a free action G y X on a compact metric space is coarsely
almost finite if for every n ∈ N, finite set K ⊆ G, and δ > 0 there are

(i) a collection {(Vi, Si)}i∈I of open towers with (K, δ)-invariant shapes such that {SiVi}i∈I
is a castle,

(ii) sets S′i ⊆ Si such that |S′i| < |Si|/n and

X \
⊔
i∈I

SiVi ≺
⊔
i∈I

S′iVi.

An almost finite free action is coarsely almost finite by Lemma 10.1.

Definition 11.2. Let m ∈ N. We say that a free action Gy X on a compact metric space
is m-almost finite if for every n ∈ N, finite set K ⊆ G, and δ > 0 there are

(i) a collection {(Vi, Si)}i∈I of open towers with (K, δ)-invariant shapes such that diam(sVi) <
δ for every i ∈ I and s ∈ Si and the family {SiVi}i∈I has chromatic number at most
m+ 1,

(ii) sets S′i ⊆ Si such that |S′i| < |Si|/n and

X \
⊔
i∈I

SiVi ≺
⊔
i∈I

S′iVi.

The following is easily verified by taking the inverse images under the extension Y → X
of all of the sets at play in the definition of coarse almost finiteness.

Proposition 11.3. If Y → X is an extension of free actions of G and G y X is coarsely
almost finite, then Gy Y is coarsely almost finite.

Lemma 11.4. Suppose that X has covering dimension d < ∞ and let G y X be a free
action which is coarsely almost finite. Then the action is d-almost finite.

Proof. Let n ∈ N, and let K be a finite subset of G and δ > 0. By coarse almost finiteness
there are

(i) a collection {(Vi, Si)}i∈I of open towers with (K, δ)-invariant shapes such that {SiVi}i∈I
is a castle, and
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(ii) sets S′i ⊆ Si such that |S′i| < |Si|/n and

X \
⊔
i∈I

SiVi ≺
⊔
i∈I

S′iVi.

Since the towers SiVi for i ∈ I are pairwise disjoint, for each i we can find an open set Ui ⊇ Vi
so that the towers SiUi for i ∈ I are still pairwise disjoint. Since X has covering dimension
d, for each i we can find a collection {Vi,1, . . . , Vi,ki} of open subsets of Ui which covers Vi,
satisfies diam(sVi,j) < δ for every j = 1, . . . , ki, and has chromatic number at most d + 1.
The collection of towers {(Vi,j , Si) : i ∈ I, 1 ≤ j ≤ ki} then fulfills the requirements in the
definition of d-almost finiteness. �

The proof of the following is essentially the same as for (i)⇒(ii) of Theorem 9.2, which is
the case m = 0. We leave the details to the reader.

Lemma 11.5. Let G y X be a free action which is m-almost finite. Then the action has
m-comparison.

Theorem 11.6. Let G
αy X be an almost finite free action and let G

β
y Y be an extension

of α such that EG(Y ) is finite and dim(Y ) <∞. Then β is almost finite.

Proof. Since α is almost finite it is coarsely almost finite, and so by Proposition 11.3 the
action β is coarsely almost finite. Consequently β has m-comparison by Lemmas 11.5 and
11.4. We then conclude by Theorem 9.2 that β is almost finite. �

12. Almost finiteness and Z-stability

We show here in Theorem 12.4 that, assuming G is infinite, the reduced crossed product
C(X) oλ G of an almost finite free minimal action G y X on a compact metrizable space
is Z-stable. The argument uses tiling technology as in the proof of Theorem 5.3 of [4]. Note
that since almost finiteness implies that G is amenable, the reduced and full crossed products
coincide in this case, although we will not need this fact.

Recall that c.p.c. stands for “completely positive contractive”, and that a map ϕ : A→ B
between C∗-algebras is order-zero if ϕ(a1)ϕ(a2) = 0 for all a1, a2 ∈ A satisfying a1a2 = 0.
We write - for the relation of Cuntz subequivalence.

In order to verify Z-stability we will use the following result of Hirshberg and Orovitz
(Theorem 4.1 of [19]).

Theorem 12.1. Let A be a simple separable unital nuclear C∗-algebra not isomorphic to C.
Suppose that for every n ∈ N, finite set Ω ⊆ A, ε > 0, and nonzero positive element a ∈ A
there exists an order-zero c.p.c. map ϕ : Mn → A such that

(i) 1− ϕ(1) - a,
(ii) ‖[b, ϕ(c)]‖ < ε for all b ∈ Ω and norm-one c ∈Mn.

Then A is Z-stable.

The following is the Ornstein–Weiss quasitiling theorem [34]. See Theorem 4.36 of [22] for
this precise formulation. For 0 ≤ η ≤ 1, we say that a collection {Ai} of subsets of a finite
set E is η-disjoint if there exist sets A′i ⊆ Ai with |A′i| ≥ (1− η)|Ai| such that the collection
{A′i} is disjoint, and that it η-covers E if |

⋃
iAi| ≥ η|E|.
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Theorem 12.2. Let 0 < β < 1
2 and let n ∈ N be such that (1− β/2)n < β. Then whenever

e ∈ T1 ⊆ T2 ⊆ · · · ⊆ Tn are finite subsets of a group G such that |∂Ti−1Ti| ≤ (β/8)|Ti| for i =
2, . . . , n, for every (Tn, β/4)-invariant nonempty finite set E ⊆ G there exist C1, . . . , Cn ⊆ G
such that

(i)
⋃n
i=1 TiCi ⊆ E, and

(ii) the collection of right translates
⋃n
i=1{Tic : c ∈ Ci} is β-disjoint and (1− β)-covers

E.

Lemma 12.3. Let G y X be an action on a compact metrizable space. Let A be a closed
subset of X and B an open subset of X such that A ≺ B. Let f, g : X → [0, 1] be continuous
functions such that f = 0 on X \ A and g = 1 on B. Then there is a v ∈ C(X) oλ G such
that v∗gv = f .

Proof. As A ≺ B there exist open sets U1, . . . , Un ⊆ X such that A ⊆
⋃n
i=1 Ui and an si ∈ G

for each i = 1, . . . , n such that the images siUi for i = 1, . . . , n are pairwise disjoint subsets
of B. In the same way that one constructs a partition of unity subordinate to a given open
cover, we can produce, for each i = 1, . . . , n, a continuous function hi : X → [0, 1] with

hi = 0 on X \ Ui so that 0 ≤
∑n

i=1 hi ≤ 1 and
∑n

i=1 hi = 1 on A. Set v =
∑n

i=1 usi(fhi)
1/2.

Denote by α the induced action of G on C(X), that is, αs(f)(x) = f(s−1x) for all s ∈ G,

f ∈ C(X), and x ∈ X. Since αsi(h
1/2
i )αsj (h

1/2
j ) = 0 for i 6= j and g dominates αsi(h

1/2
i ) for

every i, we have

v∗gv =

( n∑
i=1

(hif)1/2u∗si

)
g

( n∑
i=1

usi(fhi)
1/2

)

=

( n∑
i=1

u∗siαsi(f
1/2)αsi(h

1/2
i )

)
g

( n∑
i=1

αsi(h
1/2
i )αsi(f

1/2)usi

)

=
n∑
i=1

u∗siαsi(fhi)usi

=

n∑
i=1

u∗siαsi(fhi)usi =

n∑
i=1

fhi = f,

as desired. �

Theorem 12.4. Suppose that G is infinite. Let G y X be a free minimal action which is
almost finite. Then C(X) oλ G is Z-stable.

Proof. As before we denote the induced action of G on C(X) by α, that is, αs(f)(x) =
f(s−1x) for all s ∈ G, f ∈ C(X), and x ∈ X.

Let n ∈ N. Let Υ be a finite subset of the unit ball of C(X), F a symmetric finite subset
of G containing e, and ε > 0. Let a be a nonzero positive element of C(X) o G. We will
show the existence of a map ϕ : Mn → C(X) oλ G as in Theorem 12.1 where the finite set
Ω there is taken to be Υ ∪ {us : s ∈ F}. Since C(X) oλ G is generated as a C∗-algebra by
the unit ball of C(X) and the unitaries us for s ∈ G, we will thereafter be able to conclude
by Theorem 12.1 that C(X) oλ G is Z-stable.
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By Lemma 7.9 in [37] we may assume that a ∈ C(X). Then we can find an x0 ∈ X and a
θ > 0 such that a is strictly positive on the closed ball of radius 3θ centred at x0. We may
therefore assume that a is a [0, 1]-valued function which takes value 1 on all points within
distance 2θ from x0 and value 0 at all points at distance at least 3θ from x0. Write O for
the open ball of radius θ centred at x0. Minimality implies that the sets sO for s ∈ G cover
X, and so by compactness there is a finite set D ⊆ G such that D−1O = X.

Let 0 < κ < 1, to be determined. Choose an integer Q > n2/ε. Take a β > 0 which
is small enough so that if T is a nonempty finite subset of G which is sufficiently invariant
under left translation by FQ then for every set T ′ ⊆ T with |T ′| ≥ (1− nβ)|T | one has∣∣∣∣ ⋂

s∈FQ
sT ′
∣∣∣∣ ≥ (1− κ)|T |.

Choose an L ∈ N large enough so that (1−β/2)L < β. Since G is amenable by the almost
finiteness of the action, there exist finite subsets e ∈ T1 ⊆ T2 ⊆ · · · ⊆ TL of G such that
|∂Tl−1

Tl| ≤ (β/8)|Tl| for l = 2, . . . , L. By the previous paragraph, we may also assume that

for each l the set Tl is sufficiently invariant under left translation by FQ so that∣∣∣∣ ⋂
s∈FQ

sT

∣∣∣∣ ≥ (1− κ)|Tl|(12)

for every T ⊆ Tl satisfying |T | ≥ (1− nβ)|Tl|.
By the uniform continuity of functions in Υ∪Υ2 and the uniform continuity of the trans-

formations x 7→ tx of X for t ∈ TL, there is an η > 0 such that if d(x, y) < η then
|f(tx)− f(ty)| < ε/(4n2) for all f ∈ Υ ∪Υ2 and t ∈ TL. Let U = {U1, . . . , UM} be an open
cover of X whose members all have diameter less that η. Let η′ > 0 be a Lebesgue number
for U which is no larger than θ.

Let E be a finite subset of G containing TK and let δ > 0 be such that δ ≤ β/4. Since G is
infinite, we may enlarge E and shrink δ as necessary so as to guarantee that the cardinality
of every nonempty (E, δ)-invariant finite set S ⊆ G is large enough to satisfy( L∑

l=1

|Tl|
)
Mn ≤ β|S|.(13)

Since the action is almost finite, by Lemma 10.1 we can find

(i) nonempty open sets V1, . . . , VK ⊆ X and nonempty (E, δ)-invariant finite sets
S1, . . . , SK ⊆ G such that the family {(Vk, Sk)}Kk=1 is a castle with levels of diameter
less than η′, and

(ii) sets S′k ⊆ Sk such that |S′k|/|Sk| < 1/(4|D|2) and

X \
K⊔
k=1

SkVk ≺
K⊔
k=1

S′kVk.(14)

Let k ∈ {1, . . . ,K}. Since Sk is (TL, β/4)-invariant, by Theorem 12.2 and our choice of the
sets T1, . . . , TL we can find Ck,1, . . . , Ck,L ⊆ Sk such that the collection {Tlc : l = 1, . . . , L, c ∈
Ck,l} is β-disjoint and (1−β)-covers Sk. By β-disjointness, for every l = 1, . . . , L and c ∈ Ck,l
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we can find a Tk,l,c ⊆ Tl satisfying |Tk,l,c| ≥ (1 − β)|Tl| so that the collection of sets Tk,l,cc
for l = 1, . . . , L and c ∈ Ck,l is disjoint.

Since η′ is a Lebesgue number for U and the levels of the tower (Vk, Sk) have diameter
less than η′, for each l = 1, . . . , L there is a partition

Ck,l = Ck,l,1 t Ck,l,2 t · · · t Ck,l,M
such that cVk ⊆ Um for all m = 1, . . . ,M and c ∈ Ck,l,m. For each l and m choose pairwise

disjoint subsets C
(1)
k,l,m, . . . , C

(n)
k,l,m of Ck,l,m such that each has cardinality b|Ck,l,m|/nc. For

each i = 2, . . . , n choose a bijection

Λk,i :
⊔
l,m

C
(1)
k,l,m →

⊔
l,m

C
(i)
k,l,m

which sends C
(1)
k,l,m to C

(i)
k,l,m for all l,m. Also, define Λk,1 to be the identity map from⊔

l,mC
(1)
k,l,m to itself, and write Λk,i,j for the composition Λk,i ◦ Λ−1

k,j .

Now consider for each j = 1, . . . , n and c ∈ C(j)
k,l,m the set T ′k,l,c :=

⋂n
i=1 Tk,l,Λk,i,j(c), which

satisfies

|T ′k,l,c| ≥ (1− nβ)|Tl|.(15)

since each Tk,l,Λk,i(c) is a subset of Tl with cardinality at least (1− β)|Tl|. Set

Bk,l,c,Q =
⋂
s∈FQ

sT ′k,l,c

and for q = 0, . . . , Q− 1 put

Bk,l,c,q = FQ−qBk,l,c,Q \ FQ−q−1Bk,l,c,Q.

Then the sets Bk,l,c,0, . . . , Bk,l,c,Q partition FQBk,l,c,Q, which is a subset of T ′k,l,c. For s ∈ F
it is clear that

sBk,l,c,Q ⊆ Bk,l,c,Q−1 ∪Bk,l,c,Q,(16)

while for q = 1, . . . , Q− 1 we have

sBk,l,c,q ⊆ Bk,l,c,q−1 ∪Bk,l,c,q ∪Bk,l,c,q+1,(17)

for if we are given a t ∈ Bk,l,c,q then st ∈ FQ−q+1Bk,l,c,Q, while if st ∈ FQ−q−2Bk,l,c,Q then

t ∈ FQ−q−1Bk,l,c,Q since F is symmetric, contradicting the membership of t in Bk,l,c,q.
We view C(X) oλ G as being canonically included in the crossed product B(X) oλ G of

the action induced by G y X on the C∗-algebra B(X) of bounded Borel functions on X.
Since the sets sVk for k = 1, . . . ,K and s ∈ Sk are closed and pairwise disjoint, for each
k we can find an open set Uk ⊇ Vk such that the sets sUk for k = 1, . . . ,K and s ∈ Sk
are pairwise disjoint. We define a linear map ψ : Mn → B(X) oλ G by declaring it on the
standard matrix units {eij}ni,j=1 of Mn to be given by

ψ(eij) =
K∑
k=1

L∑
l=1

M∑
m=1

∑
c∈C(j)

k,l,m

∑
t∈T ′k,l,c

utΛk,i,j(c)c−1t−11tcUk

and extending linearly.
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For each k = 1, . . . ,K choose a continuous function hk : X → [0, 1] such that hk = 1 on
Vk and hk = 0 on X \Uk. Recalling that α denotes the induced action of G on C(X), for all

k, l, and m, all 1 ≤ i, j ≤ n, and all c ∈ C(j)
k,l,m we set

hk,l,c,i,j =

Q∑
q=1

∑
t∈Bk,l,c,q

q

Q
utΛk,i,j(c)c−1t−1αtc(hk).

Define a linear map ϕ : Mn → C(X) oλ G by setting

ϕ(eij) =

K∑
k=1

L∑
l=1

M∑
m=1

∑
c∈C(j)

k,l,m

hk,l,c,i,j(18)

and extending linearly. Note that if we put

h =
K∑
k=1

L∑
l=1

M∑
m=1

n∑
i=1

∑
c∈C(i)

k,l,m

hk,l,c,i,i.

then h is a continuous function taking values in [0, 1] which commutes with the image of ψ,
and we have

ϕ(b) = hψ(b)

for all b ∈Mn, which shows that ϕ is an order-zero c.p.c. map.
We now verify condition (ii) in Theorem 12.1 for the elements of the set {us : s ∈ F}. Let

1 ≤ i, j ≤ n. For s ∈ F we have

ushk,l,c,i,ju
−1
s − hk,l,c,i,j =

Q∑
q=1

∑
t∈Bk,l,c,q

q

Q
ustΛk,i,j(c)c−1(st)−1αstc(hk)

−
Q∑
q=1

∑
t∈Bk,l,c,q

q

Q
utΛk,i,j(c)c−1t−1αtc(hk),

and so in view of (16) and (17) we obtain

‖ushk,l,c,i,ju−1
s − hk,l,c,i,j‖ ≤

1

Q
<

ε

n2
.

Since the element a = ushk,l,c,i,ju
−1
s − hk,l,c,i,j satisfies a∗a ≤ 1FQBk,l,c,QcUk and aa∗ ≤

1FQBk,l,Λ(c),QcUk
and the sets FQBk,l,c,QcUk are pairwise disjoint for all k, l, and c, this yields

‖usϕ(eij)u
−1
s − ϕ(eij)‖ = max

k,l,c
‖ushk,l,c,i,ju−1

s − hk,l,c,i,j‖ <
ε

n2

and hence, for every norm-one b = (bij) ∈Mn,

‖[us, ϕ(b)]‖ = ‖usϕ(b)u−1
s − ϕ(b)‖

≤
n∑

i,j=1

‖usϕ(bij)u
−1
s − ϕ(bij)‖ < n2 · ε

n2
= ε.
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Next we verify condition (ii) in Theorem 12.1 for the functions in Υ. Let 1 ≤ i, j ≤ n.

Let f ∈ Υ ∪Υ2. Let 1 ≤ k ≤ K and 1 ≤ l ≤ L. Let c ∈ C(j)
k,l,m. Since the elements tΛk,i,j(c)

for t ∈ T ′k,l,c are distinct, we have

h∗k,l,c,i,jfhk,l,c,i,j =

Q∑
q=1

∑
t∈Bk,l,c,q

q2

Q2
αtcΛk,i,j(c)−1t−1(f)αtc(h

2
k)(19)

and similarly

fh∗k,c,i,jhk,c,i,j =

Q∑
q=1

∑
t∈Bk,l,c,q

q2

Q2
fαtc(h

2
k)(20)

Now let x ∈ Vk. Since Λk,i,j(c)x and cx both belong to Um by our definition of Ck,l,m, we
have d(Λk,i,j(c)x, cx) < η. It follows that for every t ∈ Tl we have

|f(tΛk,i,j(c)x)− f(tcx)| < ε

4n2
,

in which case

‖αtcΛk,i,j(c)−1t−1(f)− f‖ = ‖αc−1t−1(αtcΛk,i,j(c)−1t−1(f)− f)‖
= sup

x∈Vk
|f(tΛk,i,j(c)x)− f(tcx)|

<
ε

3n2
.

Using (19) and (20) this gives us

‖h∗k,l,c,i,jfhk,l,c,i,j − fh∗k,l,c,i,jhk,l,c,i,j‖(21)

= max
q=1,...,Q

max
t∈Bk,l,c,q

q2

Q2
‖(αtcΛk,i,j(c)−1t−1(f)− f)αtc(h

2
k)‖

<
ε

3n2
.

Set w = ϕ(eij) for brevity. Let f ∈ Υ. Since the functions hk,l,c,i,j for 1 ≤ k ≤ K, 1 ≤ l ≤ L,

1 ≤ m ≤M , and c ∈ C(j)
k,l,m have pairwise disjoint supports, we infer from (21) that

‖w∗gw − gw∗w‖ < ε

3n2

for g equal to either f or f2. It follows that

‖w∗f2w − fw∗fw‖ ≤ ‖w∗f2w − f2w∗w‖+ ‖f(fw∗w − w∗fw)‖ < 2ε

3n2

and hence

‖fw − wf‖2 = ‖(fw − wf)∗(fw − wf)‖
= ‖w∗f2w − fw∗fw + fw∗wf − w∗fwf‖
≤ ‖w∗f2w − fw∗fw‖+ ‖(fw∗w − w∗fw)f‖

<
2ε

3n2
+

ε

3n2
=

ε

n2
.
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Therefore for every norm-one b = (bij) ∈Mn we have

‖[f, ϕ(b)]‖ ≤
n∑

i,j=1

‖[f, ϕ(bij)]‖ < n2 · ε
n2

= ε.

To complete the proof, let us now show that 1−ϕ(1) - a. By enlarging E and shrinking δ
if necessary we may assume that the sets S1, . . . , SK are sufficiently left invariant so that for
every k = 1, . . . ,K there is an Rk ⊆ Sk such that the set {s ∈ Rk : Ds ⊆ Sk} has cardinality
at least |Sk|/2. Let 1 ≤ k ≤ K. Let R′k be a maximal subset of Rk with the property that
the sets Ds for s ∈ R′k are pairwise disjoint. Observe that if s, t ∈ Rk satisfy Ds ∩Dt 6= ∅
then s ∈ D−1Dt, which shows that |R′k| ≥ |Rk|/|D−1D| ≥ |Sk|/(2|D|2). Since D−1O = X,
for each s ∈ R′k there is a t ∈ D such that tsVk intersects O, which implies that the function
a takes the constant value 1 on tsVk since the diameter of the latter set is less than θ and a
takes value 1 at all points within distance θ of the set O. Therefore the set S]k of all t ∈ Sk
such that a takes the constant value 1 on tVk has cardinality at least |Sk|/(2|D|2). Set

S′′k =
L⊔
l=1

M⊔
m=1

n⊔
i=1

⊔
c∈C(i)

k,l,m

Bk,l,c,Qc.

Since |Bk,l,c,Q| ≥ (1− κ)|Tl| ≥ (1− κ)|Tk,l,m| by (12) and (15), using (13) we obtain

|S′′k | ≥
L∑
l=1

M∑
m=1

n∑
i=1

∑
c∈C(i)

k,l,m

|Bk,l,c,Q|

≥ (1− κ)

L∑
l=1

M∑
m=1

n∑
i=1

|Tk,l,m||C
(i)
k,l,m|

≥ (1− κ)
L∑
l=1

M∑
m=1

|Tk,l,m|(|Ck,l,m| − n)

≥ (1− κ)

(∣∣∣∣ L⊔
l=1

Tk,l,mCk,l

∣∣∣∣−Mn

L∑
l=1

|Tl|
)

≥ (1− κ)(1− 2β)|Sk|,

and so if κ and β are small enough we have

|Sk \ S′′k | ≤
|Sk|

4|D|2
≤
|S]k|

2
.

Choose an injection fk : Sk \ S′′k → S]k. Now since for each k the set Qk = S]k \ fk(Sk \ S
′′
k )

satisfies

|Qk| ≥ |S]k| − |Sk \ S
′′
k | ≥

|S]k|
2
≥ |Sk|

4|D|2
,
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we deduce, in view of (14) and Remark 8.3, that

X \
K⊔
k=1

SkVk ≺
K⊔
k=1

QkVk.

We can thus find an open cover {U1, . . . , Ur} of X \
⊔K
k=1 SkVk and s1, . . . , sr ∈ G such

that s1U1, . . . , srUr are disjoint subsets of
⊔K
k=1QkVk. Then the open sets fk(s)Vk =

(fk(s)s
−1)sVk for k = 1, . . . ,K and s ∈ Sk \ S′′k together with s1U1, . . . , srUr form a dis-

joint collection whose union is contained in
⊔K
k=1 S

]
kVk, which shows that

X \
K⊔
k=1

S′′kVk ≺
K⊔
k=1

S]kVk.

Since the function 1−ϕ(1) is supported on X\
⊔K
k=1 S

′′
kVk and a takes the constant value 1 on⊔K

k=1 S
]
kVk, it follows by Lemma 12.3 that there is a v ∈ C(X)oλG satisfying v∗av = 1−ϕ(1).

This shows that 1− ϕ(1) - a. �

Example 12.5. In [13] examples were given of free minimal actions Z y X on compact
metrizable spaces such that the crossed product C(X) oλ G fails to be Z-stable. As men-
tioned in Example 4.7, these examples have finite tower dimension since they factor onto an
odometer. By Theorem 12.4, they fail to be almost finite.

Using Theorem 12.4 we can give some new examples of classifiable crossed products, as
we now demonstrate. Let us write C for the class of simple separable unital C∗-algebras
having finite nuclear dimension and satisfying the UCT. This class is classified by the Elliott
invariant (ordered K-theory paired with traces) as a consequence of the work of Elliott–
Gong–Lin–Niu [10], Gong–Lin–Niu [15], Tikuisis–White–Winter [48] in the stably finite case
and of Kirchberg [23] and Phillips [36] in the purely infinite case. Moreover, the stable finite
C∗-algebras in the class C are ASH algebras of topological dimension at most 2. What
is particularly novel in the examples below from the perspective of classification theory is
that one can combine infinite asymptotic dimension in the group with positive topological
entropy in the dynamics. For a general reference on entropy for actions of amenable groups
see Chapter 9 of [22].

Proposition 12.6. Suppose that G is infinite, residually finite, and amenable. Let r ∈
[0,∞]. Then there exists a uniquely ergodic free minimal action G y X on the Cantor
set which is almost finite and has topological entropy r, and the crossed product C(X) o G
belongs to the class C .

Proof. As G is residually finite we can find a decreasing sequence N1 ⊇ N2 ⊇ . . . of finite-
index normal subgroups of G such that

⋂∞
k=1Nk = {e}. Then for each k we have the

surjective homomorphism G/Nk+1 → G/Nk given on cosets by sNk+1 7→ sNk. Form the
inverse limit Y of the sequence G/N1 ← G/N2 ← · · · , which as a topological space is a
Cantor set since G is infinite. Then we have the free minimal action G y Y arising from
the actions (s, tNk) 7→ stNk of G on each G/Nk. This is an example of a profinite action,
which by definition is an inverse limit of actions on finite sets. It has a unique G-invariant
Borel probability measure µ, namely the one induced from the uniform probability measures
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on the quotients G/Nk. The p.m.p. action G y (Y, µ), being compact, has zero measure
entropy. By [54] there is a Følner sequence {Fk} for G such that for each k the set Fk is a
complete set of representatives for the quotient of G by Nk, from which it follows that the
action Gy Y is almost finite, since the clopen partition of Y corresponding to Nk is the set
of levels of a single clopen tower with shape Fk.

By the Jewett–Krieger theorem [53, 41] there is a uniquely ergodic minimal action Gy Z
on the Cantor set whose invariant measure κ gives a Bernoulli action with entropy r. Then
the p.m.p. actions G y (Y, µ) and G y (Z, ν) are disjoint, which implies that the action
G y Y × Z is uniquely ergodic and minimal, as is readily seen. Moreover, the action
G y Y × Z is free because the action G y Y is free, has entropy r by the additivity of
topological entropy and the variational principle, and is almost finite by Theorem 11.6 since
it factors onto the almost finite action Gy Y and the space Z is zero-dimensional.

By Theorem 12.4, the crossed product C(X) oλ G is Z-stable. Since the action is free,
minimal, and uniquely ergodic, the crossed product also has a unique tracial state, given
by composing the canonical conditional expectation C(X) oλ G → C(X) with integration
with respect to the unique G-invariant Borel probability measure on X. It follows by [43]
that C(X) oλ G has finite nuclear dimension. Since C(X) oλ G satisfies the UCT [51], we
conclude that C(X) oλ G belongs to the class C . �

We note finally that profinite actions of countably infinite residually finite amenable
groups, such as the action G y Y in the proof of Proposition 12.6, are already known
to be classifiable (see Remark 5.3 in [47]).

13. The type semigroup and almost unperforation

Let G y X be an action on a zero-dimensional compact Hausdorff space. Write α for
the induced action on C(X), that is, αs(f)(x) = f(s−1x) for all s ∈ G, f ∈ C(X), and
x ∈ X. On the space C(X,Z≥0) of continuous functions on X with values in the set Z≥0

of nonnegative integers we define an equivalence relation by declaring that f ∼ g if there
are h1, . . . , hn ∈ C(X,Z≥0) and s1, . . . , sn ∈ G such that

∑n
i=1 hi = f and

∑n
i=1 αsi(hi) = g

(transitivity is not immediately obvious but is readily checked). Write S(X,G) for the
quotient C(X,Z≥0)/ ∼. This is an Abelian semigroup under the operation [f ]+[g] = [f+g],
which is easily seen to be well defined. We moreover endow S(X,G) with the algebraic order,
that is, for a, b ∈ S(X,G) we declare that a ≤ b whenever there exists a c ∈ S(X,G) such
that a+c = b. The ordered Abelian semigroup S(X,G) is called the (clopen) type semigroup
of the action. Note that, in view of Proposition 3.5, comparison can be expressed in this
language by saying that, for all clopen sets A,B ⊆ X, if µ(A) < µ(B) for all µ ∈ MG(X)
then [1A] ≤ [1B].

One can equivalently define S(X,G) by considering the collection of clopen subsets ofX×N
of the form

⊔n
i=1Ai × {i} for some n ∈ N (the bounded subsets of X × N) and quotienting

by the relation of equidecomposability, under which
⊔n
i=1Ai × {i} ∼

⊔m
i=1Bi × {i} if for

each i = 1, . . . , n there exist a clopen partition {Ai,1, . . . , Ai,Ji} of Ai, si,1, . . . , si,Ji ∈ G, and
ki,1, . . . , ki,Ji ∈ {1, . . . ,m} such that

n⊔
i=1

Ji⊔
j=1

si,jAi,j × {ki,j} =
m⊔
i=1

Bi × {i}.
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The semigroup operation is the concatenation[ n⊔
i=1

Ai × {i}
]

+

[ m⊔
i=1

Bi × {i}
]

=

[( n⊔
i=1

Ai × {i}
)
t
( n+m⊔
i=n+1

Bi × {i}
)]
.

The isomorphism with the first construction can be seen by considering for each function
f ∈ C(X,Z≥0) the decomposition f =

∑n
i=1 1Ai where Ai = {x ∈ X : f(x) ≥ i} and

n = maxx∈X f(x) and associating to f the subset
⊔n
i=1Ai × {i} of X × {1, . . . , n}.

The idea of a type semigroup originates in Tarski’s work on amenability (see [52]) and
has variants depending on the type of action (e.g., on an ordinary set, on a measure space,
or on a zero-dimensional compact space) and the types of sets use in the definition equide-
composability (e.g., arbitrary, measurable, or clopen). The clopen version was studied in
[40].

Note that every measure µ in MG(X) induces a state on S(X,G) given by [f ] 7→ µ(f).
When the action is minimal, this gives a bijection from measures in MG(X) to states on
S(X,G) by the proof of Lemma 5.1 in [40].

An ordered Abelian semigroup A is said to be almost unperforated if, for all a, b ∈ A and
n ∈ N, the inequality (n+ 1)a ≤ nb implies a ≤ b.

Lemma 13.1. Let Gy X be a free minimal action on the Cantor set such that S(X,G) is
almost unperforated. Then the action has comparison.

Proof. Let A and B be clopen subsets of X such that µ(A) < µ(B) for all µ ∈ MG(X). By
Lemma 5.1 of [40], every state σ on S(X,G) gives rise to a measure µ in MG(X) satisfying
µ(A) = σ([1A]) for every clopen set A ⊆ X. Thus σ([1A]) < σ([1B]) for every state σ on
S(X,G). Since the action is minimal, X is covered by finitely many translates of B, so that
[1A] ≤ m[1B] for some m ∈ N. It follows by Proposition 2.1 of [35] that there exists an n ∈ N
for which (n + 1)[1A] ≤ n[1B]. Almost unperforation then yields [1A] ≤ [1B], establishing
comparison. �

The following is a generalization of Theorem 9.2(i)⇒(ii). It shows that, for free minimal
actions on the Cantor set, almost finiteness implies a stable version of comparison.

Lemma 13.2. Let Gy X be a free minimal action on the Cantor set which is almost finite.
Let f, g ∈ C(X,Z≥0) be such that µ(f) < µ(g) for every µ ∈MG(X). Then [f ] ≤ [g].

Proof. Write f =
∑n

j=1 1Aj and g =
∑m

k=1 1Bk where Aj = {x ∈ X : f(x) ≥ j} and

Bj = {x ∈ X : g(x) ≥ k}, with n = maxx∈X f(x) and m = maxx∈X g(x).
Let K be a finite subset of G and δ > 0, both to be determined. By Theorem 10.2,

there is a clopen castle {(Vi, Si)}i∈I with (K, δ)-invariant shapes such that
⊔
i∈I SiVi = X.

By replacing each tower (Vi, Si) with finitely many thinner towers with the same shape
Si and with bases forming a clopen partition of Vi, we may assume that every level of
every tower in the castle is either contained in or disjoint from Aj for every j = 1, . . . , n,
and also either contained in or disjoint from Bk for every k = 1, . . . ,m. For each i set
Ei,j = {s ∈ Si : sVi ⊆ Aj} for every j and Fi,k = {s ∈ Si : sVi ⊆ Bk} for every k. An
argument by contradiction using a weak∗ cluster point as in the proof of Theorem 7.2 shows
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that we can choose K and δ so that for every i we have

1

|Si|

n∑
j=1

|Ei,j | ≤
1

|Si|

m∑
k=1

|Fi,k|,

in which case we can find a bijection
⊔n
j=1Ei,j × {j} →

⊔m
k=1 Fi,k × {k}, which we write as

(s, j) 7→ (ti,s,j , ki,s,j). We then have

f =
∑
i∈I

n∑
j=1

∑
s∈Ei,j

1sVi

and ∑
i∈I

n∑
j=1

∑
s∈Ei,j

αti,s,js−1(1sVi) =
∑
i∈I

n∑
j=1

∑
s∈Ei,j

1ti,s,jVi ≤ g,

showing that [f ] ≤ [g], as desired. �

The following adds almost unperforation to the conditions in Theorem 9.2 in the case that
the space is the Cantor set.

Theorem 13.3. Let G y X be a free minimal action on the Cantor set and consider the
following conditions:

(i) the action is almost finite,
(ii) S(X,G) is almost unperforated,

(iii) the action has comparison,
(iv) the action has m-comparison for all m ∈ N,
(v) the action has m-comparison for some m ∈ N.

Then (i)⇒(ii)⇒(iii)⇒(iv)⇒(v), and if EG(X) is finite then all five conditions are equivalent.

Proof. (i)⇒(ii). Let f, g ∈ C(X,Z≥0) be such that (n + 1)[f ] < n[g] for some n ∈ N. Then
for every µ ∈ MG(X) we have (n + 1)µ(f) < nµ(g) and hence µ(f) < µ(g). It follows by
Lemma 13.2 that [f ] ≤ [g], establishing almost unperforation.

(ii)⇒(iii). This is Lemma 13.1.
(iii)⇒(iv)⇒(v). Trivial.
(v)⇒(i). This is a special case of Theorem 9.2(iv)⇒(i). �
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