
GENERICALLY INFINITE ENTROPY IN A SIMPLE AF ALGEBRA

Abstract. We construct a simple unital AF algebra for which the ∗-automorphisms
that are not approximately inner all have infinite entropy and form a point-norm dense
open set, where entropy is taken in any of the Voiculescu-Brown, lower Voiculescu-Brown,
or contractive approximation senses.

1. Introduction

It is typically a hopeless task to try to understand the behaviour of all possible dynamical
systems on a given space. However, one can frequently isolate properties that hold for
a generic system, where generic is taken in the sense of Baire category. The study of
generic dynamics has a long history stretching back to the pioneering work of Oxtoby and
Ulam, who showed that for compact manifolds of dimension at least 2 a homeomorphism
preserving a fixed probability measure of full support is generically ergodic for the uniform
topology, and Halmos, who showed that an automorphism of a nonatomic Lebesgue space
is generically weakly mixing for the weak topology. For references and surveys of the
subsequent development of the subject as it involves measurable dynamics and measure-
preserving topological dynamics and the relation between them, see [4, 2]. As a point
of comparison for the present work, we mention in particular a result of Rokhlin which
asserts that zero Kolmogorov-Sinai entropy is generic for automorphisms of a nonatomic
Lebesgue space with respect to both the weak and uniform topologies.

In the purely topological setting, Akin, Hurley, and Kennedy recently carried out an
extensive investigation of the generic behaviour, with respect to the uniform topology, of
homeomorphisms on a large class of compact metric spaces [1]. In particular they demon-
strated that a generic homeomorphism of a compact manifold of dimension at least 2,
while almost equicontinuous, has a rather complicated geometric structure, including such
features as a Cantor chain recurrent set, uncountably many nested sequences alternating
between attractors and repellors, and a large collection of chain components which have
a nontrivial subshift of finite type as a factor. Concerning topological entropy, which in
its generalized senses is the focus of this note, Akin, Hurley, and Kennedy remark that,
as a consequence of their results, an infinite value is generic in the above context. Glasner
and Weiss showed meanwhile in [8] that infinite entropy is generic for homeomorphisms
of the Hilbert cube, while zero entropy is generic for homeomorphisms of the Cantor set.
The proof of the former result proceeds by locally perturbing an arbitrary homeomorphism
around a fixed point to create a topological horseshoe, which is a stable entropy-producing
structure which cannot exist in the zero-dimensional setting.

At the C∗-algebra level, the Cantor set provides an example of a unital commutative AF
algebra, indeed the unique such with no isolated irreducible ∗-representations. Keeping
within the zero-dimensional framework of unital AF algebras, what can we say about
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entropy of a generic ∗-automorphism at the opposite extreme when there are no nontrivial
ideals?

In the case of the CAR algebra, it was shown in [10] that a generic ∗-automorphism has
zero CA (contractive approximation) entropy. This is also the case for lower Voiculescu-
Brown entropy, as is straightforward to deduce from the definition (see the end of this
section and the beginning of Section 2) and the fact that every ∗-automorphism of the
CAR algebra is approximately inner and hence approximable by an inductive limit ∗-
automorphism. For Voiculescu-Brown entropy the situation is not as clear, although it is
still true that zero values occur on a dense set of ∗-automorphisms.

In this note we construct a simple unital AF algebra which, from the viewpoint of
dynamical entropy, exhibits behaviour that is starkly different from that of the Cantor set
and the CAR algebra. This AF algebra possesses the property that the ∗-automorphisms
that are not approximately inner all have infinite entropy and form a point-norm dense
open set, with entropy taken in any of the above three senses. Exploiting the classification
theory for AF algebras, the idea is to combine the algebraic control afforded by dimension
group structure with the topological flexibility in having any metrizable Choquet simplex
as a possible tracial state space. To establish lower bounds we employ a couple of results
from the local theory of Banach spaces as formulated in [9, 10].

In contrast to the case of compact manifolds of dimension at least 2 [1] and the Hilbert
cube [8], the stability of a horseshoe-type structure does not play a role here. The desired
stability of lower entropy bounds will instead result from the rigidity of the dimension
group. This rigidity permits us to lock in an infinite-entropy-producing geometric config-
uration on the tracial state space. On compact manifolds of dimension at least 2 and the
Hilbert cube, only finite-entropy-producing topological horseshoe configurations are stable
under perturbation, and so the conclusion for the set of infinite entropy homeomorphisms
in this case is dense Gδ containment.

Before proceeding to the construction, we introduce some general notation and recall
the definitions for the relevant notions of entropy.

Let X be a compact Hausdorff space. We denote by C(X) the C∗-algebra of complex-
valued functions on X, and by CR(X) the real linear subspace of real-valued functions. We
write MX for the compact convex set of Borel probability measures on X and Aff(MX)
for the closed subspace of CR(MX) consisting of affine functions. Given a homeomorphism
T : X → X we write αT for the induced ∗-automorphism f 7→ f ◦ T of C(X). We denote
by H(X) the set of all homeomorphisms from X to itself, and equip this with the uniform
topology. This topology can be described as that generated by the sets of the form

UT,Ω,ε =
{
S ∈ H(X) : ‖αS(f)− αT (f)‖ < ε

}
where T ∈ H(X), Ω is a finite subset of C(X), and ε > 0.

Let A be a C∗-algebra. We denote by Aut(A) the set of ∗-automorphisms of A equipped
with the point-norm topology. When A is separable, Aut(A) is Polish and hence a Baire
space. In the case that A is unital, we denote by TA the set of tracial states on A
equipped with the weak∗-topology, and given an α ∈ Aut(A) we write Tα for the induced
affine homeomorphism τ 7→ τ ◦ α of TA.

Let A be an exact C∗-algebra and π : A→ B(H) a faithful ∗-representation. Let Ω be a
finite subset of A and δ > 0. We denote by CPA(π,Ω, δ) the collection of triples (φ, ψ,B)
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where B is a finite-dimensional C∗-algebra and φ : X → B and ψ : B → Y are contractive
completely positive linear maps such that

‖ψ ◦ φ(a)− π(a)‖ < δ

for all a ∈ Ω. The completely positive rank is defined by

rcp(Ω, δ) = inf{rankB : (φ, ψ,B) ∈ CPA(ι,Ω, δ)}
and is independent of π by Arveson’s extension theorem. For a ∗-automorphism α of A
we define the Voiculescu-Brown entropy by

ht(α) = sup
Ω

sup
δ>0

lim sup
n→∞

1
n

log rcp(Ω ∪ αΩ ∪ · · · ∪ αn−1Ω, δ)

with Ω ranging over all finite subsets of A. The lower Voiculescu-Brown entropy lht(α) is
a variation on the above definition in which we take the limit infimum instead of the limit
supremum.

For an isometric automorphism α of a Banach space V , the contractive approximation
entropy or CA entropy hc(α) is defined in formally the same way as Voiculescu-Brown
entropy, only now using the contractive rank rc(Ω, δ). See [10] for the precise definition
and more information.
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2. The construction

In [10] it was shown that, for a separable Banach space V , the isometric automorphisms
of V with zero CA entropy form a Gδ subset of the set of all isometric automorphisms of
V with the point-norm topology. A similar statement holds for lower Voiculescu-Brown
entropy. Indeed if A is a separable exact C∗-algebra and Ω1 ⊆ Ω2 ⊆ . . . is an increasing
collection of finite subsets of A whose union is dense in A, then the set of ∗-automorphisms
of A with zero lower Voiculescu-Brown entropy is equal to

∞⋂
i=1

∞⋂
k=1

∞⋂
n=1

{
α ∈ Aut(A) : rcp(Ωi ∪ αΩi ∪ · · · ∪ αmΩi, 1/k) < em/k for some m ≥ n

}
,

which is a Gδ subset of Aut(A). Since ∗-automorphisms of finite-dimensional C∗-algebras
have zero lower Voiculescu-Brown entropy, it follows that, for a unital AF algebra A, zero
lower Voiculescu-Brown entropy is generic in Inn(A), and hence generic in Aut(A) when
every ∗-automorphism is approximately inner, as is the case for the CAR algebra, for
example. Thus to obtain generically nonzero lower Voiculescu-Brown entropy in Aut(A)
it is necessary that the identity ∗-automorphism be approximable by ∗-automorphisms
which are not approximately inner, as our construction will illustrate. These comments
also apply to CA entropy for similar reasons. For Voiculescu-Brown entropy, we don’t
know in general when the subset of ∗-automorphisms with a zero value form a Gδ set,
in particular for the case of the CAR algebra. However, zero Voiculescu-Brown entropy
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occurs for a dense set of ∗-automorphisms of the CAR algebra, since every ∗-automorphism
is approximable by an inner ∗-automorphism given by a unitary with finite spectrum. We
also remark that for unital C∗-algebras which are tensorially stable with respect to the
Jiang-Su algebra Z, which includes all unital AF algebras, infinite entropy occurs on a
dense set of ∗-automorphisms, with entropy taken in any of the three senses (see Section 8
of [10]).

Proceeding now to the construction, let d ∈ {2, 3, . . . }. We denote by Xd the quotient
of the disjoint union of [0, 1]d and [0, 1] obtained by identifying the two points (0, . . . , 0) ∈
[0, 1]d and 0 ∈ [0, 1]. For convenience we will regard [0, 1]d and [0, 1] as subsets of Xd.

Let Td be a homeomorphism of Xd which on [0, 1] acts as x 7→ x2 and on [0, 1]d admits a
sequence {Uq}q∈N of pairwise disjoint invariant open sets such that for each q the restriction
of Td to some closed invariant subset of Uq has the shift on 2q symbols as a factor (which
can be ensured for example by constructing a Smale horseshoe with crossing number 2q).

Let {tj}j∈N be a strictly increasing sequence in [1/4, 1/2) with t1 = 1/4. Note that
the intervals T k(tj , tj+1) for j, k ∈ N are pairwise disjoint. Take a sequence {gj}j∈N in
CR(Xd) such that the rational linear span of {gj}j∈N ∪ {1} is norm dense in CR(Xd). By
an approximation argument involving scalar translations and perturbations of the gj ’s, we
may assume that for each j ∈ N there is an open interval Ij = (bj , bj+1) ⊆ (tj , tj+1) such
that gj is zero on Ij and is a nonconstant polynomial function on each of the intervals
[0, bj ] and [bj+1, 1]. We may furthermore assume that the nonzero coefficients of these
polynomials, when collected together over all j ∈ N, are all distinct and form a rationally
independent set of irrational numbers, which we will denote by Θ. Note in particular
that this implies that the numbers gj(1) for j ∈ N are distinct and form a rationally
independent set.

Denote by Gd the additive subgroup of CR(Xd) generated by all rational multiples of
the elements in

{gi ◦ Tm
d : i ∈ N and m ∈ Z} ∪ {1}.

Taking all rational multiples guarantees that the subset

{g ∈ Gd : g(x) ∈ (0, 1) for all x ∈ Xd} ∪ {1}

of Gd is a scale when viewing Gd as a dimension group with the strict ordering. What we
will actually need is the corresponding fact for a dimension group built using these Gd’s,
as described below.

Proposition 2.1. Let S : Xd → Xd be a homeomorphism which induces a group auto-
morphism of Gd. Then S = T k

d for some k ∈ Z.

Proof. Let j, l ∈ N and consider the function gj ◦ T l
d ◦ S. This can be expressed as

(∗) a0 +
s∑

i=1

r∑
m=−r

ai,m(gi ◦ Tm
d )

for some s, r ∈ N, where a0 and the ai,m are rational numbers. Since T l
d ◦ S must map

[0, 1] homeomorphically to itself, the function gj ◦ T l
d ◦ S is nonzero on some open interval

I in [0, 1]. Since the intervals TmIi for i,m ∈ N are pairwise disjoint, there exist i′,m′ ∈ N
and an open subinterval I ′ ⊆ I such that the intersection of I ′ and TmIi is empty for
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every i 6= i′ and m 6= m′. Then, since for m ∈ Z the map Tm
d acts as x 7→ x2m

on [0, 1],
each function gi ◦ Tm

d appearing in (∗), except possibly for gi′ ◦ Tm′
d , restricts on I ′ to

a nonconstant linear combination of dyadic rational powers of the variable. Evaluating
(∗) on rational numbers in I ′ of the form a/2b for some integers a, b with b ≥ r and
using the rational independence of the set Θ, we deduce that a0 = 0 and the function∑r

m=−r ai,m(gi ◦ Tm
d ) is zero on I ′ for each i = 1, . . . , s.

Now for a given i = 1, . . . , s, the functions gi◦Tm
d form = −r, . . . , r (with the omission of

gi′ ◦Tm′
d if i = i′) are linearly independent on I ′ since, viewing them as linear combinations

of dyadic rational powers of the variable, each contains a term which does not appear in
any of the others, namely the term in x2mqi where qi is the degree of gi as a polynomial on
T−m

d I ′. It follows that all of the ai,m except for ai′,m′ are zero. Furthermore, since S must
fix the point 1 and the numbers gi(1) for i ∈ N are distinct and rationally independent, we
in fact have i′ = j, so that gj ◦ T l

d ◦ S = gj ◦ Tm′
d . It follows that S permutes the pairwise

disjoint intervals Tm
d Ij for j,m ∈ N, and on the endpoints of each of these intervals S agrees

with some power of Td. But S must also preserve the order of these intervals as disjoint
subsets of [0, 1], and so we infer the existence of a k ∈ N such that gj ◦ T l

d ◦ S = gj ◦ T l+k
d

for all j, l ∈ N, from which we conclude that S = T k
d . �

Having performed the above construction for each d = 2, 3, . . . , we let X be the one-
point compactification of the disjoint union

∐
d≥2Xd, and write x∞ for the point at infinity.

Let G be the additive group of all g ∈ CR(X) for which there exists an integer m ≥ 2
such that g|Xd

∈ Gd for each d = 1, . . . ,m and the restriction of g to X \
⋃m

d=1Xd is
constant and rational-valued. Then G is countable and contains the constant function 1.
It is also uniformly dense in CR(X), which implies that it is uniformly dense in Aff(MX)
when viewed as a subset of the latter space. We endow G with the strict ordering, i.e.,
the positive cone is given by

G+ = {g ∈ G : g(x) > 0 for all x ∈ X} ∪ {0} = {g ∈ G : µ(g) > 0 for all µ ∈MX} ∪ {0}.

Then (G,G+) is a simple dimension group by Lemma 3.1 of [6].
Set

Σ = {g ∈ G : g(x) ∈ (0, 1) for all x ∈ X} ∪ {1} ⊆ G+.

Observe that Σ is upwards directed and hereditary, and that every element of G+ is a
rational multiple of an element of Σ. It follows that Σ is a scale [5, Sect. IV.3][11, Sect.
1.4]. Hence there is a simple unital AF algebra A such that the scaled dimension group
(K0(A),K0(A)+,Σ(A)) is isomorphic to (G,G+,Σ), with the class of the unit of A being
associated to the constant function 1 in Σ. This isomorphism induces an affine homeomor-
phism from TA, as canonically identified with the state space of (K0(A),K0(A)+,Σ(A)),
to MX , as canonically identified with the state space of (G,G+,Σ).

Now suppose we are given a ∗-automorphism α of A. Since the induced homeomorphism
Tα of TA is affine, the extreme boundary of MX , which we canonically identify with X,
is Tα-invariant. Moreover the connected components {x∞}, X2, X3, . . . of X are each Tα-
invariant since they are pairwise non-homeomorphic. By the classification theory for AF
algebras (see [11, Sect. 1.3]) we have

Aut(A)/Inn(A) ∼= Aut(K0(A),K0(A)+,Σ(A)),
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and thus, by Proposition 2.1, for each h ∈ Aut(A)/Inn(A) there is a sequence {kd}d≥2

of integers such that Tα|Xd
= T kd

d for each representative α ∈ Aut(A) of the class h.
Consequently Aut(A)/Inn(A) ∼= ZN.

Lemma 2.2. Let T : Y → Y be a homeomorphism of a compact Hausdorff space and
suppose that the restriction of T to some closed invariant set Z ⊆ Y has the shift on FZ

as a factor, where F is a set of cardinality 2q for a given q ∈ N. Then there is a set Ω of
nonnegative norm-one functions in CR(Y ) with |Ω| = q such that for each n ∈ N the set
Ω ∪ αT Ω ∪ · · · ∪ αn−1

T Ω is 2-equivalent to the standard basis of `nq
1 over R.

Proof. It suffices to show a suitable Ω exists for the shift S on FZ, for in that case we can
identify Ω with its image under the equivariant embedding C(FZ) ↪→ C(Z) and then any
set Ω′ ⊆ CR(Y ) consisting of nonegative norm-one lifts of each of the elements in Ω will
satisfy the conclusion for the given T . For convenience we take F to be the set {0, 1}{1,...,q}.
For each i = 1, . . . , q define the function fi ∈ CR(FZ) by fi((bk)k) = b0(i) for all (bk)k ∈ FZ

and set Ω = {f1, . . . , fq}. Then the collection of pairs ((fi ◦ Sk)−1(0), (fi ◦ Sk)−1(1))
of subsets of FZ for i = 1, . . . , q and k = 0, 1, . . . is independent, in the terminology
of [12]. The proof of Proposition 4 in [12] then shows that for each n ∈ N the set
Ω ∪ αSΩ ∪ · · · ∪ αn−1

S Ω is 2-equivalent to the standard basis of `nq
1 over R, as desired. �

Lemma 2.3. Let d ≥ 2 and let α be a ∗-automorphism of A such that the restriction of
Tα to Xd is equal to T k

d for some nonzero integer k. Then ht(α) = lht(α) = hc(α) = ∞.

Proof. We may assume that k ≥ 1 by replacing α with its inverse if necessary. Let q be a
positive integer. By the construction of Td, the kth power T k

d has a restriction to a closed
invariant subset of Xd which admits the shift on 2kq symbols as a factor. By Lemma 2.2
there is a set Ω of nonnegative norm-one functions in CR(X) with |Ω| = kq such that for
each n ∈ N the set Ω∪ᾱΩ∪· · ·∪ᾱn−1Ω is 2-equivalent to the standard basis of `nkq

1 over R,
where ᾱ is the induced automorphism f 7→ f ◦Tα of CR(X). Since Σ(A) is uniformly dense
in C(X, [0, 1]), for each g ∈ Ω we can find an fg ∈ Σ(A) such that ‖fg − g‖ ≤ 1/2. Choose
projections pg ∈ A for g ∈ Ω such that [pg] = fg for each g ∈ Ω, and set Υ = {pg : g ∈ Ω}.

Let ϕ : Asa → CR(X) be the contractive real linear map given by evaluation on tracial
states, and note that ϕ ◦α|Asa = ᾱ ◦ϕ. Given an n ∈ N and real scalars cg,i for g ∈ Ω and
i = 0, . . . , n− 1, we then have

1
4

n−1∑
i=0

∑
g∈Ω

|cg,i| ≤
∥∥∥∥n−1∑

i=0

∑
g∈Ω

cg,iᾱ
i(fg)

∥∥∥∥− ∥∥∥∥n−1∑
i=0

∑
g∈Ω

cg,iᾱ
i(fg − g)

∥∥∥∥
≤

∥∥∥∥n−1∑
i=0

∑
g∈Ω

cg,iᾱ
i(fg)

∥∥∥∥ =
∥∥∥∥ϕ(n−1∑

i=0

∑
g∈Ω

cg,iα
i(pg)

)∥∥∥∥
≤

∥∥∥∥n−1∑
i=0

∑
g∈Ω

cg,iα
i(pg)

∥∥∥∥ ≤ n−1∑
i=0

∑
g∈Ω

|cg,i|,

so that Υ∪αΥ∪· · ·∪αn−1Υ is 4-equivalent to the standard basis of `nkq
1 over R and hence

8-equivalent to the standard basis of `nkq
1 over C. Since q is an arbitrary positive integer,

we thus obtain the result by Lemma 3.1 of [9] and Lemma 3.2 of [10]. �
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Lemma 2.4. Let B be a unital AF algebra, D a finite-dimensional C∗-algebra, and
Φ : D → B a unital ∗-homomorphism. Let γ be a scale-preserving order automorphism
of K0(B) such that γ restricts to the identity on Φ∗(K0(D)). Then there exists a ∗-
automorphism α of B such that α∗ = γ and α restricts to the identity on Φ(D).

Proof. By Elliott’s classification theorem for AF algebras there exists a ∗-automorphism
β of B such that β∗ = γ. Then Φ∗ = (β ◦ Φ)∗, and so there exists a unitary u ∈ B
such that Φ = (Adu) ◦ β ◦ Φ. The ∗-automorphism α = (Adu) ◦ β then has the desired
properties. �

Theorem 2.5. The ∗-automorphisms α of A which are not approximately inner satisfy
ht(α) = lht(α) = hc(α) = ∞ and form a dense open subset of Aut(A).

Proof. Denote by Γ the complement in Aut(A) of the set of approximately inner ∗-
automorphisms. Then Γ is open and consists of all α ∈ Aut(A) such that for some
d ≥ 2 the restriction of Tα to Xd is not the identity, i.e., is of the form T k

d for some integer
k 6= 0. By Lemma 2.3 we have ht(α) = lht(α) = hc(α) = ∞ for all α ∈ Γ.

We now argue that Γ is dense in Aut(A). Suppose we are given α ∈ Aut(A) \ Γ. Let
B be a finite-dimensional unital C∗-subalgebra of A and F ⊆ B a finite set of projections
which generate K0(B). Then there exists a d ≥ 2 such that for each p ∈ F the class
[p] ∈ K0(A), viewed as a function on X, is constant on Xd. Let θ be the scale-preserving
order automorphism of K0(A) such that θ restricts to Td on Xd and to the identity on
X \Xd. By Lemma 2.4 there exists a β ∈ Aut(A) such that β∗ = θ and β restricts to the
identity on B. Setting γ = α ◦ β we have γ|B = α|B while γ ∈ Γ, and so we conclude that
Γ is dense in Aut(A), completing the proof. �

Finally we point out that there are also inner ∗-automorphisms α of A satisfying ht(α) =
lht(α) = hc(α) = ∞. Indeed every unital C∗-algebra that is not of type I possesses such
∗-automorphisms [3, 10].
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