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The conjecture

Conjecture (Baum-Connes)
For every countable discrete group G, the assembly map

µ : KG
∗ (EFinG)→ K∗(C∗r (G))

is an isomorphism.

Why should we care?
The Baum-Connes conjecture implies
I the strong Novikov conjecture
I the stable Gromov-Lawson-Rosenberg conjecture (but we need

R-coefficients)
I the Kadison-Kaplansky conjecture
I . . .
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The conjecture

Conjecture (Baum-Connes with coefficients)
For every G-C∗-algebra A, the assembly map

µ : KG
∗ (EFinG ,A)→ K∗(Aor G)

is an isomorphism.

Question
I What is a G-C∗-algebra?
I What is KG

∗ (EFinG ,A)?
I What is K∗(Aor G)?
I What does µ do?

 Let’s do the abstract approach!
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C ∗-algebras

Definition (concrete)
A C∗-algebra is a ‖ · ‖-closed ∗-subalgebra A ⊆ L(H) where H is a
complex Hilbert space.

Definition (abstract)
A C∗-algebra is a complex Banachalgebra A with an involution
∗ : A→ A satisfying some axioms.

Example
I compact operators K(H) ⊆ L(H)
I C0(X ) := {f : X → C, cts. & vanishing at ∞}
I C∗r (G) := CG‖·‖ ⊆ L(`2(G))
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The maximal crossed product

Definition (maximal crossed product)
Let A be a (unital) C∗-algebra and α : G → Aut(A) an action.
Ao G is the universal C∗-algebra

C∗
(
A,G

∣∣∣ g · h = gh, g∗ = g−1, αg (a) = gag∗
)
.

Remark
I Ao G is the ’homotopy quotient’ of A by G where

homotopy = conjugation by unitaries

I AoG is the max. completion of the twisted group ring A[G ]α.
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The reduced crossed product

Definition
Aor G is the image of the regular representation

Λ : Ao G → L(`2(G ,A)).

Remark
I Λ : Ao G � Aor G is injective when G is amenable.
I C∗(G) = Co G
I C∗r (G) = Cor G
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Equivariant KK -theory

Theorem (Meyer, Bunke-Engel-Land)
Let C∗G,sep be the cat. of sep. G-C∗-algebras. There is a
presentable stable ∞-category KKG and a functor

kkG : C∗G,sep → KKG

with the following properties:

I kkG(0) = 0.
I kkG is homotopy-invariant.
I kkG preserves split exact sequences.
I kkG inverts the A⊗K(H)→ A⊗K(H ′) whenever H ↪→ H ′ is

an inclusion of G-Hilbert spaces.
I kkG is universal with the above properties.

 Think of a ’stable homotopy category’!
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Some properties of KKG

I We get a top. K -theory spectrum

K := KK (C,−) : C∗sep → Sp

I We have functors

−oG : KKG → KK
−orG : KKG → KK
−⊗A : KKG → KKG

ResH
G : KKG → KKH

IndG
H : KKH → KKG

where H < G is a subgroup and IndG
H a ResH

G .
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Localizing at finite subgroups

Definition (compactly contractible vs. compactly induced)

CC :=
{
A ∈ KKG : ResH

G (A) ' 0 ∀H < G finite
}

CI :=
{

IndG
H(B) : B ∈ KKH , H < G finite

}

Let 〈CI〉 be the smallest subcat. containing CI which is closed
under equivalence, fiber sequences, suspension & countable sums.

Theorem (Meyer-Nest)
(CC, 〈CI〉) is complementary, i.e. KKG(〈CI〉, CC) ' 0 and for
every A ∈ KKG we have a fiber sequence

Ã︸︷︷︸
∈〈CI〉

D−→ A→ N︸︷︷︸
∈CC
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The assembly map

Theorem (Meyer-Nest)
For every A ∈ KKG we have a fiber sequence

Ã︸︷︷︸
∈〈CI〉

D−→ A→ N︸︷︷︸
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Definition (Meyer-Nest)
The assembly map is the map

K (Ãor G)→ K (Aor G)

induced by D.
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Identification with the Baum-Connes assembly map

Theorem (Meyer-Nest)
The indicated maps in the following diagram are isomorphisms

KG
∗ (EFinG , Ã) K∗(Ãor G)

KG
∗ (EFinG ,A) K∗(Aor G)

∼=

∼=

MN

BC



The Davis-Lück picture

Fact (Green’s imprimitivity theorem)
For every subgroup H < G , we have KKG -equivalences

(IndG
H A) or G ∼KK Aor H

 Instead of building Ã from induced algebras and then taking
crossed products, directly take crossed products by subgroups.

Guess
The assembly map is equivalent to the map

colim
H<G finite

K (Aor H)→ K (Aor G)

 almost right, but we need to work with orbits G/H instead of
subgroups H < G .
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Notation

Definition (Orbit category)
I Or(G) is the category of homogeneous G-spaces G/H.

I OrFin(G) := {G/H | H finite} ⊆ Or(G)

Definition
Let G/H be the groupoid with objects G/H and morphisms

HomG/H(x , y) := {g ∈ G | gx = y}.

Remark
I ∃ functor G/H → G
I ⇒ every G-C∗-algebra is also a G/H-C∗-algebra.
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The functor on the orbit category

Fact
I ∃ crossed product C∗-categories Ao G/H and Aor G/H.

I K-theory also works for C∗-categories.
I We have Aor G/H ∼KK Aor H.

Corollary
We get a functor

KG
A : Or(G)→ Sp, G/H 7→ K (Aor G/H)

Definition (Davis-Lück)
The assembly map is the map

colim
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Identification with the Meyer-Nest assembly map

Theorem (K.)
The indicated maps in the following diagram are isomorphisms.

colim
G/H∈OrFin(G)

K (Ãor G/H) K (Ãor G)

colim
G/H∈OrFin(G)

K (Aor G/H) K (Aor G)

∼=

∼= MN

DL



References

P. Baum, A. Connes, N. Higson. Classifying spaces for proper
actions and K-theory of group C∗-algebras. (1994)

J. Davis, W. Lück. Spaces over a category and isomorphism
conjectures in K- and L-theory. (1998)

R. Meyer, R. Nest. The Baum-Connes conjecture via
localization of categories. (2004)

J. Kranz. An identification of the Baum-Connes and
Davis-Lück assembly maps. (2020)

U. Bunke, A. Engel, M. Land. A stable ∞-category for
equivariant KK-theory. (2021)

U. Bunke, A. Engel, M. Land. Paschke duality and assembly
maps. (2021)


