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For every countable discrete group G, the assembly map

o KS(ErinG) = Ku(CF(G))
is an isomorphism.

Why should we care?
The Baum-Connes conjecture implies
» the strong Novikov conjecture

» the stable Gromov-Lawson-Rosenberg conjecture (but we need
R-coefficients)

> the Kadison-Kaplansky conjecture
> ...
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~ Let's do the abstract approach!
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C*-algebras

Definition (concrete)
A C*-algebrais a || - ||-closed *-subalgebra A C L(H) where H is a
complex Hilbert space.

Definition (abstract)
A C*-algebra is a complex Banachalgebra A with an involution
x : A — A satisfying some axioms.

Example
» compact operators K(H) C L(H)
» Co(X) :={f: X — C, cts. & vanishing at oo}
» cx(6):=C6 'l c £(2(6))
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The maximal crossed product

Definition (maximal crossed product)
Let A be a (unital) C*-algebra and a : G — Aut(A) an action.
A x G is the universal C*-algebra

C*(A,G ‘ g-h=gh g'=g7, ag(a):gag*).

Remark
> A x G is the "homotopy quotient’ of A by G where

homotopy = conjugation by unitaries

» Ax G is the max. completion of the twisted group ring A[G],.
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The reduced crossed product

Definition
A x, G is the image of the regular representation

N:Ax G — L(P(G,A)).

Remark
> A:Ax G — AXx, G is injective when G is amenable.
> C(G)=CxG
> C(G)=Cx,G
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Equivariant KK-theory

Theorem (Meyer, Bunke-Engel-Land)
Let Cg ., be the cat. of sep. G-C*-algebras. There is a
presentable stable co-category KK and a functor

kk® : C& qop — KKC

with the following properties:
> kk€(0) = 0.
> kkC is homotopy-invariant.
> kkC preserves split exact sequences.
>

kk® inverts the A® K(H) — A® K(H') whenever H — H' is
an inclusion of G-Hilbert spaces.

> kkC is universal with the above properties.

~> Think of a 'stable homotopy category'!
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Some properties of KK©

> We get a top. K-theory spectrum

K :=KK(C,—): CL, — Sp

sep

» We have functors

—%G:KK® = KK
—x,G: KK® = KK
— A KK® — KKC®
ResH : KKC — KK!
Ind§ : KKH — KK©

where H < G is a subgroup and Ind§; 4 Res!.
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Localizing at finite subgroups

Definition (compactly contractible vs. compactly induced)

CC:={A € KK : Restl(A) 0 VH < G finite}

CT == {Ind§(B) : B KK, H < G finite}

Let (CZ) be the smallest subcat. containing CZ which is closed
under equivalence, fiber sequences, suspension & countable sums.

Theorem (Meyer-Nest)

(CC,(CT)) is complementary, i.e. KK¢((CZ),CC) ~ 0 and for
every A € KKC we have a fiber sequence

A 2as N
—— ~—
€(CT) ecc



The assembly map

Theorem (Meyer-Nest)
For every A € KK© we have a fiber sequence
2As N

\’LL —~—
€(CT) ecc



The assembly map

Theorem (Meyer-Nest)
For every A € KK© we have a fiber sequence

A oA N
~~ ~~
(1) ecc

Definition (Meyer-Nest)
The assembly map is the map

K(Ax, G) = K(Ax, G)

induced by D.



|dentification with the Baum-Connes assembly map

Theorem (Meyer-Nest)
The indicated maps in the following diagram are isomorphisms

KS(ErinG, A) —— K.(Ax, G)

J= |

KC(ErinG, A) —25 K.(A x, G)
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The Davis-Liick picture

Fact (Green's imprimitivity theorem)
For every subgroup H < G, we have KK ©-equivalences

(Ind$ A) 3, G ~kk Ax, H

~~ Instead of building A from induced algebras and then taking
crossed products, directly take crossed products by subgroups.

Guess
The assembly map is equivalent to the map

colim K(Ax,H)— K(Ax, G)
H<G finite

~~ almost right, but we need to work with orbits G/H instead of
subgroups H < G.
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Notation

Definition (Orbit category)

» Or(G) is the category of homogeneous G-spaces G/H.
» Orrin(G) :={G/H | H finite} C Or(G)

Definition
Let G/H be the groupoid with objects G/H and morphisms

Homem(x,y) ={g € G | gx=y}.
Remark

» 3 functor G/H — G
» = every G-C*-algebra is also a G/H-C*-algebra.
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The functor on the orbit category

Fact
» 3 crossed product C*-categories Ax G/H and A x, G/H.
» K-theory also works for C*-categories.
» We have Ax, G/H ~kx A%, H.

Corollary
We get a functor

K§ :0r(G) — Sp, G/Hw— K(Ax, G/H)

Definition (Davis-Liick)

The assembly map is the map

li K(A x, H K(A >,
G/Hceoolrr:n(G) (Ax, G/H) — K(A x, G)



|dentification with the Meyer-Nest assembly map

Theorem (K.)
The indicated maps in the following diagram are isomorphisms.

colim K(Ax, G/H) —— K(Ax, G)
G/HEOrEn(G)
F JMN

colim K(A x, G/H) 25 K(A %, G)
G/HeEOrER(G)
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