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Amenable groups

Theorem (Hulanicki)
Let G be a discrete group. TFAE:
a) G is amenable.
b) C∗r (G) is nuclear.
c) C∗(G) = C∗r (G) (weak containment property)

Question (Weak containment problem)
Given some dynamical input X , how are the following related?
a) X is amenable.
b) C∗r (X ) is nuclear.
c) C∗(X ) = C∗r (X ).



Examples for dynamical input

ä G y X group action on a space  C0(X ) o(r) G
(Matsumura, Buss-Echterhoff-Willett)

ä G y X partial group action on a space  C0(X ) o(r) G
(Buss-Ferraro-Sehnem)

ä G y A (partial) group action on a C∗-algebra  Ao(r) G
(Buss-Echterhoff-Willett, Buss-Ferraro-Sehnem)

ä G groupoid  C∗(r)(G)
(Anantharaman–Delaroche, Willett, K.)

ä S y X partial action by inverse semigroup  C0(X ) o(r) S
(K.)



Amenability for group actions

Theorem (Anantharaman–Delaroche-Renault)
Let G y X be a partial action of a discrete group on a loc. cpt.
space. Consider the following conditions:
a) G y X is amenable
b) C0(X ) or G is nuclear
c) C0(X ) o G = C0(X ) or G

Then a)⇔ b)⇒ c).

Question (Open)
Do we also have c)⇒ b)?



The case of exact groups

Theorem (Matsumura)
Let G y X be an action of an exact discrete group on a compact
space X. Then C0(X ) o G = C0(X ) or G if and only if G y X is
amenable.

Theorem (Buss-Echterhoff-Willett)
Let G y X be an action of an exact locally compact group on a
loc. cpt. space X. Then C0(X ) o G = C0(X ) or G if and only if
G y X is amenable.

Theorem (Buss-Ferraro-Sehnem)
Let G y X be a partial action of an exact discrete group on a
loc. cpt. space. Then C0(X ) o G = C0(X ) or G if and only if
G y X is amenable.



What about groupoids?



Groupoids

Definition
A topological groupoid consists of
a) An arrow space G
b) A closed unit space G(0) ⊆ G
c) Range and source maps r , s : G → X
d) A composition map • : G ×r ,X ,s G → G
e) An inversion map ()−1 : G → G

satisfying a bunch of axioms.

Definition (equivalent)
A topological groupoid is a topological category where every
morphism is invertible. (arrows=morphisms, units=objects)

Convention
All groupoids are locally compact Hausdorff.



Example: Transformation groupoids

Definition
Let G y X be an action. Then X oG := X ×G is a groupoid with

ä Unit space X
ä Composition (x , g) · (y , h) := (y , gh)
ä Range map r(x , g) := gx
ä Source map s(x , g) = x



Étale groupoids

Definition
A bisection of a groupoid G is a subset U ⊆ G such that
r |U : U → r(U) and s|U : U → s(U) are homeomorphisms.

Definition
A groupoid G is called étale, if its topology has a basis of open
bisections.

Remark
If G is étale, then the fibers

Gx := {g ∈ G : r(g) = x}, Gx := {g ∈ G : s(g) = x}

are discrete. Therefore, étale groupoids are the analogue of
discrete groups.



Groupoid C ∗-algebras

Definition
Let G be an étale groupoid. Equip Cc(G) with the operations

f ∗ g(γ) :=
∑
ηζ=γ

f (η)g(ζ), f ∗(γ) := f (γ−1).

The maximal groupoid C∗-algebra C∗(G) is the enveloping
C∗-algebra of Cc(G).
The reduced groupoid C∗-algebra C∗r (G) is the image of the left
regular representation

Λ : C∗(G)→ LC0(G(0))(`
2(G)).



Is there a more algebraic description
of C ∗(G)?



Inverse semigroups

Definition
An inverse semigroup is a semigroup S such that for every s ∈ S,
there is a unique s∗ satisfying ss∗s = s and s∗ss∗ = s∗.

Example
Every inverse semigroup S can be realized as partial isometries on
a Hilbert space.

Example
Let G be an étale groupoid. Then the set S of open bisections of
G is an inverse semigroup.

Convention
All my inverse semigroups have a unit 1.



Partial actions

Definition
Let S be an inverse semigroup. A partial action θ : S y X is a
collection of open subsets {Ds ⊆ X}s∈S and homeomorphisms
{θs : Ds∗ → Ds}s∈S satisfying

ä θ1 = idX

ä θts ⊇ θs ◦ θt for all s, t ∈ S.

Example
Let G be an étale groupoid and S its inverse semigroup of open
bisections. There is a partial action θ : S y G(0) given by

θU : s(U) s−1
−−→ U r−→ r(U), U ∈ S.



Covariant representations

Definition (Sieben)
A covariant representation (π, v) of (C0(X ),S) is a non-degenerate
∗-homomorphism π : C0(X )→ B(H) and a representation
v : S → B(H) by partial isometries such that

ä π(C0(Ds))H = vss∗H, s ∈ S
ä vsavs∗ = θs(a), s ∈ S, a ∈ Ds∗



Crossed products by partial actions

Theorem (Sieben)
There is a universal covariant representation (ι, u) such that for
any covariant representation (π, v) : (C0(X ),S)→ B(H) and

C0(X ) o S := span{ι(a)us : s ∈ S, a ∈ Ds},

∃ unique ∗-homomorphism π o v : C0(X ) o S → B(H) s.t.

π(a)vs = π o v(ι(a)us), s ∈ S, a ∈ Ds .

Theorem (Paterson)
C∗(G) = C0(G(0)) o S



Back to the original question

Question (Weak containment problem)
Given some dynamical input X , how are the following related?
a) X is amenable.
b) C∗r (X ) is nuclear.
c) C∗(X ) = C∗r (X ).



The weak containment problem for groupoids

Theorem (Anantharaman–Delaroche-Renault)
Let G be an étale groupoid. Consider the following conditions:
a) G is amenable
b) C∗r (G) is nuclear
c) C∗(G) = C∗r (G)

Then a)⇔ b)⇒ c).

Example (Willett)
There is a non-amenable étale groupoid G with C∗(G) = C∗r (G).

Question
Do we get c)⇒ b) if we restrict to "exact" groupoids?



What is an exact groupoid?

Theorem (Matsumura)
Let G y X be an action of an exact discrete group on a compact
space X. Then C0(X ) o G = C0(X ) or G if and only if G y X is
amenable.

Theorem (Ozawa)
A discrete group G is exact if and only if βG o G is amenable.

Definition (Anantharaman-Delaroche)
An étale groupoid G is strongly amenable at infinity, if βrG o G is
amenable where

βrG = Spec
({

f ∈ Cb(G) : ∀ε > 0∃K ⊆cpt G(0) : ‖f |G\r−1(K)‖∞ < ε
})

is the fiberwise Stone-Čech compactification of G .



Matsumura’s Theorem for groupoids

Theorem (K.)
Let G be an étale groupoid which is strongly amenable at infinity.
Suppose that C∗(G) = C∗r (G). Then C∗r (G) is nuclear.
In particular, G is amenable.
Strategy:
Factor the inclusion C∗r (G) ↪→ C∗r (G)∗∗ as a composition

C∗r (G) ↪→ C∗r (βrG o G)︸ ︷︷ ︸
nuclear

cpc−−→ C∗r (G)∗∗.

This implies that C∗r (G) itself is nuclear.



Why do we need partial actions?

Recall: Let G be an étale groupoid with inverse semigroup S.
ä C∗(G) = C0(G(0)) o S
ä C∗(βrG o G) = C0(βrG) o S

Lemma
The partial action S y C0(G(0)) extends to a partial action
S y C0(G(0))∗∗. We have canonical ∗-homomorphisms

C0(G(0)) o S → C0(G(0))∗∗ o S → (C0(G(0)) o S)∗∗

whose composition is the natural inclusion.



The Haagerup standard form

Theorem
There is a faithful normal covariant representation

(π, v) : (C0(G(0))∗∗, S)→ B(H)

such that
π(C0(G(0)))′ = π(C0(G(0))∗∗).



Proof of the main theorem

Theorem (K.)
Let G be étale and strongly amenable at infinity such that
C∗(G) = C∗r (G). Then C∗r (G) is nuclear.

Proof
Let (π, v) : (C0(G(0))∗∗,S)→ B(H) be the Haagerup standard
form. By Arveson’s theorem, we find a c.p.p map φ as follows:

C0(βrG) o S

C0(G(0)) o S B(H)

φ

πov

We used that reduced crossed products preserve inclusions.



C0(βrG) o S

C0(G(0)) o S B(H)

φ

πov

Using multiplicative domain arguments, we show that
ä φ(C0(βrG)) ⊆ π(C0(G(0)))′ ∼= C0(G(0))∗∗

ä ψ := φ|C0(βr G) is S-equivariant.
We get a factorization

C0(G(0))oS↪→C0(βrG)oS ψoS−−−→ C0(G(0))∗∗oS → (C0(G(0))oS)∗∗



C0(βrG) o S

C0(G(0)) o S B(H)

φ

πov

Using multiplicative domain arguments, we show that
ä φ(C0(βrG)) ⊆ π(C0(G(0)))′ ∼= C0(G(0))∗∗

ä ψ := φ|C0(βr G) is S-equivariant.
We get a factorization

C∗r (G)↪→C∗r (βrG o G)︸ ︷︷ ︸
nuclear

ψoS−−−→ C0(G(0))∗∗ o S → C∗r (G)∗∗

Thus C∗r (G) is nuclear.



Thank you for your attention!


