Amenability and weak containment for étale groupoids Quantum Groups Seminar 2021

Julian Kranz

University of Münster

October 10, 2021

Amenable groups

Theorem (Hulanicki)

Let G be a discrete group. TFAE:

- a) G is amenable.
- b) $C_r^*(G)$ is nuclear.
- c) $C^*(G) = C^*_r(G)$ (weak containment property)

Question (Weak containment problem)

Given some dynamical input ${\mathcal X},$ how are the following related?

- a) \mathcal{X} is amenable.
- b) $C^*_r(\mathcal{X})$ is nuclear.
- c) $C^*(\mathcal{X}) = C^*_r(\mathcal{X}).$

Examples for dynamical input

Theorem (Anantharaman–Delaroche-Renault)

Let $G \curvearrowright X$ be a partial action of a discrete group on a loc. cpt. space. Consider the following conditions:

a)
$$G \curvearrowright X$$
 is amenable

b)
$$C_0(X) \rtimes_r G$$
 is nuclear

c)
$$C_0(X) \rtimes G = C_0(X) \rtimes_r G$$

Then a) \Leftrightarrow b) \Rightarrow c).

Question (Open)

Do we also have $c) \Rightarrow b$?

The case of exact groups

Theorem (Matsumura)

Let $G \curvearrowright X$ be an action of an **exact** discrete group on a compact space X. Then $C_0(X) \rtimes G = C_0(X) \rtimes_r G$ if and only if $G \curvearrowright X$ is amenable.

Theorem (Buss-Echterhoff-Willett)

Let $G \curvearrowright X$ be an action of an **exact** locally compact group on a loc. cpt. space X. Then $C_0(X) \rtimes G = C_0(X) \rtimes_r G$ if and only if $G \curvearrowright X$ is amenable.

Theorem (Buss-Ferraro-Sehnem)

Let $G \curvearrowright X$ be a **partial** action of an **exact** discrete group on a loc. cpt. space. Then $C_0(X) \rtimes G = C_0(X) \rtimes_r G$ if and only if $G \curvearrowright X$ is amenable.

What about groupoids?

Groupoids

Definition

A topological groupoid consists of

- a) An arrow space G
- b) A closed unit space $G^{(0)} \subseteq G$
- c) Range and source maps $r, s : G \rightarrow X$
- d) A composition map ullet : $G imes_{r,X,s} G o G$
- e) An inversion map ()^{-1}: G \to G

satisfying a bunch of axioms.

Definition (equivalent)

A topological groupoid is a topological category where every morphism is invertible. (arrows=morphisms, units=objects)

Convention

All groupoids are locally compact Hausdorff.

Example: Transformation groupoids

Definition

Let $G \cap X$ be an action. Then $X \rtimes G := X \times G$ is a groupoid with

- ➤ Unit space X
- ► Composition $(x,g) \cdot (y,h) := (y,gh)$
- > Range map r(x,g) := gx
- > Source map s(x,g) = x

Étale groupoids

Definition

A bisection of a groupoid G is a subset $U \subseteq G$ such that $r|_U : U \to r(U)$ and $s|_U : U \to s(U)$ are homeomorphisms.

Definition

A groupoid G is called étale, if its topology has a basis of open bisections.

Remark

If G is étale, then the *fibers*

 $G^{x} := \{g \in G : r(g) = x\}, \quad G_{x} := \{g \in G : s(g) = x\}$

are discrete. Therefore, étale groupoids are the analogue of discrete groups.

Groupoid C*-algebras

Definition

Let G be an étale groupoid. Equip $C_c(G)$ with the operations

$$f * g(\gamma) := \sum_{\eta \zeta = \gamma} f(\eta) g(\zeta), \quad f^*(\gamma) := \overline{f(\gamma^{-1})}.$$

The maximal groupoid C^* -algebra $C^*(G)$ is the enveloping C^* -algebra of $C_c(G)$. The reduced groupoid C^* -algebra $C^*_r(G)$ is the image of the left regular representation

$$\Lambda: C^*(G) \to \mathcal{L}_{C_0(G^{(0)})}(\ell^2(G)).$$

Is there a more algebraic description of $C^*(G)$?

Definition

An *inverse semigroup* is a semigroup S such that for every $s \in S$, there is a unique s^* satisfying $ss^*s = s$ and $s^*ss^* = s^*$.

Example

Every inverse semigroup S can be realized as partial isometries on a Hilbert space.

Example

Let G be an étale groupoid. Then the set S of open bisections of G is an inverse semigroup.

Convention

All my inverse semigroups have a unit 1.

Partial actions

Definition

Let *S* be an inverse semigroup. A partial action $\theta : S \frown X$ is a collection of open subsets $\{D_s \subseteq X\}_{s \in S}$ and homeomorphisms $\{\theta_s : D_{s^*} \to D_s\}_{s \in S}$ satisfying $\blacktriangleright \ \theta_1 = \operatorname{id}_X$

►
$$\theta_{ts} \supseteq \theta_s \circ \theta_t$$
 for all $s, t \in S$.

Example

Let G be an étale groupoid and S its inverse semigroup of open bisections. There is a partial action $\theta : S \curvearrowright G^{(0)}$ given by

$$heta_U: s(U) \xrightarrow{s^{-1}} U \xrightarrow{r} r(U), \quad U \in S.$$

Definition (Sieben)

A covariant representation (π, v) of $(C_0(X), S)$ is a non-degenerate *-homomorphism $\pi : C_0(X) \to \mathcal{B}(H)$ and a representation $v : S \to \mathcal{B}(H)$ by partial isometries such that

$$\succ \pi(C_0(D_s))H = v_{ss^*}H, \quad s \in S$$

►
$$v_s a v_{s^*} = \theta_s(a), \quad s \in S, a \in D_{s^*}$$

Crossed products by partial actions

Theorem (Sieben)

There is a universal covariant representation (ι, u) such that for any covariant representation $(\pi, v) : (C_0(X), S) \to \mathcal{B}(H)$ and

$$C_0(X) \rtimes S := \overline{\operatorname{span}}\{\iota(a)u_s : s \in S, a \in D_s\},$$

 \exists unique *-homomorphism $\pi \rtimes v : C_0(X) \rtimes S \to \mathcal{B}(H)$ s.t.

$$\pi(a)v_s = \pi \rtimes v(\iota(a)u_s), \quad s \in S, a \in D_s.$$

Theorem (Paterson) $C^*(G) = C_0(G^{(0)}) \rtimes S$

Question (Weak containment problem)

Given some dynamical input ${\mathcal X},$ how are the following related?

- a) \mathcal{X} is amenable.
- b) $C^*_r(\mathcal{X})$ is nuclear.
- c) $C^*(\mathcal{X}) = C^*_r(\mathcal{X}).$

The weak containment problem for groupoids

Theorem (Anantharaman–Delaroche-Renault)

Let G be an étale groupoid. Consider the following conditions:

- a) G is amenable
- b) $C_r^*(G)$ is nuclear
- c) $C^*(G) = C^*_r(G)$
- Then a) \Leftrightarrow b) \Rightarrow c).

Example (Willett)

There is a non-amenable étale groupoid G with $C^*(G) = C^*_r(G)$.

Question

Do we get $c) \Rightarrow b$ if we restrict to "exact" groupoids?

What is an exact groupoid?

Theorem (Matsumura)

Let $G \curvearrowright X$ be an action of an **exact** discrete group on a compact space X. Then $C_0(X) \rtimes G = C_0(X) \rtimes_r G$ if and only if $G \curvearrowright X$ is amenable.

Theorem (Ozawa)

A discrete group G is exact if and only if $\beta G \rtimes G$ is amenable.

Definition (Anantharaman-Delaroche)

An étale groupoid *G* is *strongly amenable at infinity*, if $\beta_r G \rtimes G$ is amenable where

$$\beta_r G = \operatorname{Spec}\left(\left\{f \in C_b(G) : \forall \varepsilon > 0 \exists K \subseteq_{cpt} G^{(0)} : \|f|_{G \setminus r^{-1}(K)}\|_{\infty} < \varepsilon\right\}\right)$$

is the fiberwise Stone-Čech compactification of G.

Theorem (K.)

Let G be an étale groupoid which is strongly amenable at infinity. Suppose that $C^*(G) = C^*_r(G)$. Then $C^*_r(G)$ is nuclear. In particular, G is amenable.

Strategy:

Factor the inclusion $C^*_r(G) \hookrightarrow C^*_r(G)^{**}$ as a composition

$$C_r^*(G) \hookrightarrow \underbrace{C_r^*(\beta_r G \rtimes G)}_{\text{nuclear}} \xrightarrow{\text{cpc}} C_r^*(G)^{**}$$

This implies that $C_r^*(G)$ itself is nuclear.

Recall: Let G be an étale groupoid with inverse semigroup S.

$$C^*(G) = C_0(G^{(0)}) \rtimes S$$

$$C^*(\beta_r G \rtimes G) = C_0(\beta_r G) \rtimes S$$

Lemma

The partial action $S \curvearrowright C_0(G^{(0)})$ extends to a partial action $S \curvearrowright C_0(G^{(0)})^{**}$. We have canonical *-homomorphisms

$$C_0(G^{(0)})
times S
ightarrow C_0(G^{(0)})^{**}
times S
ightarrow (C_0(G^{(0)})
times S)^{**}$$

whose composition is the natural inclusion.

Theorem

There is a faithful normal covariant representation

$$(\pi, \mathbf{v}): (C_0(G^{(0)})^{**}, S) \rightarrow \mathcal{B}(H)$$

such that

$$\pi(C_0(G^{(0)}))' = \pi(C_0(G^{(0)})^{**}).$$

Proof of the main theorem

Theorem (K.)

Let G be étale and strongly amenable at infinity such that $C^*(G) = C^*_r(G)$. Then $C^*_r(G)$ is nuclear.

Proof

Let (π, ν) : $(C_0(G^{(0)})^{**}, S) \to \mathcal{B}(H)$ be the Haagerup standard form. By Arveson's theorem, we find a c.p.p map ϕ as follows:

We used that reduced crossed products preserve inclusions.

Using multiplicative domain arguments, we show that

We get a factorization

$$C_0(G^{(0)}) \rtimes S \hookrightarrow C_0(\beta_r G) \rtimes S \xrightarrow{\psi \rtimes S} C_0(G^{(0)})^{**} \rtimes S \to (C_0(G^{(0)}) \rtimes S)^{**}$$

Using multiplicative domain arguments, we show that

►
$$\phi(C_0(\beta_r G)) \subseteq \pi(C_0(G^{(0)}))' \cong C_0(G^{(0)})^{**}$$

$$\blacktriangleright \psi := \phi|_{C_0(\beta_r G)}$$
 is S-equivariant.

We get a factorization

$$C_r^*(G) \hookrightarrow \underbrace{C_r^*(\beta_r G \rtimes G)}_{\text{nuclear}} \xrightarrow{\psi \rtimes S} C_0(G^{(0)})^{**} \rtimes S \to C_r^*(G)^{**}$$

Thus $C_r^*(G)$ is nuclear.

Thank you for your attention!