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Kirchberg–Phillips classification

Theorem (Kirchberg, Phillips)
Let A and B be unital, simple, separable, nuclear, purely infinite
C∗-algebras satisfying the UCT. Then any isomorphism

α : K∗(A)
∼=−→ K∗(B), α([1A]0) = [1B]0

is induced by a ∗-isomorphism

ϕ : A
∼=−→ B.

Question
Let G y X be an action of a group on a compact space. When is
C(X ) o G a UCT Kirchberg algebra?
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Amenable actions

Definition (Anantharaman-Delaroche–Renault)
An action G y X of a countable discrete group on a compact
metric space is called amenable if there is a sequence

{µn : X → Prob(G)}n∈N

of continuous maps such that

lim
n→∞

sup
x∈X
‖g .µn(x)− µn(gx)‖1 = 0 ∀g ∈ G .

Theorem (Ananatharaman-Delaroche)
An action G y X is amenable if and only if C(X ) o G is nuclear.
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Properties of amenable actions

Let G y X be an amenable action.

Theorem (Tu)
C(X ) o G satisfies the UCT.

Theorem (Archbold-Spielberg)
C(X ) o G is simple if and only if G y X is minimal and
topologically free.

Lemma (Folklore)
X has a G-invariant measure if and only if C(X ) o G has a trace if
and only if G is amenable.
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When is C(X ) o G purely infinite?
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Dynamical comparison
Let G y X be an amenable action of a nonamenable group.
(⇒ no invariant measures!)

Definition (Kerr)
G y X has dynamical comparison if for every open subset V ⊆ X ,
there is an open cover X = U1 ∪ . . . ∪ Un and g1, . . . , gn ∈ G such
that (giUi)i=1...,n are pairwise disjoint subsets of V .

X - V



Dynamical comparison
Let G y X be an amenable action of a nonamenable group.
(⇒ no invariant measures!)
Definition (Kerr)
G y X has dynamical comparison if for every open subset V ⊆ X ,
there is an open cover X = U1 ∪ . . . ∪ Un and g1, . . . , gn ∈ G such
that (giUi)i=1...,n are pairwise disjoint subsets of V .

X - V



Dynamical comparison
Let G y X be an amenable action of a nonamenable group.
(⇒ no invariant measures!)
Definition (Kerr)
G y X has dynamical comparison if for every open subset V ⊆ X ,
there is an open cover X = U1 ∪ . . . ∪ Un and g1, . . . , gn ∈ G such
that (giUi)i=1...,n are pairwise disjoint subsets of V .

X - V



From dynamical comparison to pure infiniteness

Theorem (Ma)
Let G y X be a minimal, amenable, topologically free action of a
nonamenable group. If G y X has dynamical comparison, then
C(X ) o G is purely infinite.

Corollary
In this case, C(X ) o G is a UCT Kirchberg algebra.

Question
When does G y X have dynamical comparison?
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Paradoxical towers

Definition (GGKN)
Let n ∈ N. A countable group G has n-paradoxical towers if for
every finite subset D ⊆ G , there are A1, . . . ,An ⊆ G and
g1, . . . , gn ∈ G such that
a) The sets {dAi}d∈D,i=1,...,n are pairwise disjoint
b) G = ∪n

i=1giAi

Theorem (GGKN)
The following nonamenable groups have paradoxical towers:

ä (Acylindrically) hyperbolic groups (Fn, . . . )
ä Lattices in many Lie groups (SLn(Z), . . . )
ä Groups with "nice boundary actions" (BS(n,m), . . . )
ä . . .
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Dynamical comparison is automatic!

Theorem (GGKN)
Let G = H × K where H is a group with paradoxical towers and K
is any countable group. Then every minimal, amenable action
G y X on a compact metric space has dynamical comparison.

Corollary
Assume moreover that the action G y X is topologically free.
Then C(X ) o G is a UCT Kirchberg algebra.

Theorem (GGKN)
Let G be a group containing F2 and let G y X be a minimal,
amenable, topologically free action on a compact metric space.
Then C(X ) o G is properly infinite.
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The proof for G = F2

Theorem (GGKN)
Let F2 y X be a minimal, amenable action on a compact metric
space. Then F2 y X has dynamical comparison.

Lemma
Suppose that for every finite set D ⊆ F2, there is an open set
V ⊆ X such that

ä The sets {dV }d∈D are pairwise disjoint.
ä X - V (There is an open cover X = U1 ∪ . . . ∪ Un and

g1, . . . , gn ∈ G such that (giUi)n
i=1 are pairwise disjoin sub-

sets of V ).
Then G y X has dynamical comparison.

Proof.
Let U ⊆ X open. By minimality, D−1U = X for finite D ⊆ G .
Then X - V - U.
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Thm: F2 y X has dynamical comparison

Let 0 < ε < 1
12 . Let µ : X → Prob(G) such that

sup
x∈X
‖g .µ(x)− µ(gx)‖1 < ε, ∀g ∈ D−1 ∪ {g1, g2, g3}.

Define

Vi :=
{
x ∈ X | µ(x)(Ai) >

1
2 + ε

}
⊆ X , i = 1, 2, 3.

and V = V1 ∪ V2 ∪ V3.Then

dVi ⊆
{
x ∈ X | µ(x)(dAi) >

1
2

}
, d ∈ D.

Since (dAi)d∈D,i=1,2,3 are pairwise disjoint, (dVi)d∈D,i=1,2,3 are
pairwise disjoint ⇒ (dV )d∈D are pairwise disjoint.
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Claim: X - V .
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Let G y X be a minimal, amenable, topologically free action of a
nonamenable group on a compact space. Then C(X ) o G is purely
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Thank you very much!


