Classifiability of crossed products by nonamenable groups C*-algebras: Structure and Dynamics

Julian Kranz (University of Münster)

joint work with E. Gardella, S. Geffen and P. Naryshkin

May 16, 2022

・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・
 ・

Kirchberg–Phillips classification

Theorem (Kirchberg, Phillips)

Let A and B be unital, simple, separable, nuclear, purely infinite C^* -algebras satisfying the UCT. Then any isomorphism

$$\alpha: K_*(A) \xrightarrow{\cong} K_*(B), \quad \alpha([1_A]_0) = [1_B]_0$$

is induced by a *-isomorphism

$$\varphi: A \xrightarrow{\cong} B.$$

Kirchberg–Phillips classification

Theorem (Kirchberg, Phillips)

Let A and B be unital, simple, separable, nuclear, purely infinite C^* -algebras satisfying the UCT. Then any isomorphism

$$\alpha: \mathcal{K}_*(\mathcal{A}) \xrightarrow{\cong} \mathcal{K}_*(\mathcal{B}), \quad \alpha([1_{\mathcal{A}}]_0) = [1_{\mathcal{B}}]_0$$

is induced by a *-isomorphism

$$\varphi: A \xrightarrow{\cong} B.$$

Question

Let $G \curvearrowright X$ be an action of a group on a compact space. When is $C(X) \rtimes G$ a UCT Kirchberg algebra?

Amenable actions

Definition (Anantharaman-Delaroche-Renault)

An action $G \curvearrowright X$ of a countable discrete group on a compact metric space is called *amenable* if there is a sequence

$$\{\mu_n: X \to \operatorname{Prob}(G)\}_{n \in \mathbb{N}}$$

of continuous maps such that

$$\lim_{n\to\infty}\sup_{x\in X}\|g.\mu_n(x)-\mu_n(gx)\|_1=0\quad\forall g\in G.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Amenable actions

Definition (Anantharaman-Delaroche-Renault)

An action $G \curvearrowright X$ of a countable discrete group on a compact metric space is called *amenable* if there is a sequence

$$\{\mu_n: X \to \operatorname{Prob}(G)\}_{n \in \mathbb{N}}$$

of continuous maps such that

$$\lim_{n\to\infty}\sup_{x\in X}\|g.\mu_n(x)-\mu_n(gx)\|_1=0\quad\forall g\in G.$$

Theorem (Ananatharaman-Delaroche) An action $G \curvearrowright X$ is amenable if and only if $C(X) \rtimes G$ is nuclear.

Let $G \curvearrowright X$ be an amenable action.

Let $G \curvearrowright X$ be an amenable action. Theorem (Tu) $C(X) \rtimes G$ satisfies the UCT.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

Let $G \curvearrowright X$ be an amenable action.

Theorem (Tu)

 $C(X) \rtimes G$ satisfies the UCT.

Theorem (Archbold-Spielberg)

 $C(X) \rtimes G$ is simple if and only if $G \curvearrowright X$ is minimal and topologically free.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $G \curvearrowright X$ be an amenable action.

Theorem (Tu)

 $C(X) \rtimes G$ satisfies the UCT.

Theorem (Archbold-Spielberg)

 $C(X) \rtimes G$ is simple if and only if $G \curvearrowright X$ is minimal and topologically free.

Lemma (Folklore)

X has a G-invariant measure if and only if $C(X) \rtimes G$ has a trace if and only if G is amenable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Let $G \curvearrowright X$ be an amenable action.

Theorem (Tu)

 $C(X) \rtimes G$ satisfies the UCT.

Theorem (Archbold-Spielberg)

 $C(X) \rtimes G$ is simple if and only if $G \curvearrowright X$ is minimal and topologically free.

Lemma (Folklore)

X has a G-invariant measure if and only if $C(X) \rtimes G$ has a trace if and only if G is amenable.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Question When is $C(X) \rtimes G$ purely infinite?

Dynamical comparison

Let $G \curvearrowright X$ be an amenable action of a nonamenable group. (\Rightarrow no invariant measures!)

Dynamical comparison

Let $G \curvearrowright X$ be an amenable action of a nonamenable group. (\Rightarrow no invariant measures!)

Definition (Kerr)

 $G \curvearrowright X$ has dynamical comparison if for every open subset $V \subseteq X$, there is an open cover $X = U_1 \cup \ldots \cup U_n$ and $g_1, \ldots, g_n \in G$ such that $(g_i U_i)_{i=1...,n}$ are pairwise disjoint subsets of V.

Dynamical comparison

Let $G \curvearrowright X$ be an amenable action of a nonamenable group. (\Rightarrow no invariant measures!)

Definition (Kerr)

 $G \curvearrowright X$ has dynamical comparison if for every open subset $V \subseteq X$, there is an open cover $X = U_1 \cup \ldots \cup U_n$ and $g_1, \ldots, g_n \in G$ such that $(g_i U_i)_{i=1,\ldots,n}$ are pairwise disjoint subsets of V.

 $X \preceq V$

Theorem (Ma)

Let $G \curvearrowright X$ be a minimal, amenable, topologically free action of a nonamenable group. If $G \curvearrowright X$ has dynamical comparison, then $C(X) \rtimes G$ is purely infinite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (Ma)

Let $G \curvearrowright X$ be a minimal, amenable, topologically free action of a nonamenable group. If $G \curvearrowright X$ has dynamical comparison, then $C(X) \rtimes G$ is purely infinite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

In this case, $C(X) \rtimes G$ is a UCT Kirchberg algebra.

Theorem (Ma)

Let $G \curvearrowright X$ be a minimal, amenable, topologically free action of a nonamenable group. If $G \curvearrowright X$ has dynamical comparison, then $C(X) \rtimes G$ is purely infinite.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Corollary

In this case, $C(X) \rtimes G$ is a UCT Kirchberg algebra.

Question

When does $G \curvearrowright X$ have dynamical comparison?

Paradoxical towers

Definition (GGKN)

Let $n \in \mathbb{N}$. A countable group G has *n*-paradoxical towers if for every finite subset $D \subseteq G$, there are $A_1, \ldots, A_n \subseteq G$ and $g_1, \ldots, g_n \in G$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

a) The sets $\{dA_i\}_{d\in D, i=1,...,n}$ are pairwise disjoint

b)
$$G = \bigcup_{i=1}^{n} g_i A_i$$

Paradoxical towers

Definition (GGKN)

Let $n \in \mathbb{N}$. A countable group G has *n*-paradoxical towers if for every finite subset $D \subseteq G$, there are $A_1, \ldots, A_n \subseteq G$ and $g_1, \ldots, g_n \in G$ such that

a) The sets $\{dA_i\}_{d\in D, i=1,...,n}$ are pairwise disjoint

b)
$$G = \cup_{i=1}^n g_i A_i$$

Theorem (GGKN)

> . . .

The following nonamenable groups have paradoxical towers:

- ► (Acylindrically) hyperbolic groups (F_n,...)
- > Lattices in many Lie groups $(SL_n(\mathbb{Z}), ...)$
- ► Groups with "nice boundary actions" (BS(n, m),...)

Dynamical comparison is automatic!

Theorem (GGKN)

Let $G = H \times K$ where H is a group with paradoxical towers and K is any countable group. Then every minimal, amenable action $G \curvearrowright X$ on a compact metric space has dynamical comparison.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Dynamical comparison is automatic!

Theorem (GGKN)

Let $G = H \times K$ where H is a group with paradoxical towers and K is any countable group. Then every minimal, amenable action $G \cap X$ on a compact metric space has dynamical comparison.

Corollary

Assume moreover that the action $G \curvearrowright X$ is topologically free. Then $C(X) \rtimes G$ is a UCT Kirchberg algebra.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (GGKN)

Let $G = H \times K$ where H is a group with paradoxical towers and K is any countable group. Then every minimal, amenable action $G \cap X$ on a compact metric space has dynamical comparison.

Corollary

Assume moreover that the action $G \curvearrowright X$ is topologically free. Then $C(X) \rtimes G$ is a UCT Kirchberg algebra.

Theorem (GGKN)

Let G be a group containing F_2 and let $G \curvearrowright X$ be a minimal, amenable, topologically free action on a compact metric space. Then $C(X) \rtimes G$ is properly infinite.

Theorem (GGKN)

Let $F_2 \curvearrowright X$ be a minimal, amenable action on a compact metric space. Then $F_2 \curvearrowright X$ has dynamical comparison.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (GGKN)

Let $F_2 \curvearrowright X$ be a minimal, amenable action on a compact metric space. Then $F_2 \curvearrowright X$ has dynamical comparison.

Lemma

Suppose that for every finite set $D \subseteq F_2$, there is an open set $V \subseteq X$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- > The sets $\{dV\}_{d\in D}$ are pairwise disjoint.
- $\succ X \preceq V$

Theorem (GGKN)

Let $F_2 \curvearrowright X$ be a minimal, amenable action on a compact metric space. Then $F_2 \curvearrowright X$ has dynamical comparison.

Lemma

Suppose that for every finite set $D \subseteq F_2$, there is an open set $V \subseteq X$ such that

> The sets $\{dV\}_{d\in D}$ are pairwise disjoint.

X ∠ V (There is an open cover X = U₁ ∪ ... ∪ U_n and g₁,...,g_n ∈ G such that (g_iU_i)ⁿ_{i=1} are pairwise disjoin subsets of V).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Theorem (GGKN)

Let $F_2 \curvearrowright X$ be a minimal, amenable action on a compact metric space. Then $F_2 \curvearrowright X$ has dynamical comparison.

Lemma

Suppose that for every finite set $D \subseteq F_2$, there is an open set $V \subseteq X$ such that

> The sets $\{dV\}_{d\in D}$ are pairwise disjoint.

X ≤ V (There is an open cover X = U₁ ∪ ... ∪ U_n and g₁,...,g_n ∈ G such that (g_iU_i)ⁿ_{i=1} are pairwise disjoin subsets of V).

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Then $G \curvearrowright X$ has dynamical comparison.

Theorem (GGKN)

Let $F_2 \curvearrowright X$ be a minimal, amenable action on a compact metric space. Then $F_2 \curvearrowright X$ has dynamical comparison.

Lemma

Suppose that for every finite set $D \subseteq F_2$, there is an open set $V \subseteq X$ such that

> The sets $\{dV\}_{d\in D}$ are pairwise disjoint.

X ∠ V (There is an open cover X = U₁ ∪ ... ∪ U_n and g₁,...,g_n ∈ G such that (g_iU_i)ⁿ_{i=1} are pairwise disjoin subsets of V).

Then $G \curvearrowright X$ has dynamical comparison.

Proof.

Let $U \subseteq X$ open. By minimality, $D^{-1}U = X$ for finite $D \subseteq G$. Then $X \preceq V \preceq U$.

Let $D \subseteq F_2$ be finite. Then there are $A_1, A_2, A_3 \subseteq F_2$ and $g_1, g_2, g_3 \in F_2$ such that

- > The sets $(dA_i)_{d \in D, i=1,...,n}$ are pairwise disjoint.
- ➤ The sets (F₂ \ g_iA_i)_{i=1,...,n} are pairwise disjoint.

- > The sets $(dA_i)_{d \in D, i=1,...,n}$ are pairwise disjoint.
- > The sets $(F_2 \setminus g_i A_i)_{i=1,...,n}$ are pairwise disjoint.

- > The sets $(dA_i)_{d \in D, i=1,...,n}$ are pairwise disjoint.
- > The sets $(F_2 \setminus g_i A_i)_{i=1,...,n}$ are pairwise disjoint.

- > The sets $(dA_i)_{d \in D, i=1,...,n}$ are pairwise disjoint.
- > The sets $(F_2 \setminus g_i A_i)_{i=1,...,n}$ are pairwise disjoint.

- > The sets $(dA_i)_{d \in D, i=1,...,n}$ are pairwise disjoint.
- > The sets $(F_2 \setminus g_i A_i)_{i=1,...,n}$ are pairwise disjoint.

Let
$$0 < \varepsilon < \frac{1}{12}$$
. Let $\mu : X \to \operatorname{Prob}(G)$ such that

$$\sup_{x \in X} \|g.\mu(x) - \mu(gx)\|_1 < \varepsilon, \quad \forall g \in D^{-1} \cup \{g_1, g_2, g_3\}.$$

Let
$$0 < \varepsilon < \frac{1}{12}$$
. Let $\mu : X \to \operatorname{Prob}(G)$ such that

$$\sup_{x \in X} \|g.\mu(x) - \mu(gx)\|_1 < \varepsilon, \quad \forall g \in D^{-1} \cup \{g_1, g_2, g_3\}.$$

Define

$$V_i := \left\{ x \in X \mid \mu(x)(A_i) > \frac{1}{2} + \varepsilon
ight\} \subseteq X, \quad i = 1, 2, 3.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

and $V = V_1 \cup V_2 \cup V_3$.

Let
$$0 < \varepsilon < \frac{1}{12}$$
. Let $\mu : X \to \operatorname{Prob}(G)$ such that

$$\sup_{x \in X} \|g.\mu(x) - \mu(gx)\|_1 < \varepsilon, \quad \forall g \in D^{-1} \cup \{g_1, g_2, g_3\}.$$

Define

$$V_i := \left\{ x \in X \mid \mu(x)(A_i) > \frac{1}{2} + \varepsilon
ight\} \subseteq X, \quad i = 1, 2, 3.$$

and $V = V_1 \cup V_2 \cup V_3$. Then

$$dV_i \subseteq \left\{x \in X \mid \mu(x)(dA_i) > \frac{1}{2}\right\}, \quad d \in D.$$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Let
$$0 < \varepsilon < \frac{1}{12}$$
. Let $\mu : X \to \operatorname{Prob}(G)$ such that

$$\sup_{x \in X} \|g.\mu(x) - \mu(gx)\|_1 < \varepsilon, \quad \forall g \in D^{-1} \cup \{g_1, g_2, g_3\}.$$

Define

$$V_i := \left\{ x \in X \mid \mu(x)(A_i) > rac{1}{2} + arepsilon
ight\} \subseteq X, \quad i = 1, 2, 3.$$

and $V = V_1 \cup V_2 \cup V_3$. Then

$$dV_i \subseteq \left\{x \in X \mid \mu(x)(dA_i) > \frac{1}{2}\right\}, \quad d \in D.$$

Since $(dA_i)_{d \in D, i=1,2,3}$ are pairwise disjoint, $(dV_i)_{d \in D, i=1,2,3}$ are pairwise disjoint $\Rightarrow (dV)_{d \in D}$ are pairwise disjoint.

Claim: $X \preceq V$.

| ◆ □ ▶ ★ □ ▶ ★ □ ▶ | □ ● ○ ○ ○ ○

Claim: $X \preceq V$. Define

$$W_i := \left\{ x \in X \mid \mu(x)(G \setminus g_i A_i) < \frac{1}{2} - 2\varepsilon
ight\} \subseteq X, \quad i = 1, 2, 3.$$

Claim: $X \preceq V$. Define

$$W_i := \left\{ x \in X \mid \mu(x)(G \setminus g_i A_i) < \frac{1}{2} - 2\varepsilon
ight\} \subseteq X, \quad i = 1, 2, 3.$$

Since $(G \setminus g_i A_i)_{i=1,2,3}$ are pairwise disjoint, $X = W_1 \cup W_2 \cup W_3$.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Claim: $X \preceq V$. Define

$$W_i := \left\{ x \in X \mid \mu(x)(G \setminus g_i A_i) < \frac{1}{2} - 2\varepsilon
ight\} \subseteq X, \quad i = 1, 2, 3.$$

Since $(G \setminus g_i A_i)_{i=1,2,3}$ are pairwise disjoint, $X = W_1 \cup W_2 \cup W_3$. Note that

$$g_i^{-1}W_i \subseteq \left\{x \in X \mid \mu(x)(G \setminus A_i) < \frac{1}{2} - \varepsilon\right\} = V_i, \quad i = 1, 2, 3$$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

are pairwise disjoint subsets of V.

Claim: $X \preceq V$. Define

$$W_i := \left\{ x \in X \mid \mu(x)(G \setminus g_i A_i) < \frac{1}{2} - 2\varepsilon \right\} \subseteq X, \quad i = 1, 2, 3.$$

Since $(G \setminus g_i A_i)_{i=1,2,3}$ are pairwise disjoint, $X = W_1 \cup W_2 \cup W_3$. Note that

$$g_i^{-1}W_i \subseteq \left\{x \in X \mid \mu(x)(G \setminus A_i) < \frac{1}{2} - \varepsilon\right\} = V_i, \quad i = 1, 2, 3$$

▲□▶▲□▶▲≡▶▲≡▶ ≡ めぬぐ

are pairwise disjoint subsets of V. Thus, $X \preceq V$.

Question

Do all groups with paradoxical towers contain a free group?

Question

Do all groups with paradoxical towers contain a free group?

Conjecture

Let $G \curvearrowright X$ be a minimal, amenable, topologically free action of a nonamenable group on a compact space. Then $C(X) \rtimes G$ is purely infinite.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thank you very much!