
PARTIAL TENSOR-PRODUCT FUNCTORS AND
CROSSED-PRODUCT FUNCTORS

JULIAN KRANZ AND TIMO SIEBENAND

Abstract. For a given discrete group G, we apply results of Kirchberg on ex-
act and injective tensor products of C∗-algebras to give an explicit description
of the minimal exact correspondence crossed-product functor and the maximal
injective crossed-product functor for G in the sense of Buss, Echterhoff and
Willett. In particular, we show that the former functor dominates the latter.

1. Introduction

A fruitful approach to construct examples of C∗-algebras is to complete ∗-
algebras with respect to certain C∗-norms. For instance, if G y A is an action
of a discrete group on a C∗-algebra, one can complete the algebraic crossed prod-
uct A oalg G to get the maximal crossed product A o G or the reduced crossed
product Aor G.

In the last decade, there has been an increasing interest in exotic completions
of A oalg G, i.e. completions which strictly lie between the maximal and reduced
completion. One important motivation comes from the Baum–Connes conjecture
with coefficients [BCH94] which predicts that the Baum–Connes assembly map

µ : KG
∗ (EG,A)→ K∗(Aor G)

is an isomorphism. Counterexamples to the conjecture were constructed in [HLS02]
by exploiting non-exactness of the functor − or G for certain groups G. Later,
in [BGW16] it was suggested to modify the conjecture by replacing the reduced
crossed product with the minimal exact Morita compatible crossed product. This
modification strictly enlarges the class of actions G y A for which the conjecture
is known to hold and does not change the statement of the conjecture for exact
groups. Other motivations to study exotic crossed-product functors come from a-
T -menability and property (T ) [BG13] or from non-commutative duality [KLQ13,
KLQ16,KLQ18,BE14].

General exotic crossed–product functors and their properties were studied sys-
tematically by Buss, Echterhoff and Willett [BEW17,BEW18a,BEW18b,BEW20a,
BEW20b]. They introduced the minimal exact crossed-product functor − oE G,
the minimal exact correspondence crossed-product functor −oECorr

G (which agrees
with the minimal exact Morita compatible crossed-product functor of [BGW16] for
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separable G-C∗-algebras [BEW18a, Cor. 8.13]) and the maximal injective crossed-
product functor −oinjG. All these functors agree with the reduced crossed product
for exact groups, but their interrelations for non-exact groups are still unclear. In
particular, it is unclear whether or not − oE G and − oECorr

G agree. A posi-
tive answer to this question would imply that the “new” Baum-Connes conjecture
of [BGW16] agrees with the old conjecture of [BCH94] for complex coefficients
A = C. The aim of this article is to provide an explicit description of −oinj G and
−oECorr

G. We hope that the interplay of the universal properties and the explicit
descriptions of these functors turn out useful in the future. Our main ingredient is
the following construction by Kirchberg:

Theorem A ([Kir95]). There is a tensor-product functor − ⊗i,ε − satisfying the
following properties:

(1) For every C∗-algebra A, A⊗i,ε− is the minimal exact partial tensor-product
functor for A.

(2) For every C∗-algebra B, − ⊗i,ε B is the maximal injective partial tensor-
product functor for B.

In particular, −⊗i,ε− is the unique tensor-product functor which is injective in the
first variable and exact in the second variable. Furthermore, −⊗i,ε − is functorial
for completely positive maps in both variables.

In terms of Kirchberg’s tensor product, we can describe −oinjG and −oECorr
G

as follows:

Theorem B (Theorem 4.3). Let G be a discrete group and let A be a G-C∗-algebra.
Then there are injective ∗-homomorphisms

(1) Aoinj G ↪→ (Aor G)⊗i,ε C∗(G)
(2) AoECorr

G ↪→ C∗r (G)⊗i,ε (AoG)

given by aδg 7→ aδg ⊗ δg and aδg 7→ δg ⊗ aδg respectively.

We obtain an even more concrete picture using G-injective G-C∗-algebras (see
p.4 for the definition). Note that G-injective G-C∗-algebras are always unital.

Proposition C (Proposition 4.5). Let G be a discrete group, let A be a G-C∗-
algebra and let I be a G-injective G-C∗-algebra (e.g. I = `∞(G)). Then the canon-
ical embedding A ↪→ A⊗max I, a 7→ a⊗ 1 induces an injective ∗-homomorphism

AoECorr
G ↪→ (A⊗max I) oG.

Note that for I = `∞(G), this provides a positive solution to a question asked
in [BEW18a, Question 9.4] and [BGW16, 8.2]. As an application, we are able to
compare −oinj G and −oECorr

G:

Corollary D (Corollary 4.6). For any discrete group G, we have − oinj G ≤
−oECorr

G and C∗inj(G) = C∗ECorr
(G).

Thus, in order to prove that −oinj G and −oECorr
G coincide, it would suffice

to construct a crossed-product functor which is both exact and injective.

Acknowledgements. The authors would like to thank Siegfried Echterhoff for
helpful discussions and comments and the anonymous referee for pointing out an
error in a previous version of this article.
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2. Preliminaries

In this section we fix some terminology regarding crossed-product and tensor-
product functors. For definitions and basic properties of crossed products and
tensor products we refer to [BO08,Wil07].

Let ∗Alg denote the category of ∗-algebras with ∗-homomorphisms as morphisms
and let C∗Alg denote the full subcategory of C∗-algebras. For a discrete group
G, we denote by C∗AlgG the category of G-C∗-algebras with G-equivariant ∗-
homomorphisms.

Let C be a category. A functor Fµ : C → C∗Alg is a C∗-completion of a functor
F : C → ∗Alg, if for every object X in C, Fµ(X) is a C∗-completion of F (X) and
if for every morphism f in C, Fµ(f) is an extension of F (f). We define a partial
order on the class of C∗-completions of a given functor F by declaring Fµ ≥ F ν

if for every object X in C, the identity on F (X) extends to a ∗-homomorphism
Fµ(X)→ F ν(X).

For two C∗-algebras A and B, we denote by A�B the algebraic tensor product,
by A⊗maxB the maximal tensor product and by A⊗B the minimal tensor product.
A tensor-product functor −⊗α − is a C∗-completion of the functor

−�− : C∗Alg× C∗Alg→ ∗Alg.

A partial tensor-product functor −⊗α B for B is a C∗-completion of the functor

−�B : C∗Alg→ ∗Alg.

A partial tensor-product functor −⊗α B is

(1) called exact if it maps exact sequences to exact sequences;
(2) called injective if it maps injective ∗-homomorphisms to injective ∗-homomorphisms;
(3) said to have the cp-map property if for each completely positive map ϕ : A→

C, the induced map ϕ� idB : A�B → C�B extends to a completely pos-
itive map ϕ⊗α idB : A⊗α B → C ⊗α B.

Every (partial) tensor-product functor is dominated by the maximal tensor-product
functor and dominates the minimal tensor-product functor. For a fixed C∗-algebra
B, the functor −⊗max B is exact [BO08, Prop. 3.7.1] whereas the functor −⊗B is
injective. Both functors have the cp-map property [BO08, Thm. 3.5.3].

For a discrete group G and a G-C∗-algebra A, we denote by AoalgG = A[G] the
algebraic crossed product, by A oG the maximal crossed product and by A or G
the reduced crossed product. A crossed-product functor −oµG is a C∗-completion
of the algebraic crossed-product functor

−oalg G : C∗AlgG → ∗Alg

which dominates the reduced crossed product. We write C∗µ(G) := C oµ G. A
crossed-product functor −oµ G is

(1) called exact if it maps exact sequences to exact sequences;
(2) called injective if it maps injective G-equivariant ∗-homomorphisms to in-

jective ∗-homomorphisms;
(3) said to have the cp-map property if for each G-equivariant completely pos-

itive map ϕ : A → B, the induced map ϕ oalg G : A oalg G → B oalg G
extends to a completely positive map ϕoµ G : Aoµ G→ B oµ G.
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Every crossed-product functor is dominated by the maximal crossed product and
dominates the reduced crossed product. The maximal crossed product −oG is ex-
act [Ech17, Prop. 4.8] and the reduced crossed product −orG is injective [EKQR06,
Lem.A.16]. Both functors have the cp-map property [BEW20a, Lem. 4.8]. Every
injective crossed-product functor has the cp-map property [BEW18a, Thm. 4.9].
Moreover there is a maximal injective crossed-product functor −oinj G [BEW20b,
Prop. 3.5] and a minimal exact crossed-product functor with the cp-map property
−oECorr

G [BEW18a, Cor. 8.8].

Remark 2.1. It was shown in [BEW18a, Thm. 4.9] that a crossed-product func-
tor has the cp-map property if and only if it extends to a functor on the G-
equivariant correspondence category Corr(G) as defined in [BEW18a, Def. 4.4].
Therefore crossed-product functors with the cp-map property are called correspon-
dence crossed-product functors in [BEW18a] and −oECorr

G is called the minimal
exact correspondence crossed-product functor. One can prove a similar characteri-
zation for partial tensor-product functors.

A G-C∗-algebra I is called G-injective if for every injective G-equivariant ∗-
homomorphism ι : A ↪→ B and every G-equivariant completely positive contrac-
tive map ϕ : A → I, there is a G-equivariant completely positive contractive map
ϕ : B → I such that ϕ ◦ ι = ϕ. We say that ϕ extends ϕ along ι. In this case I is
unital since there exists a conditional expectation from the unitization Ĩ onto I.

3. Exact and injective tensor-product functors

In this section we give a detailed proof of a theorem that was stated in [Kir95]
for convenience of the reader. We need a folklore lemma.

Lemma 3.1. Let

0 I A B 0

0 I ′ A′ B′ 0

ι

ϕI ϕA

q

ϕB

ι′ q′

be a commutative diagram of C∗-algebras and ∗-homomorphisms. Assume that ι
is an ideal inclusion, that the lower row is exact, and that the vertical maps are
non-degenerate inclusions. Then we have ker q ⊆ im(ι).

Proof. Let x ∈ ker q. By exactness, we find y ∈ I ′ such that ι′(y) = ϕA(x). Let
(eλ)λ be an approximate unit for I. Since ϕI is non-degenerate, (ϕI(eλ))λ is an ap-
proximate unit for I ′ and thus ‖ϕI(eλ)y− y‖ → 0. We obtain ‖ϕA (ι(eλ)x− x) ‖ =
‖ι′ (ϕI(eλ)y − y) ‖ → 0. This implies ‖ι(eλ)x−x‖ → 0 because ϕA is isometric and
therefore x ∈ im(ι) since ι is an ideal inclusion. �

Theorem 3.2 ([Kir95]). There is a tensor-product functor −⊗i,ε − satisfying the
following properties:

(1) For every C∗-algebra A, A⊗i,ε− is the minimal exact partial tensor-product
functor for A.

(2) For every C∗-algebra B, − ⊗i,ε B is the maximal injective partial tensor-
product functor for B.
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In particular, − ⊗i,ε − is the unique tensor-product functor which is injective in
the first variable and exact in the second variable. Furthermore, − ⊗i,ε − has the
cp-property in both variables.

Proof. Let A and B be C∗-algebras and let ι : A ↪→ B(H) be an embedding into
the bounded operators on a Hilbert space. We define

(1) A⊗i,ε B := ι⊗ idB(A⊗max B) ⊆ B(H)⊗max B.

To show that −⊗i,ε − has the desired properties, we verify the following claims:

Claim 1. Up to canonical isomorphism, the definition of A⊗i,ε B is independent
of ι.

Let ι′ : A ↪→ B(H ′) be another embedding. Then by Arveson’s extension theorem
there exist completely positive contractive maps Ψ: B(H) → B(H ′) extending ι′
along ι and Φ: B(H ′)→ B(H) extending ι along ι′. Then Ψ⊗maxidB and Φ⊗maxidB
restrict to mutually inverse ∗-isomorphisms

ι⊗ idB(A⊗max B) ∼= ι′ ⊗ idB(A⊗max B).

Claim 2. A⊗i,ε B is functorial for completely positive maps in both variables.

Functoriality for completely positive maps in B follows immediately from the
definition. To see functoriality in A, let ϕ : A1 → A2 be a completely positive map
and let ιj : Aj ↪→ B(Hj), j = 1, 2 be embeddings. Let Ψ: B(H1) → B(H2) be a
completely positive map extending ι2 ◦ ϕ along ι1. Then Ψ ⊗max idB restricts to
a completely positive map A1 ⊗i,ε B → A2 ⊗i,ε B extending the canonical map
ϕ� idB : A1 �B → A2 �B.

Claim 3. The functor − ⊗i,ε B is the maximal injective partial tensor-product
functor for B.

Let ϕ : A1 ↪→ A2 be an injective ∗-homomorphism and let ι : A2 ↪→ B(H) be
an embedding. Then ϕ ◦ ι : A1 ↪→ B(H) is an embedding too. Inserting this
embedding into (1) shows that ϕ ⊗ idB : A1 ⊗i,ε B → A2 ⊗i,ε B is isometric and
therefore injective. Now let − ⊗α B be another injective partial tensor-product
functor for B and let A ↪→ B(H) be an embedding. Then the canonical quotient
map B(H)⊗max B → B(H)⊗α B restricts to a quotient map A⊗i,ε B → A⊗α B.
Thus, −⊗i,ε B is maximal.

Claim 4. The functor A⊗i,ε − is exact.

Let 0 → I
ι−→ B

π−→ Q → 0 be an exact sequence of C∗-algebras. Assume first
that A is unital and choose a unital embedding A ↪→ B(H). Then the upper row
of the diagram

0 A⊗i,ε I A⊗i,ε B A⊗i,ε Q 0

0 B(H)⊗max I B(H)⊗max B B(H)⊗max Q 0

idA⊗ι idA⊗π

idB(H)⊗ι idB(H)⊗π
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is exact by Lemma 3.1. Now assume that A is not unital and denote by Ã its
unitization. By the above, the middle and lower row of the diagram

(2)

0 0 0

0 A⊗i,ε I A⊗i,ε B A⊗i,ε Q 0

0 Ã⊗i,ε I Ã⊗i,ε B Ã⊗i,ε Q 0

0 C⊗i,ε I C⊗i,ε B C⊗i,ε Q 0

0 0 0

are exact. Since the extension 0→ A→ Ã→ C→ 0 splits, the columns of (2) are
exact as well. Now exactness of the upper row of (2) follows from the 3×3-Lemma.

Claim 5. The functor A⊗i,ε− is the minimal exact partial tensor-product functor.

Let A⊗α− be another exact partial tensor-product functor and fix a C∗-algebra
B. Assume first that B is unital and pick a surjective ∗-homomorphism C∗(FX)→
B where FX denotes the free group on a set X of unitaries generating B. Denote
by I the kernel of C∗(FX) → B and choose an embedding ι : A ↪→ B(H). By
[Kir94, Cor. 1.2] (see also [Pis96]), there is a unique C∗-norm on B(H)� C∗(FX).
In particular, we have a canonical ∗-homomorphism

A⊗α C∗(FX)→ A⊗ C∗(FX)
ι⊗id−−−→ B(H)⊗ C∗(FX) = B(H)⊗max C

∗(FX)

mapping A⊗α I to B(H)⊗max I. By exactness of both A⊗α − and B(H)⊗max −,
we can fill the following diagram with the dashed ∗-homomorphism ψ:

0 A⊗α I A⊗α C∗(FX) A⊗α B 0

0 B(H)⊗max I B(H)⊗max C
∗(FX) B(H)⊗max B 0

ψ

By definition, we have ψ(A ⊗α B) = A ⊗i,ε B. If B is a non-unital C∗-algebra,
we can apply the same argument to its unitization and use exactness to produce a
canonical quotient map A⊗α B → A⊗i,ε B. This proves maximality. �

Remark 3.3. Let F be a non-amenable free group and H an infinite-dimensional
Hilbert space. Then the flip isomorphism B(H) � C∗r (F ) ∼= C∗r (F ) � B(H) does
not extend to an isomorphism B(H) ⊗i,ε C∗r (F ) ∼= C∗r (F ) ⊗i,ε B(H). Therefore,
Kirchberg’s tensor-product functor − ⊗i,ε − is not symmetric. Indeed, we have
C∗r (F ) ⊗i,ε B(H) = C∗r (F ) ⊗ B(H) since C∗r (F ) is exact and B(H) ⊗i,ε C∗r (F ) =
B(H) ⊗max C

∗
r (F ) by construction. But the identity map on B(H) � C∗r (F ) does

not extend to an isomorphism B(H)⊗maxC
∗
r (F ) ∼= B(H)⊗C∗r (F ) since C∗r (F ) does

not have the local lifting property [BO08, Cor. 3.7.12, Thm. 13.1.6, Cor. 13.2.5].
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4. Application to crossed products

Throughout this section, let G be a discrete group. We recall a version of Fell’s
absorption principle from [ABES21].

Proposition 4.1 ([ABES21, Prop. 2.8]). Let −oµG be a crossed-product functor
with the cp-map property and let A be a C∗-algebra equipped with the trivial G-
action. Then the canonical map A � C∗µ(G) → A oµ G is injective. In particular,
A 7→ A⊗µ C∗µ(G) := Aoµ G is a partial tensor-product functor for C∗µ(G).

Although only stated for ρ = max in [ABES21], the proof of the following lemma
works verbatim for every crossed-product functor −oρ G:

Lemma 4.2 ([ABES21, Lem 2.10]). Let −oµ G be a crossed-product functor with
the cp-map property and let −oρG be any crossed-product functor. Then for every
G-C∗-algebra A, there is an injective ∗-homomorphism

Aoµ G ↪→ (Aoρ G)⊗µ C∗µ(G)

given by aδg 7→ aδg ⊗ δg for a ∈ A, g ∈ G.

Theorem 4.3. For every G-C∗-algebra A, there are injective ∗-homomorphisms
(1) Aoinj G ↪→ (Aor G)⊗i,ε C∗(G), aδg 7→ aδg ⊗ δg.
(2) AoECorr

G ↪→ C∗r (G)⊗i,ε (AoG), aδg 7→ δg ⊗ aδg.

Proof. We first prove the statement for −oinj G. Denote by Aoα G the image of
AoG in (Aor G)⊗i,ε C∗(G) under the map aδg 7→ aδg ⊗ δg. Then −oα G is an
injective crossed-product functor and therefore − oα G ≤ − oinj G. On the other
hand, Lemma 4.2 gives us an embedding

Aoinj G ↪→ (Aor G)⊗inj C
∗
inj(G), aδg 7→ aδg ⊗ δg.

Since − ⊗i,ε C∗inj(G) is the maximal injective partial tensor-product functor for
C∗inj(G), we have

−⊗i,ε C∗(G) ≥ −⊗i,ε C∗inj(G) ≥ −⊗inj C
∗
inj(G)

and therefore −oα G ≥ −oinj G.
We now prove the statement for −oECorr

G. Denote by AoβG the image of AoG
in C∗r (G) ⊗i,ε (A o G) under the map aδg 7→ δg ⊗ aδg. Then − oβ G is an exact
crossed-product functor with the cp-map property by Lemma 3.1 and therefore
−oβ G ≥ −oECorr

G. On the other hand, Lemma 4.2 gives us an embedding

AoECorr
G ↪→ C∗ECorr

(G)⊗ECorr
(AoG).

Since C∗ECorr
(G) ⊗i,ε − is the minimal exact partial tensor-product functor for

C∗ECorr
(G), we get

C∗r (G)⊗i,ε − ≤ C∗ECorr
(G)⊗i,ε − ≤ C∗ECorr

(G)⊗ECorr
−

and therefore −oβ G ≤ −oECorr
G. �

Remark 4.4. The statement of the above theorem remains true if we replace AoG
by A oECorr

G, C∗(G) by C∗ECorr
(G), A or G by A oinj G, or C∗r (G) by C∗inj(G).

Indeed, the only properties of the maximal (resp. reduced) crossed product that
we used in the proof were exactness (resp. injectivity) and the cp-map property.
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Proposition 4.5. Let I be a G-injective G-C∗-algebra and let A be any G-C∗-
algebra. Then the canonical embedding A ↪→ A ⊗max I, a 7→ a ⊗ 1 induces an
embedding

AoECorr
G ↪→ (A⊗max I) oG.

Proof. Denote by A oα G the image of A o G in (A ⊗max I) o G under the map
aδg 7→ (a ⊗ 1)δg. Then − oα G is an exact crossed-product functor with the cp-
map property by Lemma 3.1 and therefore − oα G ≥ − oECorr

G. It remains to
prove the converse inequality. Consider B(`2(G)) as a G-C∗-algebra equipped with
the conjugation action of the left regular representation λ : G → U(`2(G)). By G-
injectivity, there is a G-equivariant unital completely positive map ϕ : B(`2(G))→
I. Consider the “untwisting isomorphism”

Ψ: B(`2(G))⊗max (AoG)
∼=−→ (B(`2(G))⊗max A) oG, T ⊗ aδg 7→ Tλg−1 ⊗ aδg

and denote by κ the following composition of contractive maps.

AoECorr
G C∗r (G)⊗i,ε (AoG) B(`2(G))⊗max (AoG)

(I ⊗max A) oG (B(`2(G))⊗max A) oG

Thm.4.3 λ⊗id

Ψ

(ϕ⊗id)oG

A straightforward computation shows that κ(aδg) = (a⊗1)δg for a ∈ A and g ∈ G.
Thus, we have κ(AoECorr

G) = Aoα G and therefore −oECorr
G ≥ −oα G. �

Corollary 4.6. For any discrete group G, we have − oinj G ≤ − oECorr
G and

C∗inj(G) = C∗ECorr
(G).

Proof. Let A, I be G-C∗-algebras where I is G-injective. The embedding A ↪→
A⊗max I induces an embedding AoinjG ↪→ (A⊗max I)oinjG. The first statement
now follows from Proposition 4.5. The second statement follows from the same
argument and the fact that I oG = I oinj G [BEW20b, Cor. 3.3]. �
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