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Abstract. We show that an étale groupoid which is strongly amenable at
in�nity is amenable whenever its full and reduced C∗-algebras coincide.

1. Introduction

Let G be a locally compact Hausdor� groupoid with a Haar system. We say
that G has the weak containment property, if its full and reduced C∗-algebras are
isomorphic via the regular representation Λ : C∗G → C∗rG. It is a classical result
[4, Proposition 6.1.8] that G has the weak containment property whenever G is
amenable (we will not distinguish between topological and measurewise amenability
since they are equivalent for étale groupoids [4, Remark 3.3.9]). The converse
is not true as shown by Willett [16]. His counterexample is an étale groupoid
which is not inner exact in the sense of [3, De�nition 3.7]. However for an exact
discrete group G acting on a compact Hausdor� space X, Matsumura [12] showed
that amenability of the transformation groupoid X oG does follow from the weak
containment property. This result was recently generalized to actions of locally
compact exact groups on locally compact Hausdor� spaces by Buss, Echterho� and
Willett [7] and to partial actions of exact discrete groups on locally compact spaces
by Buss, Ferraro and Sehnem [8]. In [3], Anantharaman-Delaroche asked whether
under some exactness hypothesis, amenability of a groupoid does follow from the
weak containment property. In this paper, we give a partial answer to her question.
Following [2, De�nition 4.1, Proposition 4.8], we call a groupoid G strongly amenable

at in�nity, if it acts amenably on its �berwise Stone-�Cech compacti�cation βrG.
For étale groupoids satisfying some mild assumption, this condition is equivalent
to a number of other exactness conditions like exactness of the reduced C∗-algebra
[2, Theorem 8.6]. We emphasize that all groupoids considered in this paper are
assumed to be Hausdor�. Our main theorem is the following:

Theorem 1.1. Let G be an étale groupoid which is strongly amenable at in�nity.
If C∗G = C∗rG via the regular representation, then C∗rG is nuclear.

In this case, G is amenable by [4, Corollary 6.2.14, Theorem 3.3.7].

The proof of our main theorem follows the same idea as [12]. The goal is to
factor the inclusion of C∗rG into its double dual through the nuclear C∗-algebra
C∗r (βrG o G). If we want to imitate the construction of [12], we need to extend the
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action of G on its unit space X to the double dual C0(X)∗∗. This might not be
possible since the canonical inclusion C0(X) ↪→ C0(X)∗∗ is usually degenerate. But
since we only consider étale groupoids, we can reformulate the problem in terms of
partial actions of inverse semigroups. We show that a partial action of an inverse
semigroup on a C∗-algebra naturally extends to a partial action on the double
dual. In particular, we get a partial action on C0(X)∗∗ by the inverse semigroup
of open bisections of G. We then show that the double dual of a partial action
is covariantly represented on its Haagerup standard form [10]. For partial group
actions, this has already been done in [8]. With the Haagerup standard form at
hand, we run essentially the same proof as in [12] to produce a completely positive
contractive map

C∗r (βrG o G)→ (C∗r (G))∗∗

which extends the inclusion on C∗r (G).

The paper is organized as follows: In Section 2 we �x some notation concerning
groupoid actions on C∗-algebras. In Section 3 we translate Section 2 to the context
of inverse semigroups. The enveloping von Neumann algebra of a partial action
and its Haagerup standard form are introduced in Section 4. In the last section,
we prove our main theorem.

Notation. The �ber product of two maps f : X → Z, g : Y → Z is denoted by
X ×f,Z,g Y := {(x, y) ∈ X × Y, f(x) = g(y)}. If the maps f and g are clear from
the context, we omit one or both of them from the notation.

2. Étale groupoids

A groupoid G is a small category in which every morphism is invertible. We
denote the set of all morphisms again by G and the set of objects by G(0), con-
sidered as a subspace of G via the identity morphisms. G(0) is also called the unit
space. The range and source maps are denoted by r, s : G → G(0). For x ∈ G(0),
we write Gx := r−1(x) and Gx := s−1(x). A topological groupoid is a groupoid G
together with a topology on G such that the range and source maps G → G(0), the
inverse map G → G and the composition map G ×s,G(0),r G → G are continuous. A
topological groupoid G is called étale, if it is locally compact Hausdor� and if the
range and source maps are local homeomorphisms. In this case, the unit space is
clopen in G and the �bers Gx ⊆ G, x ∈ G(0) are discrete. In this article, we only
consider étale groupoids. We refer to [15] for an introduction to étale groupoids.

We now introduce actions of étale groupoids on C∗-algebras. A C0(X)-algebra is
a C∗-algebra A together with a non-degenerate ∗-homomorphism C0(X)→ ZM(A)
into the center of the multiplier algebra of A. Equivalently, A is the section algebra
of an upper semicontinuous C∗-bundle over X (see [17, Appendix C] for an account
on this perspective). The �ber of this bundle at a point x ∈ X is given by Ax :=
A/(C0(X \ {x})A). Note that any C0(X)-linear ∗-homomorphism φ : A → B of
C0(X)-algebras canonically induces ∗-homomorphisms πx : Ax → Bx on the �bers.
We denote by A ⊗C0(X) B the quotient of the minimal tensor product A ⊗ B by
the closed two-sided ideal generated by elements of the form fa ⊗ b − a ⊗ fb, a ∈
A, b ∈ B, f ∈ C0(X).
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Let G be an étale groupoid with unit space X = G(0). By pulling back along the
maps r, s : G → X, we equip C0(G) with the structure of a C0(X)-algebra. The
algebras

r∗A := C0(G)⊗r,C0(X) A, s∗A := C0(G)⊗s,C0(X) A

are C0(G)-algebras where the subscript r or s in the tensor product indicates the
C0(X)-structure on C0(G) that we are considering.

De�nition 2.1 ([11]). A G-C∗-algebra (A,α) is a C0(X)-algebra A together with
a C0(G)-linear ∗-isomorphism α : s∗A → r∗A such that for all (g, h) ∈ G ×s,X,r G
we have

αgh = αg ◦ αh : As(h) → Ar(g).

A C0(X)-linear ∗-homomorphism φ : A → B between G-C∗-algebras (A,α) and
(B, β) is called equivariant, if the following diagram commutes:

s∗A s∗B

r∗A r∗B

id⊗φ

α β

id⊗φ

Example 2.2. We can reformulate the de�nition of a commutative G-C∗-algebra
A = C0(Y ) in terms of Gelfand duals as follows: The non-degenerate ∗-homomorphism
C0(X)→ ZM(C0(Y )) = Cb(Y ) corresponds to a continuous map p : Y → X which
is also called the anchor map. The ∗-isomorphism α : s∗C0(Y ) → r∗C0(Y ) corre-
sponds to a continuous map α′ : G ×s,X,p Y → G ×r,X,p Y which commutes with
the projection onto G and which satis�es

α′gh = α′g ◦ α′h : p−1(s(h))→ p−1(r(g))

for all (g, h) ∈ G ×s,X,r G. Here α′g denotes the restriction of α′ to the preimage
of g under the projection of G ×s,X,p Y resp. G ×r,X,p Y onto G. We also say that
(Y, p, α′) is a G-space.

Example 2.3. The unit space X of G itself is a G-space where the action G ×s,X
X → G ×r,X X is given by (g, s(g)) 7→ (g, r(g)).

De�nition 2.4 ([1, 2]). The �berwise Stone- �Cech compacti�cation of G is the
Gelfand dual βrG of the commutative C∗-algebra of all continuous bounded func-
tions f : G → C such that for every ε > 0 there exists a compact subset C ⊆ X
satisfying |f(g)| < ε for all g /∈ r−1(C). We de�ne a G-action on C0(βrG) by taking
the canonical inclusion

ι : C0(X) ↪→ C0(βrG), ι(f)(g) := f(r(g)), f ∈ C0(X), g ∈ G
for the C0(X)-structure and by de�ning the action

α : C0(G)⊗s,C0(X),r C0(βrG)→ C0(G)⊗r,C0(X),r C0(βrG)

via the formular α(f ⊗ f ′)(g, h) := f(g)f ′(g−1h). Here we identify the codomain of
α with certain functions on G ×r,X,r G.

Note that the inclusion ι : C0(X) ↪→ C0(βrG) is G-equivariant. Despite of its

name, the �berwise Stone-�Cech compacti�cation βrG is in general not compact and
its �bers might not agree with the Stone-�Cech compacti�cations of the range �bers
of G. However in the case that G is a group (or more generally if X is compact),

βrG agrees with the usual Stone-�Cech compacti�cation of G.
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De�nition 2.5. Let (A,α) be a G-C∗-algebra. Denote by Cc(G, A) := Cc(G)r∗A
the space of compactly supported continuous sections of the upper semicontinuous
C∗-bundle G ×r,X A. We de�ne a multiplication and involution on Cc(G, A) by

f ∗ f ′(g) :=
∑

h∈Gr(g)
f(h)αh(f ′(h−1g)), f∗(g) := αg(f(g−1)∗)

for f, f ′ ∈ Cc(G, A) and g ∈ G.

The full crossed product A o G is by de�nition the enveloping C∗-algebra of
Cc(G, A) (c.f. [13, Proposition 3.2]). To de�ne the reduced crossed product, �x
x ∈ X and consider the Hilbert-Ax-module `2(Gx, Ax). We de�ne a representation

Λx : Cc(G, A)→ L(`2(Gx, Ax)), Λx(f)ξ(h) :=
∑

g∈Gr(h)
αh−1(f(g))ξ(g−1h).

The reduced crossed product Aor G is de�ned as the completion of Cc(G, A) by the
norm

‖f‖r := sup
x∈X
‖Λx(f)‖, f ∈ Cc(G, A).

We get a canonical quotient map Λ : Ao G → Aor G. In the case A = C0(X), we
simply write C∗G := C0(X) o G and C∗rG := C0(X) or G.

3. Inverse semigroups

De�nition 3.1. An inverse semigroup is a semigroup S such that for every s ∈ S,
there exists a unique element s∗ ∈ S such that ss∗s = s and s∗ = s∗ss∗.

A unit in S is an element 1 ∈ S such that s = 1s = s1 for all s ∈ S. In this
article, all inverse semigroups are assumed to have a unit. Of course groups are
examples of inverse semigroups. Our main example is the following.

Example 3.2. Let G be a topological groupoid. A subset U ⊆ G is called a
bisection, if the restrictions of the range and source maps to U are homeomorphisms
onto their images. If U and V are bisections, their product

UV := {gh : g ∈ U, h ∈ V, r(h) = s(g)}

is again a bisection. Also the inverse U∗ := U−1 of a bisection is again a bisection.
With these operations, the collection of all open bisections of G becomes an inverse
semigroup. It has a unit given by the whole unit space X.

Note that a locally compact Hausdor� groupoid is étale if and only if its topology
has a basis consisting of open bisections.

De�nition 3.3. Let S be an inverse semigroup with unit 1 ∈ S and let X be a set.
A partial action θ = ((Xs)s∈S , (θs)s∈S) of S on X consists of a collection (Xs)s∈S
of subsets of X together with bijections

θs : Xs∗ → Xs, s ∈ S

satisfying

(1) X1 = X and θ1 = id.
(2) For every s, t ∈ S, we have θs∗(Xs ∩Xt∗) ⊆ X(ts)∗ .
(3) θts extends θtθs on θs∗(Xs ∩Xt∗).
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De�nition 3.4. Let S be an inverse semigroup with partial actions θ and ω on
sets X and Y . A map f : X → Y is called equivariant if we have f(Xs) ⊆ Ys and
ωs ◦ f = f ◦ θs on Xs∗ for every s ∈ S.

Depending on the additional structure that X carries, we require some extra
conditions on θ: If X is a C∗-algebra, all the Xs are required to be closed two-
sided ideals and the θs are required to be ∗-isomorphisms. If X is a von Neumann
algebra, the Xs are required to be ultraweakly closed two-sided ideals and the θs
are required to be ∗-isomorphisms. If X is a topological space, the Xs are required
to be open subsets and the θs are required to be homeomorphisms. If X is a Hilbert
space, the Xs are required to be closed linear subspaces and the θs are required to
be isometries.

Note that partial actions on commutative C∗-algebras and locally compact spaces
can be identi�ed with one another via Gelfand duality. We will also call a partial
action of S on a Hilbert space H a partial representation and identify it with a map
S → B(H) acting by partial isometries.

Example 3.5. Let G be an étale groupoid with unit space X and let (A,α) be
a G-C∗-algebra. Let S be the inverse semigroup of open bisections of G. There
is a partial action θ = ((AU )U∈S , (θU )U∈S) of S de�ned as follows: For an open
bisection U ⊆ G, de�ne AU to be the ideal C0(r(U))A ⊆ A. Note that we can
identify AU with C0(U)r∗A and AU∗ with C0(U)s∗A. Under this identi�cation, we
de�ne θU to be the restriction

θU := α|U : C0(U)s∗A
'−→ C0(U)r∗A.

of α to U . In particular, there is a canonical partial action of S on A = C0(X). In
this case, we have AU = C0(r(U)) and AU∗ = C0(s(U)) and θU is induced by the

canonical homeomorphism s(U)
s|−1
U−−−→ U

r−→ r(U).

The next two de�nitions are due to [14].

De�nition 3.6. Let θ be a partial action of an inverse semigroup S on a C∗-algebra
A. A covariant representation of (A,S, θ) on a Hilbert space H is given by a pair
(π, v) where π : A → B(H) is a ∗-homomorphism and v : S → B(H) is a partial
representation such that

(1) π(As)H = vss∗H for every s ∈ S.
(2) For every s ∈ S and a ∈ As∗ , we have

π(θs(a)) = vsπ(a)vs∗ .

De�nition 3.7. Let θ be a partial action of an inverse semigroup S on a C∗-algebra
A. Let Cc(S,A) be the set of all �nite formal linear combinations

∑
s∈S asus where

as ∈ As. We de�ne a product and involution on Cc(S,A) by linear extension of the
formulas

(aus)(but) := θs(θs∗(a)b)ust, (aus)
∗ := θs∗(a∗)us∗ , s, t ∈ S, a ∈ As, b ∈ At.

Let (π, v) be a covariant representation of (A,S, θ) on H. The integrated form of
(π, v) is the representation

π o v : Cc(S,A)→ B(H), π o v(aus) := π(a)vs.

Denote by Ao S the Hausdor� completion of Cc(S,A) by the seminorm

‖f‖ := sup ‖π o v(f)‖, f ∈ Cc(S,A)
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where the supremum runs over all covariant representations (π, v) of (A,S, θ).

Remark 3.8. Since we assumed S to have a unit 1 ∈ S, we can consider A as a
subalgebra of A o S via the inclusion a 7→ au1. For a ∈ As, we can even identify
au1 with auss∗ since the integrated forms of all covariant representations agree on
these two elements.

As in the group case, we have

Proposition 3.9 ([14, Proposition 4.8]). Every non-degenerate representation of
Ao S is the integrated form of a covariant representation.

The following theorem allows us to translate Theorem 1.1 to the inverse semi-
group setting.

Theorem 3.10 ([13, Theorem 7.2]). Let G be an étale groupoid and A a G-C∗-
algebra. Equip A with the canonical partial action of the inverse semigroup S of
open bisections of G as in Example 3.5. Then there is a canonical isomorphism

Ao G ∼= Ao S.

4. The Haagerup standard form

As in [7,8,12], a key ingredient for Theorem 1.1 is Haagerup's standard form of
von Neumann algebras. Recall that a cone P ⊆ H in a Hilbert space H is called
self-dual, if it coincides with its dual P ◦ := {ξ ∈ H : 〈ξ, η〉 ≥ 0 ∀η ∈ P}.
Theorem 4.1 ([10, Theorem 1.6]). LetM be a von Neumann algebra. Then there is
a Hilbert space H, an embeddingM ⊆ B(H), a conjugate linear isometric involution
J : H → H and a self-dual cone P ⊆ H such that the following properties are
satis�ed:

(1) JMJ = M ′.
(2) JcJ = c∗ for all c ∈ Z(M) .
(3) Jξ = ξ for all ξ ∈ P .
(4) aJaJ(P ) ⊆ P for all a ∈M .

The quadruple (M,H, J, P ) is called a standard form. It is unique in the following
sense:

Theorem 4.2 ([10, Theorem 2.3]). Let (Mi, Hi, Ji, Pi) be standard forms for i =
1, 2 and let φ : M1 → M2 be a ∗-isomorphism. Then there is a unique unitary
U : H1 → H2 such that

(1) φ(x) = UxU∗ for all x ∈M1.
(2) J2U = UJ1.
(3) P2 = U(P1).

The following Lemma is the inverse semigroup analogue of [8, Proposition 3.4].

Lemma 4.3. Let θ be a partial action of an inverse semigroup S on a von Neumann
algebra M . Let (M,H, J, P ) be its standard form and denote by ι : M ↪→ B(H) the
inclusion. Then there is a canonical partial representation v : S → B(H) such that
(ι, v) is a covariant representation.

Proof. For s ∈ S denote by ps ∈M the central projection such that Ms = psM . It
follows from Lemma 2.6 of [10] that (psM,psH, psJps, ps(P )) again is a standard
form. Theorem 4.2 applied to θs : ps∗M → psM provides us with a unique isometry
vs : ps∗H → psH satisfying
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(1) θs(a) = vsavs∗

(2) psJvs = vsJps∗

(3) ps(P ) = vs(ps∗(P ))

for all s ∈ S and a ∈Ms∗ . Another application of Theorem 4.2 shows that the map
s 7→ vs de�nes a partial representation of S on H. It immediately follows from the
above properties that (ι, v) is covariant. �

We will later apply the above lemma to the following construction:

De�nition 4.4. Let θ be a partial action of an inverse semigroup S on a C∗-
algebra A. We extend θ to a partial action θ∗∗ on the enveloping von Neumann
algebra M := A∗∗ as follows. For s ∈ S, let Ms := (As)

∗∗ be the enveloping von
Neumann algebra of As, considered as an ultraweakly closed ideal in M . De�ne
θ∗∗s : A∗∗s∗ → A∗∗s as the normal extension of θs.

By uniqueness of the various normal extensions, θ∗∗ is indeed a partial action.

5. Proof of the main theorem

The following application of Stinespring's theorem can be proved exactly as
[6, Lemma 4.8].

Lemma 5.1. Let θ be a partial action of an inverse semigroup S on a C∗-algebra
A. Let (φ, v) be a completely positive covariant representation of A on a Hilbert
space H (i.e. the same conditions as in De�nition 3.6 hold with "∗-homomorphism"
replaced by "completely positive map"). Then the map

φ̃ : Cc(S,A)→ B(H), aus 7→ φ(a)vs

extends to a completely positive map φ̃ : A o S → B(H). If φ is contractive, then

so is φ̃.

Corollary 5.2. Let A and B be C∗-algebras equipped with partial actions of an
inverse semigroup S. Let φ : A → B be an equivariant completely positive map.
Then the map

φ̃ : Cc(S,A)→ Cc(S,B), aus 7→ φ(b)us

extends to a completely positive map A o S → B o S. If φ is contractive, then so
is φ̃.

Proof. Take a non-degenerate and faithful representation BoS ⊆ B(H). By Propo-
sition 3.9, any such representation is the integrated form of a covariant representa-
tion (π, v). Now apply the above lemma to the pair (π ◦ φ, v). �

Lemma 5.3 ([5, Proposition 1.5.7]). Let φ : A → B be a completely positive
contractive map. Then there is a largest subalgebra Aφ ⊆ A such that φ|Aφ is a
∗-homomorphism. Furthermore, we have

φ(ab) = φ(a)φ(b), φ(ba) = φ(b)φ(a), ∀a ∈ A, b ∈ Aφ.

The subalgebra Aφ ⊆ A is called the multiplicative domain of Aφ.

Proposition 5.4. Let G be an étale groupoid with unit space X. Denote by S its
inverse semigroup of open bisections. Suppose that C∗G = C∗rG. Then there is an
S-equivariant completely positive contractive map

C0(βrG)→ C0(X)∗∗
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which extends the inclusion on C0(X).

Proof. Let π̃ : C0(X)∗∗ ↪→ B(H) be the standard form of C0(X)∗∗ and (π̃, v) the
associated covariant representation as in Lemma 4.3. Denote by π the restriction
of π̃ to C0(X). Then (π, v) integrates to a representation

π o v : C∗rG = C∗G = C0(X) o S → B(H).

Recall that reduced crossed products preserve inclusions. The proof of this fact in
[9, Lemma A.16] for groups can easily be adapted to groupoids. Thus, the inclusion
ι : C0(X)→ C0(βrG) induces an inclusion

ιor G : C∗rG ↪→ C0(βrG) or G.

By Arveson's extension theorem, there is a completely positive contractive map φ̃
such that the following diagram commutes.

C0(βrG) or G

C∗rG B(H)

φ̃
ιorG

πov

Since C0(βrG) ⊆ C0(βrG) or G is commutative, it follows from Lemma 5.3 that

φ̃(C0(βrG)) is contained in the commutant π(C0(X))′ ∼= C0(X)∗∗. We claim that

the restriction φ of φ̃ to C0(βrG) is S-equivariant. Again by Lemma 5.3, φ is
C0(X)-linear and thus preserves the domains of the partial actions by S.

Now denote the canonical partial action of S on C0(βrG) as well as its restriction
to C0(X) by θ. To see that φ is equivariant, �x elements s ∈ S and a ∈ C0(βrG)s∗ .
We have to show that

(1) φ(θs(a)) = θ∗∗s (φ(a))

holds. We identify a with its image aus∗s in the crossed product C0(βrG)oS as in
Remark 3.8. Similarly, we identify θs(a) with θs(a)uss∗ . Fix an approximate iden-
tity (xλ)λ for C0(X)s. Since the inclusion C0(X)s → C0(βrG)s is non-degenerate,
the image of (xλ)λ in C0(βrG)s is again an approximate identity. We denote it by
(xλ)λ as well. Similarly, (θs∗(xλ))λ is an approximate identity for C0(βrG)s∗ . A
calculation in the crossed product C0(βrG) o S shows that we have

(2) xλusaθs∗(xλ)us∗ = xλθs(a)xλuss∗ .

Now reinterpret φ̃ as a map on C0(βrG) o S by precomposing it with the quotient
map

C0(βrG) o S ∼= C0(βrG) o G → C0(βrG) or G.

Since the elements xλus and θs∗(xλ)us∗ belong to the multiplicative domain of φ̃

and since φ̃ extends π o v, we obtain

φ(θs(a)) = φ̃(θs(a)uss∗) = lim φ̃(xλθs(a)xλuss∗)

(2)
= lim φ̃(xλusaθs∗(xλ)us∗) = limπ(xλ)vsφ(a)π(θs∗(xλ))vs∗ = vsφ(a)vs∗

=θ∗∗s (φ(a)).

This proves (1). �
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Lemma 5.5. Let θ be a partial action of an inverse semigroup S on a C∗-algebra
A. Then there is a ∗-homomorphism

A∗∗ o S → (Ao S)∗∗

such that the composition

Ao S → A∗∗ o S → (Ao S)∗∗

is the canonical inclusion.

Proof. Represent (AoS)∗∗ ⊆ B(H) faithfully, normally and non-degenerately on a
Hilbert space H. The restriction of this inclusion to AoS is an integrated form of a
covariant representation (π, v) by Proposition 3.9. Denote by π∗∗ the unique normal
extension of π to A∗∗. We claim that (π∗∗, v) is again a covariant representation
whose integrated form π∗∗o v maps into (AoS)∗∗. Indeed, using normality of π∗∗

we get

π∗∗(A∗∗s )H = π(As)
′′H = π(As)H = Hs

for all s ∈ S. For an element a ∈ A∗∗s which is the ultraweak limit of a net aλ ∈ As,
we have

π∗∗(θ∗∗s (a)) = limπ(θs(aλ)) = lim vsπ(aλ)v∗s = vsπ
∗∗(a)v∗s ,

again using normality of π∗∗ and θ∗∗s . Observe that we also have

π∗∗ o v(aus) = limπ(aλ)vs ∈ (Ao S)∗∗.

Thus the map π∗∗ o v has the desired properties.
�

We can now prove our main theorem:

Theorem 5.6. Let G be an étale groupoid which is strongly amenable at in�nity.
If C∗rG = C∗G, then C∗rG is nuclear. In particular G is amenable.

Proof. Denote by S the inverse semigroup of open bisections of G. By Proposition
5.4, there is an S-equivariant completely positive contractive map

φ : C0(βrG)→ C0(X)∗∗

extending the inclusion of C0(X). By Corollary 5.2, φ extends to a completely
positive contractive map

φ̃ : C0(βrG) o S → C0(X)∗∗ o S.

By Lemma 5.5, there is a ∗-homomorphism

C0(X)∗∗ o S → (C0(X) o S)∗∗

extending the inclusion on C0(X)oS. Putting things together, we can express the
inclusion C0(X) o S ↪→ (C0(X) o S)∗∗ as the following composition of completely
positive contractive maps:

(3) C0(X) o S → C0(βrG) o S → C0(X)∗∗ o S → (C0(X) o S)∗∗.

Since G was assumed to be strongly amenable at in�nity, the C∗-algebra C0(βrG)o
S ∼= C0(βrG)o G ∼= C0(βrG)or G is nuclear [2, Proposition 7.2]. Thus the map (3)
is nuclear. Recall that by [5, Proposition 2.3.8], a C∗-algebra is nuclear if and only
if its inclusion into its double dual is nuclear. Therefore C0(X)oS ∼= C∗G ∼= C∗rG is
nuclear. Now amenability of G follows from [4, Corollary 6.2.14, Theorem 3.3.7]. �



10 JULIAN KRANZ

Acknowledgements. The author would like to thank Siegfried Echterho� for sev-
eral discussions and for introducing him to the topic of amenable actions. This
work was funded by the Deutsche Forschungsgemeinschaft (DFG, German Re-
search Foundation) � Project-ID 427320536 � SFB 1442, as well as under Ger-
many's Excellence Strategy EXC 2044 390685587, Mathematics Münster: Dynam-
ics�Geometry�Structure.

References

[1] C. Anantharaman-Delaroche. Fibrewise equivariant compacti�cations under étale groupoid
actions. https://hal.archives-ouvertes.fr/hal-01081807/document, 2014.

[2] C. Anantharaman-Delaroche. Exact groupoids. arXiv preprint arXiv:1605.05117v2, 2021.
[3] C. Anantharaman-Delaroche. Some remarks about the weak containment property for

groupoids and semigroups. arXiv preprint arXiv:1604.01724v5, 2021.
[4] C. Anantharaman-Delaroche and J. Renault. Amenable groupoids. Contemporary Mathemat-

ics, 282, 2001.
[5] N. P. Brown and N. Ozawa. C*-Algebras and Finite-Dimensional Approximations, volume 88

of Graduate Studies in Mathematics. American Mathematical Soc., 2008.
[6] A. Buss, S. Echterho�, and R. Willett. Injectivity, crossed products, and amenable group

actions. K-theory in Algebra, Analysis and Topology, 749:105�137, 2020.
[7] A. Buss, S. Echterho�, and R. Willett. Amenability and weak containment for actions of

locally compact groups on C*-algebras. arXiv preprint arXiv:2003.03469v6, 2022.
[8] A. Buss, D. Ferraro, and C. F. Sehnem. Nuclearity for partial crossed products by exact

discrete groups. arXiv preprint arXiv:2011.06686v1, 2020.
[9] S. Echterho�, S. Kaliszewski, J. Quigg, and I. Raeburn. A categorical approach to imprim-

itivity theorems for C*-dynamical systems, volume 180 of Memoirs of the AMS. American
Mathematical Soc., 2006.

[10] U. Haagerup. The standard form of von Neumann algebras. Mathematica Scandinavica,
37(2):271�283, 1976.

[11] P.-Y. Le Gall. Théorie de Kasparov équivariante et groupoïdes. K-theory, 16(4):361�390,
1999.

[12] M. Matsumura. A characterization of amenability of group actions on C*-algebras. Journal
of Operator Theory, pages 41�47, 2014.

[13] J. Quigg and N. Sieben. C*-actions of r-discrete groupoids and inverse semigroups. Journal
of the Australian Mathematical Society, 66(2):143�167, 1999.

[14] N. Sieben. C*-crossed products by partial actions and actions of inverse semigroups. Journal
of the Australian Mathematical Society, 63(1):32�46, 1997.

[15] A. Sims. Hausdor� étale groupoids and their C∗-algebras. In Operator algebras and dynamics:

groupoids, crossed products, and Rokhlin dimension, Advanced Courses in Mathematics.
CRM Barcelona, pages x+163. Birkhäuser, 2020. Edited by Francesc Perera.

[16] R. Willett. A non-amenable groupoid whose maximal and reduced C∗-algebras are the same.
Münster J. Math., 8(1):241�252, 2015.

[17] D. P. Williams. Crossed products of C*-algebras, volume 134 of Mathematical Surveys and

Monographs. American Mathematical Soc., 2007.

Julian Kranz, Westfälische Wilhelms-Universität Münster, Mathematisches Insti-

tut, Einsteinstr. 62, 48149 Münster, Germany

Email address: julian.kranz@uni-muenster.de
URL: https://www.uni-muenster.de/IVV5WS/WebHop/user/j_kran05/

https://hal.archives-ouvertes.fr/hal-01081807/document

	1. Introduction
	2. Étale groupoids
	3. Inverse semigroups
	4. The Haagerup standard form
	5. Proof of the main theorem
	References

