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Abstract. We show that all amenable, minimal actions of a large class of

nonamenable countable groups on compact metric spaces have dynamical com-
parison. This class includes all nonamenable hyperbolic groups, many HNN-

extensions, nonamenable Baumslag-Solitar groups, a large class of amalga-

mated free groups, lattices in many Lie groups, Ã2-groups, as well as direct

products of the above with arbitrary countable groups. As a consequence,
crossed products by amenable, minimal and topologically free actions of such

groups on compact metric spaces are Kirchberg algebras in the UCT class, and
are therefore classified by K-theory.
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1. Introduction

One of the most remarkable achievements in C∗-algebra theory in the last decade
was the completion of the classification programme initiated by George Elliott over
30 years ago. The outcome is the combination of the work of a large number of
mathematicians over several decades, and can be phrased as follows:

Theorem (Classification). Simple, separable, unital, nuclear, Z-stable C∗-algebras
satisfying the UCT are classified by the Elliott invariant (K-theory and traces).

By Kirchberg’s dichotomy, [Rør02, Theorem 4.1.10], a C∗-algebra satisfying
the assumptions of the above theorem (also called classifiable) is either stably
finite or purely infinite. The currently available proof of the classification the-
orem considers the stably finite and purely infinite cases separately: while the
purely infinite case was settled over 20 years ago by Kirchberg and Phillips (see
[Phi00]), the stably finite case was only settled in the last 5 years as a combination
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of [EGLN16, TWW17, CET+21]. We refer the reader to Winter’s ICM address
[Win18] for a recent survey and further references on the topic.

With such a powerful classification theorem at our disposal, it becomes an imper-
ative task to identify interesting classes of C∗-algebras to which it can be applied.
One of the most natural families of C∗-algebras arises from topological dynamics
via the crossed product construction. In recent years, a lot of work has been done
to establish dynamical criteria for an action G y X of a countable group on a
compact metric space that ensure that the associated crossed product C(X) o G
satisfies the assumptions of the classification theorem. Unitality and separability of
C(X)oG are automatic, while nuclearity of C(X)oG is equivalent to amenability
of G y X (see Definition 2.1). Moreover, if G y X is amenable, then C(X) o G
automatically satisfies the UCT by [Tu99, Theorem 10.9], and it is simple if and
only if G y X is minimal and topologically free by [AS94, Theorem 2]. In partic-
ular, amenability, minimality, and topological freeness are necessary conditions for
classifiability of C(X) o G, and it remains to decide when C(X) o G is Z-stable.
Kirchberg’s dichotomy takes a particularly nice form in this setting, since a nuclear
crossed product C(X) oG is stably finite if and only if G is amenable. (This is a
combination of celebrated results in [Cun78, BH82, Haa14], as well as Lemma 2.2).
Not surprisingly, the techniques used to establish Z-stability of C(X)oG are quite
different depending on whether the group G is amenable or not.

On the amenable side, one of the first results in this direction is due to Toms and
Winter [TW09], who showed that C(X) o Z is Z-stable whenever Z y X is free
and minimal, and dim(X) < ∞. The efforts to extend this result to more general
groups led Kerr to introduce the notion of almost finiteness for topological actions
of amenable groups in [Ker20], and prove that crossed products by free, minimal and
almost finite actions are Z-stable. Almost finiteness has been verified in a number
of cases of interest [KS20], and the most recent result in this setting is by Kerr and
Naryshkin [KN21], who proved that free actions of elementary amenable groups
on finite-dimensional spaces are automatically almost finite. It is not possible to
completely remove the finite-dimensionality assumption in these: Giol and Kerr
constructed in [GK10] a free, minimal homeomorphism of an infinite dimensional
space X such that C(X)oZ is not Z-stable. The dividing line regarding Z-stability
for crossed products by amenable groups is expected to be mean dimension zero
(or the conjecturally equivalent notion of the small boundary property), which is
weaker than finite-dimensionality of the space. In this direction, Elliott and Niu
showed in [EN17] that C(X)oZ is Z-stable whenever Z y X is free and minimal,
and has mean dimension zero; this was generalized by Niu [Niu22] to Zd-actions. It
has been conjectured by Phillips and Toms that the converse should also be true,
and there have been some partial results in this direction; see [HP20].

Much less seems to be known in the nonamenable setting, although certain classes
of actions have been successfully studied from this point of view. For example, Laca
and Spielberg proved in [LS96] that crossed products by minimal, topologically
free, strong boundary actions are purely infinite. As a consequence, for actions as
above which are in addition amenable, such crossed products are nuclear and thus
O∞-stable by Kirchberg’s absorption theorem [KP00, Theorem 3.15], so they are in
particular Z-stable. Simiar results were obtained independently by Anantharaman-
Delaroche in [AD97]. In [JR00], Jolissaint and Robertson proved analogous results
for the larger class of n-filling actions.
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A property that is key in the study of dynamical systems is Kerr’s notion of
dynamical comparison. Given nonempty open sets U, V ⊆ X, we write U ≺ V if
every closed subset of U admits a finite open cover whose elements can be trans-
ported via the group action to pairwise disjoint subsets of V (see Definition 2.4).
A system G y X has dynamical comparison if U ≺ V whenever µ(U) < µ(V )
for all G-invariant probability measures µ. Establishing dynamical comparison is a
powerful tool for proving Z-stability of crossed products, both in the amenable and
in the nonamenable settings. For amenable groups, the small boundary property
implies almost finiteness (and thus Z-stability) in the presence of dynamical com-
parison; see [KS20, Theorem A]. As it turns out, dynamical comparison has been
verified in many interesting cases: for free actions of groups with subexponential
growth on Cantor spaces in [DZ20], and for arbitrary minimal actions of groups
with polynomial growth in [Nar21]. The latter result gives a large class of groups
for which the small boundary property implies Z-stability. For amenable, minimal,
topologically free actions of nonamenable groups, Ma proved that comparison im-
plies pure infiniteness of the crossed product (see [Ma19], and see Theorem 2.8 for
a simple proof). Not surprisingly, establishing dynamical comparison is often very
challenging.

In this work, we prove that all amenable and minimal actions of a large class
of nonamenable groups automatically satisfy dynamical comparison. As a conse-
quence, for actions which are additionally topologically free, the crossed products
are purely infinite (and thus satisfy the assumptions of the classification theorem).
The following is the main definition of this work.

Definition A. We say that a countable group G admits n-paradoxical towers, if
for every finite subset D ⊆ G there are A1, . . . , An ⊆ G and g1, . . . , gn ∈ G such
that:

(1) The sets dAi, for d ∈ D and i = 1, . . . , n, are pairwise disjoint.
(2) G =

⋃n
i=1 giAi.

It is easy to see that a group admitting paradoxical towers is necessarily non-
amenable. Elementary methods allow one to show that Fn admits paradoxical
towers; see Proposition 3.2, and see Theorem C for more examples. There exist
nonamenable groups which do not admit paradoxical towers, such as F2 × Z.

We show that every amenable and minimal action of a group with paradoxical
towers has dynamical comparison. In fact, our methods allow us to deal with
products of such groups with arbitrary groups; see Theorem 3.6.

Theorem B. Let H be a countable group with paradoxical towers, let K be an
arbitrary countable group, and set G = H × K. Then every amenable, minimal
action Gy X on a compact metrizable space has dynamical comparison. If Gy X
is moreover topologically free, then the crossed product C(X) o G is a Kirchberg
algebra satisfying the UCT.

By [RS12, Theorem 6.11], every nonamenable exact group admits a large family
of actions satisfying the assumptions of the above theorem.

The above result shows an unexpected phenomenon in the nonamenable setting:
classifiability of C(X)oG does not require finite dimensionality of X or any version
of mean dimension zero for actions of nonamenable groups. There is thus a genuine
difference between the amenable and the nonamenable cases. For a nonamenable
group G not covered by Theorem B, we do not know if a simple, nuclear crossed
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product of the form C(X)oG can be finite, although we strongly suspect that this
is not the case1. If G contains F2, we show in Theorem 3.9 that a simple, nuclear
crossed product of the form C(X) oG is always properly infinite.

We complement Theorem B by proving that large classes of nonamenable groups
admit paradoxical towers; see Section 4. We summarize some of the results:

Theorem C. The following classes of groups admit paradoxical towers:

(1) Acylindrically hyperbolic groups; see Proposition 4.7. In particular, all
nonamenable hyperbolic groups and thus all nonabelian free grups.

(2) Highly transitive faithful non-ascending HNN-extensions; see Proposition 4.9.
In particular, Baumslag-Solitar groups BS(m,n) with |m|, |n| > 1 and
|m| 6= |n|; see Example 4.10.

(3) All free products G∗H of nontrivial groups with |H| > 2; see Example 4.11
for a larger class.

(4) Lattices in a real connected semisimple Lie groups without compact factors
and with finite center (such as SLn(Z) for n ≥ 3); see Example 4.13.

(5) Ã2-groups; see Example 4.14.
(6) Discrete subgroups of isometries of a visibility manifolds with finite covo-

lume; see Example 4.15.

Based on the evidence provided in this work, we expect that the conclusion of
Theorem B should hold for arbitrary nonamenable groups:

Conjecture D. Let G be a countable nonamenable group and let X be a compact
metrizable space. Then every amenable, minimal action G y X has dynamical
comparison.

A positive solution to the above conjecture would imply that crossed products
by amenable, minimal and topologically free actions of nonamenable groups are
always classifiable. Our conjecture would also imply a strengthening of Kirchberg’s
dichotomy for crossed products: if C(X)oG is simple and nuclear, then it is either
stably finite (if and only if G is amenable) or purely infinite (if and only if G is
nonamenable), regardless of whether it is Z-stable or not.

Acknowledgements: We would like to thank Sahana H. Balasubramanya, Yair
Hartman, David Kerr, Mario Klisse, Xin Ma, Shintaro Nishikawa, Tron Omland,
Mikael Rørdam, Hannes Thiel, Federico Vigolo, and Stuart White for helpful com-
ments and discussions.

2. Amenable actions and dynamical subequivalence

In this section, we collect a number of elementary definitions and results that
will be needed in the rest of the work. All countable groups will be endowed with
the discrete topology. All measures on locally compact spaces are assumed to be
regular Borel measures. If G is a discrete group, we denote by Prob(G) ⊆ `1(G)
the set of all probability measures on it. If µ ∈ Prob(G) and g ∈ G, we denote by
g · µ the probability measure given by (g · µ)(E) = µ(g−1E) for g ∈ G and E ⊆ G.

The following definition, introduced by Anantharaman-Delaroche and Renault
in [ADR01], is standard by now.

1Lemma 2.2 implies that such crossed products are never stably finite, and Conjecture D below
predicts that such crossed products are always purely infinite.
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Definition 2.1. An action Gy X of a countable group G on a compact metrizable
space X is said to be amenable if there exists a sequence (µn)n∈N of continuous
maps µn : X → Prob(G) such that for all g ∈ G we have

sup
x∈X
‖µn(g · x)− (g · µn)(x)‖1

n→∞−−−−→ 0.

Note that a countable group is amenable if and only if it acts amenably on the
one point space. More generally, an action G y X on a compact Hausdorff space
is amenable if and only if C(X) or G is nuclear; see [ADR01, Corollary 6.2.14,
Theorem 3.3.7], in which case the full and reduced crossed products of G y X
agree. The following lemma is folklore, and we include the proof for the convenience
of the reader.

Lemma 2.2. Let Gy X be an amenable action of a countable group on a compact
metrizable space. Then G is amenable if and only if there exists a G-invariant
probability measure on X.

Proof. For the “only if” implication, assume that G is amenable and fix a G-
invariant mean φ : L∞(G) → C. Let η be any probability measure on X. The
Poisson map Pη : C(X)→ L∞(G) defined by

Pη(f)(g) =

∫
X

f(g · x) dη(x)

for f ∈ C(X) and g ∈ G, is a unital positive G-equivariant map. Then φ ◦
Pη : C(X)→ C is a G-invariant state giving rise to a G-invariant probability mea-
sure on X. For the “if” implication, let (µn)n∈N be as in Definition 2.1, and let ν
be a G-invariant probability measure on X. For n ∈ N, define ρn ∈ Prob(G) by

ρn(E) =

∫
X

µn(x)(E) dν(x)

for all E ⊆ G. Then ‖ρn−g·ρn‖1
n→∞−−−−→ 0 for all g ∈ G, and thus G is amenable. �

Remark 2.3. Recall that any trace on C(X)oG induces a G-invariant probability
measure on X by restriction, and conversely any such measure induces a trace on
C(X) o G via the canonical conditional expectation C(X) o G → C(X). It thus
follows from Lemma 2.2 that a nuclear crossed product C(X) o G has a trace if
and only if G is amenable.

We need the notion of dynamical subequivalence for tuples of sets, which is the
partial order used to define the type semigroup of a dynamical system.

Definition 2.4. Let Gy X be an action of a discrete group on a compact Haus-
dorff space. Let U1, . . . , Un, V1, . . . , Vm be open subsets ofX. We say that the family
(Ui)

n
i=1 is dynamically subequivalent to (Vj)

m
j=1, and write (Ui)

n
i=1 ≺ (Vj)

m
j=1, if for

all closed subsets Ai ⊆ Ui, for i = 1, . . . , n, there exist finite open covers Wi of Ai,

elements g
(i)
W ∈ G for W ∈ Wi, and a partition

C1 t . . . t Cm =
{

(i,W ) : i = 1, . . . , n,W ∈ Wi

}
,

such that, for each j = 1, . . . ,m the sets g
(i)
W ·W , for (i,W ) ∈ Cj , are pairwise disjoint

and contained in Vj . Given a nonnegative integer r, we write (Ui)
n
i=1 ≺r (Vj)

m
j=1 if

(Ui)
n
i=1 ≺ (Vj)j=1,...,m,k=1,...,r+1. In other words, (Ui)

n
i=1 ≺r (Vj)

m
j=1 if the family

(Ui)
n
i=1 is subequivalent to r + 1 disjoint copies of the family (Vj)

m
j=1.
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We will identify tuples containing one element with their unique element, and will
thus write U ≺r V instead of (U) ≺r (V ). Note that this definition of dynamical
r-subequivalence for open sets agrees with Kerr’s [Ker20, Definition 3.1]. We record
here the observation that ≺ is transitive; the proof is routine and is omitted.

Lemma 2.5. Let Gy X be an action of a discrete group on a compact Hausdorff
space, and let U1, . . . , Un, V1, . . . , Vm,W1, . . . ,Wr ⊆ X be open sets satisfying

(Ui)
n
i=1 ≺ (Vj)

m
j=1 and (Vj)

m
j=1 ≺ (Wk)rk=1.

Then (Ui)
n
i=1 ≺ (Wk)rk=1.

We will ultimately only be interested in comparing individual open sets, but the
perspective using tuples will be helpful in the proof of Theorem 3.6, since it will
allow us to decrease the number of colors we need to obtain comparison. The reason
for this is that U ≺ (Vj)

m
j=1 is a much stronger condition than U ≺m−1

⋃m
j=1 Vj .

For instance, it follows from the previous lemma that U ≺ (Vj)
m
j=1 ≺r W implies

U ≺r W , while the direct argument using
⋃m
j=1 Vj instead of (Vj)

m
j=1 would only

yield U ≺(r+1)m−1 W .

Definition 2.6 ([Ker20, Definition 3.2]). Let X be a compact space, and let r be
a nonnegative integer. An action G y X of a discrete group G is said to have
dynamical r-comparison, if for any two nonempty open subsets U, V ⊆ X satisfying
µ(U) < µ(V ) for all G-invariant probability measures µ on X, we have U ≺r V .

If r = 0, we say that Gy X has dynamical comparison.

When G y X is an amenable action of a nonamenable group, we have seen in
Lemma 2.2 that there are no G-invariant probability measures on X. In particular,
Gy X has r-dynamical comparison precisely when U ≺r V for all nonempty open
sets U, V ⊆ X. To check this, it suffices to take U = X; see the figure below.

Figure 1. X ≺ V

While we will be interested in establishing dynamical comparison, the tools and
arguments we use will only give dynamical r-comparison. For actions of non-
amenable groups without invariant traces, the following lemma shows that the
two properties are in fact equivalent. This should be compared with [Nar21,
Lemma 2.3], where it is shown that r-comparison implies comparison for minimal
actions of amenable groups.
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Lemma 2.7. Let Gy X be an action of a discrete group on a compact Hausdorff
space with no invariant probability measures, and let r be a nonnegative integer.
Then G y X has dynamical r-comparison if and only if G y X has dynamical
comparison.

Proof. We prove the nontrivial implication, so assume thatGy X has dynamical r-
comparison. One readily shows, arguing as in the discussion after [Ma19, Definition
2.4], that Gy X is minimal and X has no isolated points. As explained above, it
suffices to fix a nonempty open set V ⊆ X and show that X ≺ V . Fix x ∈ V , and
note that V ∩G ·x is an infinite set. Find t1, . . . , tr+1 ∈ G such that tk ·x ∈ V for all
k = 1, . . . , r+1 and tk ·x 6= t` ·x whenever k 6= `. Using that X is Hausdorff, find an
open set W ⊆ X such that x ∈W and {tk ·W}r+1

k=1 are pairwise disjoint sets in V .
Since X ≺r W by assumption, there exist a finite open cover O = O1 t . . . tOr+1

of X, and gO ∈ G for O ∈ O, such that the sets gO · O, for O ∈ Ok are pairwise
disjoint subsets of W , for every k = 1, . . . , r+ 1. Now, {tkgO ·O}O∈Ok,k=1,...,r+1 is
a collection of pairwise disjoint sets in V , verifying that X ≺ V as desired. �

We close this section by giving a simple proof of Theorem 1.1 from [Ma19],
which avoids the use of scaling elements and hereditary subalgebras in favor of
Cuntz semigroup techniques. (We refer the reader to [APT18, Chapter 2] for an
introduction to these.) Given positive elements a and b in a C∗-algebra A, we say
that a is Cuntz subequivalent to b in A, written a - b in A, if there exists a sequence
(cn)n∈N in A such that limn→∞ c∗nbcn = a. We write a ∼ b if a - b and b - a. We
will use the fact that if A is abelian, then a - b if and only if the open support of a
is contained in that of b. In particular, in a general C∗-algebra, if a and b commute
and 0 ≤ a ≤ b, then a - b.

Theorem 2.8 (Ma). Let G y X be a minimal and topologically free action of a
discrete group on a compact Hausdorff space. Assume that Gy X has dynamical
comparison and admits no invariant probability measures. Then C(X) or G is
simple and purely infinite.

Proof. Simplicity follows from [AS94, Theorem 2], so we prove pure infiniteness.
Let a, b ∈ C(X)or G be nonzero positive contractions. We will show that b - a in
C(X)orG, which implies that C(X)orG is purely infinite by [KR00, Defintion 4.1].
Since b - 1C(X), it is enough to show that 1C(X) - a in C(X) or G. By [Phi14,
Lemma 7.9], there exists a nonzero positive contraction f ∈ C(X) such that f - a
in C(X) or G. Set W = {x ∈ X : f(x) > 0}, and choose U to be a nonempty
open subset of W such that U ⊆W . There exists a positive contraction g ∈ C(X)
such that g = 0 on X \W and g = 1 on U . Since X ≺ U , [Ker20, Lemma 12.3]
implies that 1C(X) - g in C(X)orG. On the other hand, we have g - f since {x ∈
X : g(x) > 0} ⊆ W = {x ∈ X : f(x) > 0}. Transitivity of Cuntz subequivalence
gives 1C(X) - f , and so 1C(X) - a, as desired. �

3. Paradoxical towers give dynamical comparison

In this section, we introduce the notion of paradoxical towers, which is the main
technical tool in this work. For (certain extensions of) groups admitting paradoxical
towers, we show that amenable, minimal actions always have dynamical comparison;
see Theorem 3.6. Using this, we establish classifiability of a large class of crossed
products in Corollary 3.8. Examples are discussed in Section 4.
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Definition 3.1. Let n ∈ N. We say that a countable group G admits n-paradoxical
towers if for every finite subset D ⊆ G there are A1, . . . , An ⊆ G and g1, . . . , gn ∈ G
such that

(1) the sets dAi, for d ∈ D and i = 1, . . . , n, are pairwise disjoint.
(2) G =

⋃n
i=1 giAi.

We say that G admits paradoxical towers if there is n ∈ N such that G admits
n-paradoxical towers.

It is easy to see that a group admitting paradoxical towers is necessarily non-
amenable. The class of groups admitting paradoxical towers is very large, but it
does not exhaust all nonamenable groups; for example, F2×Z does not admit para-
doxical towers. We postpose this discussion until Section 4, and we only present
here the following basic example (see Proposition 4.7 for a much larger class).

Proposition 3.2. The free group F2 admits 2-paradoxical towers. In fact, given a
finite subset D ⊆ F2 there are nonempty subsets A1, A2, A3 ⊆ F2 and g1, g2, g3 ∈ F2

such that:

(1) the sets dAj , for d ∈ D and j = 1, 2, 3, are pairwise disjoint,
(2) the sets F2 \ gjAj , for j = 1, 2, 3, are pairwise disjoint.

Proof. We begin by observing that the property in the statement implies that F2

has 2-paradoxical towers. Indeed, condition (2) implies that

∅ =
(
F2 \ g1A1

)
∩
(
F2 \ g2A2

)
,

and by taking complements we get F2 = g1A1 ∪ g2A2. In particular, A1, A2 and
g1, g2 satisfy the conditions of Definition 3.1 for n = 2.

Denote by a, b the generators of F2, and set L = {a, b, a−1, b−1}. For h ∈ F2, we
write W (h) ⊆ F2 for the set of all reduced words with letters from L which start
with h. If x ∈ L is the last letter of h, then a generic element of W (h) has the form
hg with g /∈W (x−1). In particular,

(3.1) F2 \ h−1W (h) = W (x−1).

For r ≥ 0, we write Br for the set of all reduced words of length at most r; note
that BrBs = Br+s for all r, s > 0. Let D ⊆ F2 be a finite set. Find m ≥ 0 with
D ⊆ Bm, and define

h1 = a2mba, h2 = a2mba−1, and h3 = a2mb2.

For i = 1, 2, 3, set Ai = W (hi). We claim that these sets satisfy condition (1).
Since every element of D has length at most m, it suffices to check that whenever
e ∈ B2m and i, j = 1, 2, 3 satisfy eAi ∩ Aj 6= ∅, then e = 1 and i = j. Given e, i, j
as above, if eAi intersects Aj then there is g ∈ Ai such that eg, after reduction,
starts with 2m copies of a. Since the (2m+ 1)-st letter of g is not an a, it follows
that the product of e and g cannot have any cancelations, and thus e = ak for some
0 ≤ k ≤ m. On the other hand, akhi never has hj as an initial segment unless
k = 0 and i = j. This proves the claim.

For i = 1, 2, 3, set gi = h−1
i . Using (3.1), we get

F2 \ g1A1 = W (a−1), F2 \ g2A2 = W (a), and F2 \ g3A3 = W (b−1),

and these sets are clearly pairwise disjoint. This finishes the proof. �
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We will need some auxiliary lemmas. In the following, for m = 1 we just get the
definition of paradoxical towers. In general, the strengthening is that the towers

A
(j)
i are jointly (and not just separately) D-free.

Lemma 3.3. Let n ∈ N and let G be a countable group with n-paradoxical towers,

and let D ⊆ G be a finite subset. For every m ∈ N, there exist subsets A
(j)
i ⊆ G

and group elements g
(j)
i ∈ G, for i = 1, . . . , n and j = 1, . . . ,m, such that:

(1) the sets dA
(j)
i , for d ∈ D, i = 1, . . . , n, and j = 1, . . . ,m, are pairwise

disjoint.

(2) G =
⋃n
i=1 g

(j)
i A

(j)
i for every j = 1, . . . ,m.

Proof. Let D ⊆ G be a finite subset. Since G is infinite, there exist s1, . . . , sm ∈ G
such that Dsj , for j = 1, . . . ,m, are pairwise disjoint sets. Set D̃ =

⊔m
j=1Dsj ,

which is a finite subset of G. Since G admits n-paradoxical towers, there are sets

A1, . . . , An ⊆ G and elements g1, . . . , gn ∈ G such that the sets d̃Ai, for d̃ ∈ D̃ and
i = 1, . . . , n, are pairwise disjoint, and G =

⋃n
i=1 giAi.

For i = 1, . . . , n and j = 1, . . . ,m, set

A
(j)
i = sjAi and g

(j)
i = gis

−1
j .

One readily checks that conditions (1) and (2) in the statement are satisfied. �

Given a metric space (X, d), a set U ⊆ X and ε > 0, we set

U−ε = {x ∈ U : d(x,X \ U) > ε}.

Lemma 3.4. Let G y X be an action of a countable group on a compact metric
space X, let n be a nonnegative integer, let ε > 0, and let D ⊆ G be a finite
symmetric set.

(1) Let V,U0, . . . , Un ⊆ X be open sets and let R : X → [0,∞) be a function
satisfying∣∣{g ∈ D2 : g · x ∈ V }

∣∣+R(x) <

n∑
k=0

∣∣{g ∈ D : g · x ∈ U−εk }
∣∣ ,

for all x ∈ X. Then for every closed subset A ⊆ V there exist 0 < ε̃ < ε,
a finite open cover O of A, group elements sO ∈ G, for O ∈ O, and a
partition O = O0 t . . . t On satisfying the following properties:
(a) for every k = 0, . . . , n, the family {sO ·O : O ∈ Ok} consists of pairwise

disjoint subsets of Uk,

(b) with Bk denoting the closure of
⋃
O∈Ok

sO · O and Ũk = Uk \ Bk, we
have

R(x) <

n∑
k=0

∣∣∣{g ∈ D : g · x ∈ Ũ−ε̃k }
∣∣∣ ,

for all x ∈ X.
(2) Let V1, . . . , Vm, U ⊆ X be open sets satisfying

m∑
j=1

∣∣{g ∈ D2 : g · x ∈ Vj}
∣∣ < (n+ 1)

∣∣{g ∈ D : g · x ∈ U−ε}
∣∣ ,

for all x ∈ X. Then (Vj)
m
j=1 ≺n U .
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Proof. (1). This is proved exactly as [Nar21, Lemma 3.1]. We omit the proof.
(2). We will prove this by repeatedly applying part (1). For each j = 1, . . . ,m,

let Aj ⊆ Vj be a closed subset. Set ε(1) = ε and U
(1)
0 = . . . = U

(1)
n = U . For j =

1, . . . ,m, let R(j) : X → [0,∞) be given by R(j)(x) =
∑m
i=j

∣∣{g ∈ D2 : g · x ∈ Vi}
∣∣

for x ∈ X. By construction, we have∣∣{g ∈ D2 : g · x ∈ V1}
∣∣+R(1)(x) <

n∑
k=0

∣∣∣{g ∈ D : g · x ∈ (U
(1)
k )−ε

(1)}∣∣∣
for all x ∈ X. By part (1), there exist 0 < ε(2) < ε(1), an open cover O(1) of A1,

group elements s
(1)
O ∈ G, for O ∈ O(1), and a partition O(1) = O(1)

0 t . . . t O(1)
n

satisfying the following properties:

(a.1) for every k = 0, . . . , n, the family {sO · O : O ∈ O(1)
k } consists of pairwise

disjoint subsets of U
(1)
k ,

(b.1) with B
(1)
k denoting the closure of

⋃
O∈O(1)

k

sO ·O and U
(2)
k = U

(1)
k \Bk ⊆ U ,

we have

R(1)(x) <

n∑
k=0

∣∣∣{g ∈ D : g · x ∈ (U
(2)
k )−ε

(2)}∣∣∣ ,
for all x ∈ X.

By construction, we get∣∣{g ∈ D2 : g · x ∈ V2}
∣∣+R(2)(x) <

n∑
k=0

∣∣∣{g ∈ D : g · x ∈ (U
(2)
k )−ε

(2)}∣∣∣ ,
for all x ∈ X. One continues applying part (1) inductively. After m steps, we will
have constructed, for each j = 1, . . . ,m, an open cover O(j) of Aj , group elements

s
(j)
O ∈ G, for O ∈ O(j), and a partition O(j) = O(j)

0 t . . . tO
(j)
n such that for every

k = 0, . . . , n, the family {sO · O : O ∈ O(j)
k } consists of pairwise disjoint subsets of

U
(j)
k ⊆ U . For j = 1, . . . ,m, set

Cj = {(k,O) : k = 1, . . . , n,O ∈ O(j)
k },

and note that

C1 t · · · t Cn = {(k,O) : k = 1, . . . , n,O ∈ O(j)
k , j = 1, . . . ,m}.

Since the sets U
(j)
k , for j = 1, . . . ,m are pairwise disjoint subsets of U , it follows

that the above choices witness the fact that (Vj)
m
j=1 ≺n U , as desired. �

In the next lemma, note that we can not demand that the sets eBj for e ∈ E
and j = 1, . . . ,m be pairwise disjoint, as this cannot happen if K is amenable.

Lemma 3.5. Let K be a countable group and let E ⊆ K be a finite symmetric
subset containing the unit of K. Set m = |E2|. Then there is a finite partition

K = B1 t . . . tBm,

such that for each j = 1, . . . ,m, the sets eBj , for e ∈ E, are pairwise disjoint.
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Proof. Consider the Cayley graph G = Cay(K,E2) whose vertices are the elements
of K and whose edges are of the form (k, gk), for k ∈ K and g ∈ E2 \ {1}. Note
that every vertex in G has exactly m − 1 edges coming out of it, and that there
are no loops in G. The greedy coloring algorithm then implies that we can color
the vertices of G using at most m colors, in such a way that every two adjacent
vertices have different colors2. For j = 1, . . . ,m, let Bj ⊆ K denote the vertices
with the j-th color. Then B1 t · · · tBm = K. Moreover, for j = 1, . . . ,m, we have
gBj∩Bj = ∅ for all g ∈ E2 \{1}. Thus the sets eBj , for e ∈ E, are pairwise disjoint
for each j = 1, . . . ,m. �

The following is the main result of this work. The main consequence is the
classifiability of the associated crossed products; see Corollary 3.8. In its proof,
we will work with doubly-indexed sets Vi,j for i = 1, . . . , n and j = 1, . . . ,m. To
lighten the notation, we will write (Vi,j)

n,m
i,j=1 for the tuple (Vi,j)i=1,...,n,j=1,...,m, and

similarly for their union
⋃n,m
i,j=1, or for sums

∑n,m
i,j=1 indexed both by i and j.

Theorem 3.6. Let H be a countable group admitting paradoxical towers, let K
be any countable group, and set G = H ×K. Then any amenable, minimal action
of G on a compact metrizable space has dynamical comparison.

Proof. Let X be a compact metrizable space and let G y X be an amenable,
minimal action. Let n ∈ N be such that H admits n-paradoxical towers. By
Lemma 2.2 and Lemma 2.7, and since G is nonamenable, it suffices to show that
G y X has dynamical n-comparison. Let U ⊆ X be a nonempty open set. Fix
a metric on X inducing its topology, and choose ε > 0 such that U−ε 6= ∅. By
minimality of G y X, there is a finite set F0 ⊆ G such that F−1

0 · U−ε = X.
Without loss of generality, we assume that F0 contains the unit of G, and has the
form F0 = D0×E for finite sets D0 ⊆ H and E ⊆ K with E = E−1. Set m = |E4|.

Since H is infinite, we can find t1, . . . , tm ∈ H such that the sets D0tj , for
j = 1, . . . ,m, are pairwise disjoint. Let D be any finite symmetric subset of H
containing

⊔m
j=1D0tj , set F = D × E, which is finite and symmetric. With sj =

(tj , 1) ∈ G, note that the sets F0sj are pairwise disjoint and contained in F .

Claim 1: for all x ∈ X, we have

(3.2)
∣∣{g ∈ F : g · x ∈ U−ε

}∣∣ ≥ m.
To prove the claim, fix x ∈ X and j = 1, . . . ,m. Denote by Fx the set in the

left-hand side of the displayed equation above. Since

s−1
j F−1

0 · U−ε︸ ︷︷ ︸
=X

= X,

there is fj ∈ F0 such that fjsj · x ∈ U−ε, and thus fjsj belongs to Fx (in addition
to F0sj). Hence |Fx ∩ F0sj | ≥ 1 for all j = 1, . . . ,m, and since the sets F0sj are
pairwise disjoint, this shows that |Fx| ≥ m, as desired.

Since H admits n-paradoxical towers, use Lemma 3.3, to find A
(j)
i ⊆ H and

h
(j)
i ∈ H, for i = 1, . . . , n and j = 1, . . . ,m satisfying:

(a.1) the sets dA
(j)
i , for d ∈ D2, i = 1, . . . , n, and j = 1, . . . ,m, are pairwise

disjoint.

2One way to do this is to enumerate the vertices and then color them inductively.
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(a.2)
⋃n
i=1 h

(j)
i A

(j)
i = H for every j = 1, . . . ,m.

Use Lemma 3.5, with E2 in place of E, to find subsets B1, . . . , Bm ⊆ K such that

(b.1) for each j = 1, . . . ,m, the sets eBj , for e ∈ E2, are pairwise disjoint.
(b.2) K = B1 t . . . tBm.

For i = 1, . . . , n and j = 1, . . . ,m, set

Ci,j = A
(j)
i ×Bj ⊆ G and gi,j = (h

(j)
i , 1) ∈ G.

We proceed to show the following:

(i) The sets fCi,j for f ∈ F 2, i = 1, . . . , n, and j = 1, . . . ,m, are pairwise
disjoint.

(ii)
⋃n,m
i,j=1 gi,jCi,j = G.

To check (i), let i, i′ = 1, . . . , n, let j, j′ = 1, . . . ,m, and let f, f ′ ∈ F 2. Write
πH : G → H for the projection onto the first coordinate, and πK : G → K for the
projection onto the second one. Assume that

(3.3) fCi,j ∩ f ′Ci′,j′ 6= ∅.

Apply πH to (3.3) to get πH(f)A
(j)
i ∩πH(f ′)A

(j′)
i′ 6= ∅. Since π(F 2) = D2, condition

(a.1) above implies that i = i′, j = j′ and πH(f) = πH(f ′). Applying πK to (3.3)
now gives πK(f)Bj ∩πK(f ′)Bj 6= ∅. Since πK(F 2) = E2, it thus follows from (b.1)
above that πK(f) = πK(f ′) and thus f = f ′. This proves (i). Part (ii) is immediate
from (a.2) and (b.2).

Now fix 0 < δ < (2nm(nm + 1))−1. Use amenability of G y X to find a
continuous map µ : X → Prob(G) satisfying

(3.4) sup
x∈X
‖µ(g · x)− g · µ(x)‖1 < δ

for all g ∈ F 2 ∪ {gi,j}n,mi,j=1. For i = 1, . . . , n, j = 1, . . . ,m,, set

Vi,j =
{
x ∈ X : µ(x)(Ci,j) >

1

nm+ 1
+ δ
}
,

and note that Vi,j is an open subset of X.

Claim 2: we have X ≺ (Vi,j)
n,m
i,j=1. For i = 1, . . . , n and j = 1, . . . ,m, define

Wi,j =

{
x ∈ X : µ(x)(gi,jCi,j) >

1

nm+ 1
+ 2δ

}
.

Then Wi,j is open in X. Fix x ∈ X. Since µ(x) is a probability measure on G, by
condition (ii) there are ix ∈ {1, . . . , n} and jx ∈ {1, . . . ,m} such that

µ(x)(gix,jxCix,jx) ≥ 1

nm
>

1

nm+ 1
+ 2δ.

In other words, x ∈Wix,jx , and thus X =
⋃n,m
i,j=1Wi,j . Using (3.4) again, we get

g−1
i,jWi,j ⊆

{
x ∈ X : µ(x)(Ci,j) >

1

nm+ 1
+ δ

}
= Vi,j

for i = 1, . . . , n and j = 1, . . . ,m. This shows that X ≺ (Vi,j)
n,m
i,j=1, as desired.
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Claim 3: we have (Vi,j)
n,m
i,j=1 ≺n U . To prove the claim, note that by (3.4) and

the fact that F = D × E is symmetric, we have

fVi,j ⊆
{
x ∈ X : µ(x)(fCi,j) >

1

nm+ 1

}
for all f ∈ F 2, i = 1, . . . , n, and j = 1, . . . ,m. Since the sets fCi,j are pairwise
disjoint by condition (i) above, for any x ∈ X at most nm of them can have µ(x)-
measure more than 1

nm+1 . We deduce that each x ∈ X belongs to at most nm of

the sets fVi,j , for f ∈ F 2, i = 1, . . . , n and j = 1, . . . ,m. That is, for all x ∈ X, we
get

n,m∑
i,j=1

∣∣{f ∈ F 2 : f · x ∈ Vi,j}
∣∣ ≤ nm (3.2)

< (n+ 1)
∣∣{f ∈ F : f · x ∈ U−ε}

By part (2) of Lemma 3.4, we conclude that (Vi,j)
n,m
i,j=1 ≺n U .

Combining Claims 2 and 3, we get X ≺ (Vi,j)
n,m
i,j=1 ≺n U , which implies X ≺n U

by Lemma 2.5. This concludes the proof. �

Remark 3.7. The above proof does not show that H × K admits paradoxical
towers. Indeed, although the sets Ci,j satisfy the conditions for nm-paradoxical
towers, the number m depends on the finite subset E ⊆ K. In fact, one can show
that G = H ×K never has paradoxical towers if K is infinite and amenable.

By [RS12, Theorem 6.11], every exact nonamenable group admits a large family
of amenable, minimal, free actions on compact metric spaces. In particular, actions
satisfying the assumptions of Theorem 3.6 always exist.

We obtain the following corollary:

Corollary 3.8. Let H be a group admitting paradoxical towers, let K be any
countable group, and set G = H × K. Let G y X be an amenable, minimal
and topologically free action on a compact metrizable space X. Then the crossed
product C(X) oG is a Kirchberg algebra satisfying the UCT.

Proof. It is well known that C(X)oG is simple, separable, unital and nuclear, and
it satisfies the UCT by [Tu99, Theorem 10.9]. Finally, it is purely infinite by the
combination of Theorem 3.6 and Theorem 2.8. �

Corollary 3.8 reveals an unexpected phenomenon in the nonamenable setting:
classifiability of C(X) o G, for the groups G to which the corollary applies, does
not require any finite dimensionality assumption on X, or any version of mean
dimension zero. There is thus a genuine difference between the amenable and the
nonamenable case.

For a nonamenable group G, a simple, nuclear crossed product of the form
C(X) o G cannot be stably finite by Lemma 2.2, but we do not know if it can
ever be finite if G is not covered by Corollary 3.8 (although Conjecture D predicts
that this can never happen). Using a weak version of paradoxical towers, we show
below that if G contains F2, then a simple, nuclear crossed product C(X) o G is
automatically properly infinite; see Theorem 3.9. Recall (see [Rør02, Definition 1.1])
that a unital C∗-algebra A is properly infinite if there exist two mutually orthogonal
projections in A, each of which is Murray-von Neumann equivalent to the unit.
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Theorem 3.9. Let G be a countable group containing a nonabelian free group.
If G y X is an amenable, minimal and topologically free action on a compact
metrizable space, then C(X) oG is a properly infinite, simple, separable, nuclear,
unital C∗-algebra.

Proof. We only need to show that C(X) o G is properly infinite. By [Cun77,
Proposition 2.2], it suffices to show that there is an isometry in C(X)oG which is
not a unitary. Let H ⊆ G be a nonabelian free subgroup of rank 2. Let h ∈ H \{1}
and set D = {1, h}. By Proposition 3.2, there exist nonempty sets B1, B2, B3 ⊆ H
and h1, h2, h3 ∈ H such that

(1) the sets dBj , for d ∈ D and j = 1, 2, 3, are pairwise disjoint, and
(2) the sets H \ hjBj , for j = 1, 2, 3, are pairwise disjoint.

Observe that the above conditions imply

(3) h1, h2, h3 are pairwise distinct.

Indeed, if hj = hk, then hjBj and hjBk are disjoint sets with disjoint complements.
This implies that G = hjBj thjBj , and hence G = Bj tBk, which contradicts the
fact that B1, B2, B3 are pairwise disjoint and nonempty.

Let S ⊆ G be a set containing exactly one representative of each right coset in
H\G, so that G =

⊔
s∈S Hs. For j = 1, 2, 3, set Aj =

⊔
s∈S Bjs. We claim that

(a) the sets dAj , for d ∈ D and j = 1, 2, 3, are pairwise disjoint, and
(b) the sets G \ hjAj , for j = 1, 2, 3, are pairwise disjoint.

To see (a), let d, e ∈ D and let j, k ∈ {1, 2, 3}. Using that Hs ∩Ht = ∅ for s, t ∈ S
with s 6= t, we get

dAj ∩ eAk =
( ⊔
s∈S

dBjs
)
∩
( ⊔
t∈S

eBkt
)

=
⊔
s,t∈S

dBjs ∩ eBkt︸ ︷︷ ︸
⊆Hs∩Ht

=
⊔
s∈S

(dBj ∩ eBk)s.

If the above intersection is nonempty, then we must have dBj ∩ eBk 6= ∅, which
implies d = e and j = k by (1). To check condition (b), let j, k ∈ {1, 2, 3}. Arguing
as above, we have

(G \ hjAj) ∩ (G \ hkAk) =
( ⊔
s∈S

(Hs \ hjBjs)
)
∩
( ⊔
t∈S

(Ht \ hkBkt)
)

=
⊔
s∈S

(
(H \ hjBj) ∩ (H \ hkBk)

)
s,

which is empty if j 6= k by (2).
Set ε = 1

24 , and use amenability of Gy X to find a continuous function µ : X →
Prob(G) satisfying

(3.5) sup
x∈X
‖µ(g · x)− g · µ(x)‖1 < ε

for all g ∈ {h−1, h1, h2, h3}. For j = 1, 2, 3, set

Vj =
{
x ∈ X : µ(x)(Aj) >

1

2
+ ε
}
,

and define V = V1 ∪ V2 ∪ V3. By (3.5), for d ∈ D = {1, h} we have

dVj ⊆
{
x ∈ X : µ(x)(dAj) >

1

2

}
,

for j = 1, 2, 3. Since the sets dAj , for d ∈ D and j = 1, 2, 3, are pairwise disjoint,
it follows that for each x ∈ X at most one of these sets can have µ(x)-measure
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more than 1
2 . We deduce that the sets dVj , for d ∈ D and j = 1, 2, 3, are pairwise

disjoint. In particular, we have:

(i) V = V1 t V2 t V3.
(ii) V 6= X, since hV ∩ V = ∅.

We will now show that X ≺ V . For j = 1, 2, 3, set

Wj =
{
x ∈ X : µ(x)(G \ hjAj) <

1

2
− 2ε

}
.

We claim that

(iii) W1 ∪W2 ∪W3 = X.
(iv) h−1

j Wj ⊆ Vj for j = 1, 2, 3.

Note that 1
2 − 2ε > 1

3 . By condition (b) above, for every x ∈ X at least one of

either G \ h1A1, G \ h2A2 or G \ h3A3 must have µ(x)-measure less than 1
2 − 2ε.

This implies (iii). To show (iv), fix j = 1, 2, 3. Given x ∈ X, the fact that µ(x) is
a probability measure on G implies that

µ(x)(G \Aj) = 1− µ(x)(Aj).

Using the above at the second step, we get

h−1
j Wj

(3.5)

⊆
{
x ∈ X : µ(x)(G \Aj) <

1

2
− ε
}

=
{
x ∈ X : µ(x)(Aj) >

1

2
+ ε
}

= Vj ,

as desired.
To simplify the notation, we set gj = h−1

j for j = 1, 2, 3. Let f1, f2, f3 ∈ C(X)

be a partition of unity subordinate to the open cover {W1,W2,W3} of X; see
(iii) above. Denote by α the action of G on C(X) induced by the given action
G y X. For g ∈ G, we write ug ∈ C(X) o G for the canonical unitary satisfying
ugf = αg(f)ug for all f ∈ C(X). We denote by E : C(X)oG→ C(X) the canonical
conditional expectation, which is determined by E(ug) = 0 whenever g ∈ G \ {1}.

Set v =
∑3
j=1 αgj (f

1/2
j )ugj , and note that v =

∑3
j=1 ugjf

1/2
j . Since αgj (f

1/2
j ) is

supported on gjWj and gjWj ∩ gkWk = ∅ whenever j 6= k by (iv) and (i) above,
we have

(3.6) αgj (f
1/2
j )αgk(f

1/2
k ) = 0

whenever j 6= k. Using this, we get

v∗v =

3∑
j,k=1

u∗gjαgj (f
1/2
j )αgk(f

1/2
k )ugk

(3.6)
=

3∑
j=1

u∗gjαgj (fj)ugj =

3∑
j=1

fj = 1.

Thus v is an isometry. On the other hand, we have

vv∗ =

3∑
j,k=1

ugjf
1/2
j f

1/2
k u∗gk =

3∑
j,k=1

αgj (f
1/2
j f

1/2
k )ugjg−1

k
.
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We will show that vv∗ 6= 1 by showing that E(vv∗) 6= 1. We apply E to the
expression above and use (3) to get

E(vv∗) =

3∑
j=1

αgj (fj).

In particular, E(vv∗) is supported on
⊔3
j=1 gjWj ⊆ V . Since V 6= X by (ii), the

above expression cannot equal 1, and hence v is not a unitary, as desired. �

We point out that the argument used in the theorem above is somewhat different
from the one used to prove Theorem 3.6. Indeed, the reasoning used in Theorem 3.6
would only give the existence of a nontrivial open set V satisfying X ≺1 V , which
suffices to show infiniteness of M2(C(X) o G), but not of C(X) o G. In order to
obtain X ≺0 V , we need the strengthening of 2-paradoxical towers proved for F2

in Proposition 3.2.

4. Examples of groups with paradoxical towers

In this section we exhibit large classes of nonamenable groups which admit para-
doxical towers; see Theorem C in the introduction. In addition to proving some
preservation properties for the class of groups admitting paradoxical towers, the
main tool to construct such groups is given in Proposition 4.6, where we show that
one can produce paradoxical towers in groups admitting some topologically free
n-filling action on a completely metrizable (but not necessarily locally compact)
space. Using this, we give several concrete and explicit examples.

We begin by looking at extensions of groups with paradoxical towers, both by
finite groups (Proposition 4.1 and by other groups with paradoxical towers (Propo-
sition 4.2).

Proposition 4.1. Let n ∈ N, let G be a group, and let K ≤ G a finite normal
subgroup such that G/K has n-paradoxical towers. Then G has n|K|-paradoxical
towers.

Proof. Denote by π : G→ G/K the quotient map, let F ⊆ G be a finite subset, and
set D0 = π(F ) and m = |K|. Since G/K is infinite, there exist t1, . . . , tm ∈ G/K
with t1 = 1 such that D0tj , for j = 1, . . . ,m, are pairwise disjoint sets. Set

(4.1) D =

m⊔
j=1

D0tj ,

which is a finite subset of G/K. Since G/K admits n-paradoxical towers, there are
sets A1, . . . , An ⊆ G/K and elements h1, . . . , hn ∈ G/K such that

(i) the sets dAi, for d ∈ D and i = 1, . . . , n, are pairwise disjoint, and
(ii) G/K =

⋃n
i=1 hiAi.

Fix an arbitrary enumeration K = {k1, . . . , km}. Let s : G/K → G be a section for
π. For i = 1, . . . , n and j = 1, . . . ,m, set

(4.2) Ci,j = s(tjhi
−1)s(hiAi) ⊆ G and gi,j = kjs(tjhi

−1)−1 ∈ G.
We claim that the above are paradoxical towers in G for F . To check the first

condition in Definition 3.1, let d, d′ ∈ F , let i, i′ = 1, . . . , n and let j, j′ = 1, . . . ,m
satisfy

(4.3) dCi,j ∩ d′Ci′,j′ 6= ∅.
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Applying π in the equation above and using (4.2), we obtain

π(d)tjAi ∩ π(d′)tj′Ai′ 6= ∅.

Note that π(d)tj and π(d′)tj′ belong toD. By condition (i), we deduce that π(d)tj =
π(d′)tj′ and i = i′. The identity in (4.1) implies that j = j′ and π(d) = π(d′). In
other words, d−1d′ belongs to K. Combining this with (4.3) and (4.2), we get

ds(tjhi
−1)s(hiAi) ∩ d′s(tjhi−1)s(hiAi) 6= ∅.

and thus

s(hiAi) ∩ s(tjhi
−1)−1

∈K︷ ︸︸ ︷
d−1d′ s(tjhi

−1)︸ ︷︷ ︸
∈K, since K is normal

s(hiAi) 6= ∅.

Since s is a section, we have ks(G/K) ∩ s(G/K) 6= ∅ for some k ∈ K if and only if
k = 1. It follows that s(tjhi

−1)−1d−1d′s(tjhi
−1) = 1 and thus d = d′, as desired.

We check the second condition in Definition 3.1. By condition (ii), we have
s(G/K) =

⋃n
i=1 s(hiAi). Using that G =

⊔m
j=1 kjs(G/K) at the last step, we

obtain
n,m⋃
i,j=1

gi,jCi,j
(4.2)
=

n,m⋃
i,j=1

kjs(tjhi
−1)−1s(tjhi

−1)s(hiAi) =

n,m⋃
i,j=1

kjs(hiAi) = G.

This proves that G has nm-paradoxical towers, as desired. �

Proposition 4.2. Let G be a group, let K ≤ G be a normal subgroup. Assume
that G/K has n-paradoxical towers and that K has m-paradoxical towers. Then
G has nm-paradoxical towers.

Proof. Denote by π : G → G/K the canonical quotient map, and let s : G/K →
G be any section for it. Let F ⊆ G be a finite subset, and set E0 = F 2 ∩ K
and D = π(F ). Without loss of generality, we assume that F is symmetric and
contains the identity of G. Since G/K has n-paradoxical towers, there exist subsets
A1, . . . , An ⊆ G/K and group elements h1, . . . , hn ∈ G/K such that

(a.1) the sets dAi, for d ∈ D and i = 1, . . . , n, are pairwise disjoint,
(a.2) G/K =

⋃n
i=1 hiAi.

Set E =
⋃n
i=1 s(hi)E0s(hi)

−1, which by normality is a (finite) subset of K. Since K
has m-paradoxical towers, there exist subsets B1, . . . , Bm ⊆ K and group elements
k1, . . . , km ∈ K such that

(b.1) the sets eBj , for e ∈ E and j = 1, . . . ,m, are pairwise disjoint,
(b.2) K =

⋃m
j=1 kjBj .

For i = 1, . . . , n and j = 1, . . . ,m, set

Ci,j = s(hi)
−1Bjs(hiAi) and gi,j = kjs(hi).

Note that π(Ci,j) = Ai for all i = 1, . . . , n and j = 1, . . . ,m.
We claim that the above are paradoxical towers in G for F . It is immediate to

check that
⋃n,m
i,j=1 gi,jCi,j = G using (a.2) and (b.2). Given f, f ′ ∈ F , i, i′ = 1, . . . , n

and j, j′ = 1, . . . ,m, suppose that

fCi,j ∩ f ′Ci′,j′ 6= ∅.
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Applying π gives π(f)Ai∩π(f ′)Ai′ 6= ∅, which by condition (a.1) implies that i = i′

and f−1f ′ ∈ K. Set e = f−1f ′ ∈ E0. Substituting in the equation above, we get

s(hi)
−1Bjs(hiAi) ∩ es(hi)−1Bj′s(hiAi) 6= ∅.

Choose a, a′ ∈ Ai, b ∈ Bj and b′ ∈ Bj′ such that

s(hi)
−1bs(hia) = es(hi)

−1b′s(hia
′).

Applying π to the identity above gives a = a′, so we get

s(hi)
−1b = es(hi)

−1b′,

which implies that Bj ∩ (s(hi)es(hi)
−1)Bj′ 6= ∅ since F contains the identity of G.

Since s(hi)es(hi)
−1 belongs to E, condition (b.1) implies that s(hi)es(hi)

−1 = 1
and j = j′. Thus e = 1 and f = f ′, as desired. �

Lemma 4.3. Let n ∈ N, and letG be a group that can be expressed as an increasing
union G =

⋃
k∈NGk of groups Gk that admit n-paradoxical towers. Then G admits

n-paradoxical towers.

Proof. Let D ⊆ G be a finite subset, and find k ∈ N such that D ⊆ Gk. Find
subsets B1, . . . , Bn ⊆ Gk and g1, . . . , gn ∈ Gk such that

(1) the sets dBi, for d ∈ D and i = 1, . . . , n, are pairwise disjoint, and
(2)

⋃n
i=1 giBi = Gk.

Let S ⊆ G be a set containing exactly one representative of each right coset in
Gk\G, so that G =

⊔
s∈S Gks. For i = 1, . . . , n, set Ai =

⊔
s∈S Bis. It is then

immediate to check that A1, . . . , An ⊆ G and g1, . . . , gn ∈ G satisfy the conditions
of Definition 3.1. �

The following notion was introduced in [JR00] for actions on compact spaces.

Definition 4.4. Let n ∈ N. An action Gy Z of a countable group on a Hausdorff
space X is said to be n-filling if for any nonempty open sets U1, . . . , Un ⊆ Z, there
exist g1, . . . , gn ∈ G such that

⋃n
j=1 giUi = Z.

In the definition above, we do not assume the space Z to be compact, or even
locally compact. It is not hard to see that if G y Z is n-filling and Z is locally
compact, then Z must in fact be compact. There exist, however, interesting n-filling
actions on spaces that are not locally compact; see Proposition 4.7.

Remark 4.5. Actions that are 2-filling are also called strong boundary actions, and
their C∗-algebraic crossed products were studied in [LS96]. They have also been
studied under the name extremely proximal actions by Glasner in [Gla74] and are
called extreme boundary actions in [BIO20].

Recall that a topological space is called Baire if the conclusion of the Baire
category theorem holds: a countable intersection of open dense subsets is dense.
The class of Baire spaces includes all locally compact Hausdorff spaces as well as
all completely metrizable ones.

Proposition 4.6. Let n ∈ N and let G be a countable group. Assume that there
exists a topologically free n-filling action of G on a Hausdorff Baire space. Then G
admits n-paradoxical towers.
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Proof. Let Z be a Baire space and let Gy Z be a topologically free n-filling action.
Let D ⊆ G be a finite subset, and assume without loss of generality that D contains
the unit 1G of G. Since G y Z is topologically free, for every g ∈ G \ {1G}, the
open set Ug = {z ∈ Z : g ·z 6= z} is dense in Z. Since G is countable and Z is Baire,
the set Y :=

⋂
g∈G\{1G} Ug is dense in Z, and in particular nonempty. Fix z1 ∈ Y ,

so that StabG(z1) = {1G}. For i = 2, . . . , n, we choose zi ∈ Z recursively satisfying

zi ∈ G · z1 \ (D−1D · z1 ∪ . . . ∪D−1D · zi−1).

Note that dzi = d′zi′ for d, d′ ∈ D and i, i′ = 1, . . . , n implies d = d′ and i =
i′. Since Z is Hausdorff, there exist open neighborhoods U1, . . . , Un of z1, . . . , zn,
respectively, such that dUi, for d ∈ D and i = 1, . . . , n, are pairwise disjoint sets in
Z. Since G y Z is n-filling, there exist g1, . . . , gn ∈ G such that

⋃n
i=1 giUi = Z.

For i = 1, . . . , n, set

Ai = {g ∈ G : g · z1 ∈ Ui}.
One checks that A1, . . . , An and g1, . . . , gn satisfy the conditions of Definition 3.1.

�

We turn to examples of groups which admit paradoxical towers. The first class
we will consider is that of acylindrically hyperbolic groups, as introduced by Osin
in [Osi16, Definition 1.3]; see Proposition 4.7. This class includes all nonamenable
hyperbolic groups (in particular, all nonabelian free groups), all but finitely many
mapping class groups, the outer automorphism group Out(Fn) of Fn, nonelementary
CAT(0)-groups containing a rank-one element, and many fundamental groups of
hyperbolic 3-manifolds; see [Osi16, Appendix].

Proposition 4.7. Let G be an acylindrically hyperbolic group. Then G admits
paradoxical towers.

Proof. Let us first assume that G has no nontrivial finite normal subgroups. By
definition, G admits a nonelementary acylindrical action by isometries on a (not
necessarily proper) Gromov-hyperbolic space Y . By [Osi16, Theorem 1.2], we can
even assume that the action is cobounded (as we can take the space to be the Cayley
graph associated to a suitable generating set). Let Z denote the (not necessarily
compact) Gromov boundary ∂Y of Y . Since G has no nontrivial finite normal
subgroups, [AD19, Proposition 4.1] ensures that the induced action G y Z is
minimal and topologically free.

We claim that G y Z is 2-filling.3 Let U, V ⊆ Z be nonempty open subsets.
Since the action Gy Y is nonelementary, there exists a loxodromic element h ∈ G
(see [Osi16, Theorem 1.2]). Denote by h−∞ the repelling point of h. By minimality
of G y Z, there is t ∈ G with t · h−∞ ∈ U . By definition (see the paragraph
before [Osi16, Theorem 1.1]), there is y ∈ Y such that (h−n · y)n∈N converges
to h−∞, and h−∞ is independent of y. In particular, G acts on the limit points
of loxodromic elements by conjugation on the group, namely, for the loxodromic
element g = tht−1 we have t · h−∞ = g−∞.

Again by minimality, there is an element s ∈ G and an open neighborhood W of
the attracting point g+∞ ∈ Z such that s ·W ⊆ V . Since g is loxodromic, there is
n ∈ N such that gn · (Z \U) ⊆W (see [Ham08, Lemma 4.3]). In particular, we have
sgn(Z \ U) ⊆ V . Thus U ∪ g−ns−1 · V = Z, which proves that Gy Z is 2-filling.

3This argument is inspired by [LS96, Example 2.1], but note that ∂Y is not necessarily compact.
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Note that by [DSU17, Proposition 3.4.18] Z = ∂Y is a completely metrizable
space. By Proposition 4.6, G admits 2-paradoxical towers.

If G is an arbitrary acylindrically hyperbolic group, then G contains a unique
maximal finite normal subgroup K(G) by [DGO17, Theorem 6.14]. We claim that
G/K(G) is acylindrically hyperbolic. To see this, use [Osi16, Theorem 1.2] to
find a proper, infinite, hyperbolically embedded subgroup H ↪→h G (see [Osi16,
Definition 2.9]). By [DGO17, Theorem 6.14], we have K(G) ⊆ H. By Lemma 8.3
in [DGO17], the map H/K(G) → G/K(G) induced by H ↪→h G is a hyperbolic
embedding. By [Osi16, Theorem 1.2], this shows that G/K(G) is acylindrically
hyperbolic.

Since G/K(G) clearly contains no nontrivial finite normal subgroups, it fol-
lows from the claim above and the first part of the proof that G/K(G) admits
2-paradoxical towers. We conclude from Proposition 4.1 that G admits 2|K(G)|-
paradoxical towers. �

The following is a concrete application of the example above to the work of Klisse
[Kli22].

Example 4.8. Let W be a nonamenable finite rank irreducible right-angled Cox-
eter group. Denote by ∂W its boundary in the sense of [Kli22, Definition 3.1].
Then the crossed product C(∂W ) oW is classifiable Kirchberg algebra.

Proof. We claim that W is acylindrically hyperbolic. By [Sis18, Theorem 1.3], it
suffices to show that W has a rank-one isometry and acts properly and cocom-
pactly on a proper CAT(0)-space. The fact that a nonamenable (also called non-
affine) Coxeter group acts properly and cocompactly on a proper CAT(0)-space is
a classical theorem of Moussong, and the fact that W contains a rank-one isome-
try follows from [CF10, Corollary 4.3 and Proposition 4.5]. This proves that W is
acylindrically hyperbolic, and thus it admits paradoxical towers by Proposition 4.7.

The action W y ∂W is amenable by [Kli22, Theorem 0.2], minimal by [Kli22,
Theorem 3.19], and and topologically free by [Kli22, Lemma 3.25]. Thus C(∂W )o
W is purely infinite by Corollary 3.8. �

Recall that an HNN-triple (G,H, θ) consists of a group G, a subgroup H, and
an injective group homomorphism θ : H → G. The HNN-extension HNN(G,H, θ)
associated to (G,H, θ) is the quotient of the free product G ∗ Z = 〈G, x〉 by the
relation xh = θ(h)x for all h ∈ H. The HNN-extension Γ = HNN(G,H, θ) is
said to be faithful if its natural action on the associated Bass-Serre tree is faithful.
Moreover, Γ is said to be ascending if either G = H or G = θ(H).

For the definition of a highly transitive group, we refer the reader to the intro-
duction of [FMMS21].

Proposition 4.9. Every faithful highly transitive non-ascending HNN-extension
has 2-paradoxical towers.

Proof. Let (G,H, θ) be a non-ascending HNN-triple with Γ = HNN(G,H, θ) faithful
and highly transitive. By [BIO20, Proposition 4.16], the natural action of Γ on the
Bass-Serre tree T associated to (G,H, θ) is strongly hyperbolic. Since this action is
always minimal (see the comments before [BIO20, Proposition 4.16]), it follows from
[BIO20, Lemma 3.5] that the induced action Γ y ∂T is 2-filling (see Remark 4.5).
By [FMMS21, Theorem B], the action Γ y ∂T is topologically free, and therefore
also Γ y ∂T is topologically free. The result thus follows from Proposition 4.6. �
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A concrete and relevant class of groups covered by Proposition 4.9 is that of
Baumslag-Solitar groups. These groups are never acylindrically hyperbolic by
[FMMS21, Remark 8.4], and are thus not covered by Proposition 4.7.

Example 4.10. Let m,n ∈ Z with |m|, |n| > 1 and |m| 6= |n|. Then the associated
Baumslag-Solitar group

BS(m,n) = 〈a, b : abm = bna〉

has 2-paradoxical towers.

Proof. We identify BS(m,n) as an HNN-extension as in [BIO20, Example 4.21]:
we take G = Z = 〈a〉, with H = mZ = 〈am〉 and θ : mZ → Z determined by
θ(am) = an; we denote this map by · nm . Since |m|, |n| > 1, the HNN-extension
is non-ascending. Moreover, BS(m,n) =HNN(Z,mZ, · nm ) is highly transitive by
[FMMS21, Proposition 8.8], and is faithful by [Mol91] (see also Remark (iii) before
Proposition 19 in [HP11]). Thus the claim follows from Proposition 4.9. �

A further class of groups we can treat with our methods is that of amalgamated
free products. Given groups A and B containing a common subgroup C, for each
k ≥ 0 the subgroup Ck ⊆ C is defined after [HP11, Corollary 2].

Example 4.11. Let A and B be groups containing a common subgroup C. Assume
that the following conditions hold:

(1) [A : C] > 1 and [B : C] > 2.
(2) There is k ≥ 1 such that Ck = {1}.

Then the amalgamated free product Γ = A ∗C B has 2-paradoxical towers. In
particular, a free product G ∗ H of nontrivial groups with |H| > 2 always has
2-paradoxical towers.

Proof. Let T denote the Bass-Serre tree of Γ. By [HP11, Proposition 19], the action
of Γ on T is minimal and strongly hyperbolic. Therefore, by [BIO20, Lemma 3.5],
the action of Γ on ∂T is 2-filling. By [HP11, Proposition 19] and [BIO20, Proposi-
tion 3.8], the action of Γ on ∂T is topologically free, which implies that the action
of Γ on ∂T is topologically free as well. The claim follows from Proposition 4.6. �

There is a generalization of Proposition 4.9 and Example 4.11 to groups acting
on trees, as follows:

Remark 4.12. Let a group Γ act on a tree T . Assume that the action Γ y T is
minimal and strongly hyperbolic. Then the action Γ y ∂T is 2-filling by [BIO20,
Lemma 3.5]. Assume moreover that the fixator subgroup of every half-tree of T
is trivial, which is equivalent to topological freeness of the action of Γ on ∂T ,
by [BIO20, Proposition 3.8] and [BIO20, Remark 2.1]. Then Γ has 2-paradoxical
towers by Proposition 4.6.

Next, we establish the existence of paradoxical towers in certain lattices in Lie
groups. Note that the following example covers SLn(Z) for n ≥ 3 (while SL2(Z) is
covered by Proposition 4.7).

Example 4.13. Let Γ be a lattice in a real connected semisimple Lie group G
without compact factors and with finite center. Then Γ admits paradoxical towers.
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Proof. Let us first assume that G has trivial center. Then the action of Γ on the
Furstenberg boundary G/P of G is topologically free and n-filling for some n ∈ N
by [JR00, Proposition 2.5, Remark 2.6] and the proof of [AD97, Proposition 3.4].
Thus Γ has paradoxical towers by Proposition 4.6.

We now treat the general case, so suppose that the center K of G is finite, and set
KΓ = Γ∩K, which is a finite normal subgroup of Γ. Then G/K is a real connected
semisimple Lie group without compact factors and with trivial center, and it is easy
to see that Γ/KΓ ⊆ G/K is a lattice. Then Γ/KΓ admits paradoxical towers by the
paragraph above, and hence Γ admits paradoxical towers by Proposition 4.1. �

The following, in combination with Corollary 3.8, generalizes [JR00, Proposition
4.2]. We refer the reader to [JR00, Sections 3 and 4] and references therein for the

definitions of buildings of type Ã2 and actions on them.

Example 4.14. Let G a group which acts simply transitively in a type rotating

manner on the vertices of a building ∆ of type Ã2. (Such groups are called Ã2-
groups in [JR00].) Then G admits paradoxical towers.

Proof. The action of G on the boundary of ∆ is topologically free and 6-filling
by [JR00, Theorem 3.8, Proposition 4.1]. Thus G admits paradoxical towers by
Proposition 4.6. �

For the following example, we refer the reader to the discussion just before [AD97,
Proposition 3.5].

Example 4.15. Let G is a countable subgroup of isometries of a visibility manifold
X with vol(X/G) <∞. Then G admits paradoxical towers.

Proof. It follows from [JR00, Proposition 2.5] and [Bal82, Theorem 2.8, Theorem
2.2] (see also [AD97, p. 218]) that the action of G on ∂X is topologically free and
n-filling for some n. Therefore G admits paradoxical towers by Proposition 4.6. �
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