K-theory of noncommutative Bernoulli shifts NYC-NCG Seminar

Julian Kranz (University of Münster)
joint work in progress with S. Chakraborty, S. Echterhoff, and S. Nishikawa

September 28, 2022

Overview

a) What are noncommutative Bernoulli shifts?

Overview

a) What are noncommutative Bernoulli shifts?
b) Main results

Overview

a) What are noncommutative Bernoulli shifts?
b) Main results
c) What is KK-theory and the Baum-Connes conjecture?

Overview

a) What are noncommutative Bernoulli shifts?
b) Main results
c) What is KK-theory and the Baum-Connes conjecture?
d) Some techniques appearing in the proofs

Crossed products

Definition

Let G be a discrete group, A a unital C^{*}-algebra and $\alpha: G \rightarrow \operatorname{Aut}(A)$ an action.

Crossed products

Definition

Let G be a discrete group, A a unital C^{*}-algebra and $\alpha: G \rightarrow \operatorname{Aut}(A)$ an action. The reduced crossed product

$$
A \rtimes_{r} G \subseteq \mathcal{L}\left(\ell^{2}(G, A)\right)
$$

is the C^{*}-algebra generated by $\tilde{\alpha}(A), \lambda(G) \subseteq \mathcal{L}\left(\ell^{2}(G, A)\right)$ where

Crossed products

Definition

Let G be a discrete group, A a unital C^{*}-algebra and $\alpha: G \rightarrow \operatorname{Aut}(A)$ an action. The reduced crossed product

$$
A \rtimes_{r} G \subseteq \mathcal{L}\left(\ell^{2}(G, A)\right)
$$

is the C^{*}-algebra generated by $\tilde{\alpha}(A), \lambda(G) \subseteq \mathcal{L}\left(\ell^{2}(G, A)\right)$ where

$$
\begin{gathered}
\tilde{\alpha}(a) \xi(g):=\alpha_{g^{-1}}(a) \xi(g) \\
\lambda_{g} \xi(h):=\xi\left(g^{-1} h\right)
\end{gathered}
$$

for $a \in A, \quad \xi \in \ell^{2}(G, A), g, h \in G$.

Crossed products - Examples

a) $\mathbb{C} \rtimes_{r} G=C_{r}^{*}(G)$.

Crossed products - Examples

a) $\mathbb{C} \rtimes_{r} G=C_{r}^{*}(G)$.
b) Let $H \rtimes G$ be a semi-direct product of groups. Then

$$
C_{r}^{*}(H \rtimes G) \cong C_{r}^{*}(H) \rtimes_{r} G .
$$

Crossed products - Examples

a) $\mathbb{C} \rtimes_{r} G=C_{r}^{*}(G)$.
b) Let $H \rtimes G$ be a semi-direct product of groups. Then

$$
C_{r}^{*}(H \rtimes G) \cong C_{r}^{*}(H) \rtimes_{r} G .
$$

c) Let $u: G \rightarrow \mathcal{U}(A)$ be a unitary representation.

Crossed products - Examples

a) $\mathbb{C} \rtimes_{r} G=C_{r}^{*}(G)$.
b) Let $H \rtimes G$ be a semi-direct product of groups. Then

$$
C_{r}^{*}(H \rtimes G) \cong C_{r}^{*}(H) \rtimes_{r} G .
$$

c) Let $u: G \rightarrow \mathcal{U}(A)$ be a unitary representation. Denote by $\operatorname{Ad}(u): G \rightarrow \operatorname{Aut}(A), \operatorname{Ad}\left(u_{g}\right)(a):=u_{g} a u_{g}^{*}$ the induced action.

Crossed products - Examples

a) $\mathbb{C} \rtimes_{r} G=C_{r}^{*}(G)$.
b) Let $H \rtimes G$ be a semi-direct product of groups. Then

$$
C_{r}^{*}(H \rtimes G) \cong C_{r}^{*}(H) \rtimes_{r} G .
$$

c) Let $u: G \rightarrow \mathcal{U}(A)$ be a unitary representation. Denote by $\operatorname{Ad}(u): G \rightarrow \operatorname{Aut}(A), \operatorname{Ad}\left(u_{g}\right)(a):=u_{g} a u_{g}^{*}$ the induced action. Then

$$
A \rtimes_{r} G \cong A \otimes C_{r}^{*}(G)
$$

Crossed products - Examples

a) $\mathbb{C} \rtimes_{r} G=C_{r}^{*}(G)$.
b) Let $H \rtimes G$ be a semi-direct product of groups. Then

$$
C_{r}^{*}(H \rtimes G) \cong C_{r}^{*}(H) \rtimes_{r} G .
$$

c) Let $u: G \rightarrow \mathcal{U}(A)$ be a unitary representation. Denote by $\operatorname{Ad}(u): G \rightarrow \operatorname{Aut}(A), \operatorname{Ad}\left(u_{g}\right)(a):=u_{g} a u_{g}^{*}$ the induced action. Then

$$
\begin{aligned}
A \rtimes_{r} G & \cong A \otimes C_{r}^{*}(G) \\
\lambda_{g} & \mapsto u_{g} \otimes \lambda_{g} \\
\tilde{\alpha}(a) & \mapsto a \otimes 1 .
\end{aligned}
$$

Bernoulli shifts

Definition

Let G be a discrete group and X a compact Hausdorff space. The Bernoulli shift of G on X is the shift action

$$
G \curvearrowright X^{G}:=\prod_{g \in G} X
$$

Noncommutative Bernoulli shifts

Definition

Let G be a discrete group and A a unital C^{*}-algebra. The Bernoulli shift of G on A is the shift action

$$
G \curvearrowright A^{\otimes G}:=\bigotimes_{g \in G} A .
$$

Noncommutative Bernoulli shifts

Definition

Let G be a discrete group and A a unital C^{*}-algebra. The Bernoulli shift of G on A is the shift action

$$
G \curvearrowright A^{\otimes G}:=\bigotimes_{g \in G} A .
$$

Example (Wreath Products)
Let G, H be groups, $H \succ G:=\left(\bigoplus_{g \in G} H\right) \rtimes G$. Then

$$
C_{r}^{*}(H \backslash G)=C_{r}^{*}(H)^{\otimes G} \rtimes_{r} G .
$$

K-theory of the crossed product

Problem
Let G be a discrete group and A a unital C^{*}-algebra. Can we compute the K-theory $K_{*}\left(A^{\otimes G} \rtimes_{r} G\right)$?

K-theory of the crossed product

Problem

Let G be a discrete group and A a unital C^{*}-algebra. Can we compute the K-theory $K_{*}\left(A^{\otimes G} \rtimes_{r} G\right)$?

Theorem (Xin Li)
Let H be a finite group and G a discrete group satisfying the Baum-Connes conjecture with coefficients (e.g. an amenable group). Then

$$
\left.K_{*}\left(C_{r}^{*}(H \backslash G)\right) \cong \bigoplus_{[F] \in G \backslash F I N}[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}\right]
$$

where FIN denotes the set of finite subsets of G, N is the number of non-trivial conjugacy classes in H, and G_{F} is the stabilizer of F in G (note that $G_{\emptyset}=G$).

Roadmap to the proof

$$
\left.K_{*}\left(C_{r}^{*}(H \backslash G)\right) \cong \bigoplus_{[F] \in G \backslash \operatorname{FIN}}[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}\right]
$$

Roadmap to the proof

$$
K_{*}\left(C_{r}^{*}(H \imath G)\right) \cong \bigoplus_{[F] \in G \backslash \operatorname{FIN}}^{[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}} K_{*}\left(C_{r}^{*}\left(G_{S}\right)\right),
$$

a) Write

$$
C_{r}^{*}\left(H\ulcorner G) \cong C_{r}^{*}(H)^{\otimes G} \rtimes_{r} G \cong\left(\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}}\right)^{\otimes G} \rtimes_{r} G .\right.
$$

Roadmap to the proof

$$
K_{*}\left(C_{r}^{*}(H \backslash G)\right) \cong \bigoplus_{[F] \in G \backslash F I N} \bigoplus_{[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}} K_{*}\left(C_{r}^{*}\left(G_{S}\right)\right),
$$

a) Write

$$
C_{r}^{*}(H / G) \cong C_{r}^{*}(H)^{\otimes G} \rtimes_{r} G \cong\left(\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}}\right)^{\otimes G} \rtimes_{r} G .
$$

b) Construct a unital $K K$-equivalence $\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}} \sim_{K K} \mathbb{C} \oplus \mathbb{C}^{N}$.

Roadmap to the proof

$$
K_{*}\left(C_{r}^{*}(H \backslash G)\right) \cong \bigoplus_{[F] \in G \backslash F I N} \bigoplus_{[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}} K_{*}\left(C_{r}^{*}\left(G_{S}\right)\right),
$$

a) Write

$$
C_{r}^{*}(H / G) \cong C_{r}^{*}(H)^{\otimes G} \rtimes_{r} G \cong\left(\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}}\right)^{\otimes G} \rtimes_{r} G .
$$

b) Construct a unital $K K$-equivalence $\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}} \sim_{K K} \mathbb{C} \oplus \mathbb{C}^{N}$.
c) Use Baum-Connes to conclude

$$
K_{*}\left(\left(\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}}\right)^{\otimes G} \rtimes_{r} G\right) \cong K_{*}\left(\left(\mathbb{C} \oplus \mathbb{C}^{N}\right)^{\otimes G} \rtimes_{r} G\right)
$$

Roadmap to the proof

$$
K_{*}\left(C_{r}^{*}(H \backslash G)\right) \cong \bigoplus_{[F] \in G \backslash \operatorname{FIN}} \bigoplus_{[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}} K_{*}\left(C_{r}^{*}\left(G_{S}\right)\right),
$$

a) Write

$$
C_{r}^{*}(H / G) \cong C_{r}^{*}(H)^{\otimes G} \rtimes_{r} G \cong\left(\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}}\right)^{\otimes G} \rtimes_{r} G .
$$

b) Construct a unital $K K$-equivalence $\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}} \sim_{K K} \mathbb{C} \oplus \mathbb{C}^{N}$.
c) Use Baum-Connes to conclude

$$
K_{*}\left(\left(\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}}\right)^{\otimes G} \rtimes_{r} G\right) \cong K_{*}\left(\left(\mathbb{C} \oplus \mathbb{C}^{N}\right)^{\otimes G} \rtimes_{r} G\right)
$$

d) Construct an isomorphism

$$
\left(\mathbb{C} \oplus \mathbb{C}^{N}\right)^{\otimes G} \cong \bigoplus_{F \in \mathrm{FIN}}\left(\mathbb{C}^{N}\right)^{\otimes F} \cong \bigoplus_{F \in \mathrm{FIN}} C\left(\{1, \ldots, N\}^{F}\right)
$$

Roadmap to the proof

$$
K_{*}\left(C_{r}^{*}(H \backslash G)\right) \cong \bigoplus_{[F] \in G \backslash F I N} \bigoplus_{[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}} K_{*}\left(C_{r}^{*}\left(G_{S}\right)\right),
$$

a) Write

$$
C_{r}^{*}\left(H\ulcorner G) \cong C_{r}^{*}(H)^{\otimes G} \rtimes_{r} G \cong\left(\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}}\right)^{\otimes G} \rtimes_{r} G .\right.
$$

b) Construct a unital $K K$-equivalence $\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}} \sim_{K K} \mathbb{C} \oplus \mathbb{C}^{N}$.
c) Use Baum-Connes to conclude

$$
K_{*}\left(\left(\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}}\right)^{\otimes G} \rtimes_{r} G\right) \cong K_{*}\left(\left(\mathbb{C} \oplus \mathbb{C}^{N}\right)^{\otimes G} \rtimes_{r} G\right)
$$

d) Construct an isomorphism

$$
\left(\mathbb{C} \oplus \mathbb{C}^{N}\right)^{\otimes G} \cong \bigoplus_{F \in \mathrm{FIN}}\left(\mathbb{C}^{N}\right)^{\otimes F} \cong \bigoplus_{F \in \mathrm{FIN}} C\left(\{1, \ldots, N\}^{F}\right)
$$

e) Compute $K_{*}\left(\left(\oplus_{F \in \operatorname{FIN}} C\left(\{1, \ldots, N\}^{F}\right)\right) \rtimes_{r} G\right)$.

These properties can be abstracted!
a)
b) Construct a unital $K K$-equivalence

$$
\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}} \sim_{K K} \mathbb{C} \oplus \mathbb{C}^{N}
$$

c) Use Baum-Connes to conclude $K_{*}\left(\left(\mathbb{C} \oplus M_{k_{1}} \oplus \cdots \oplus M_{k_{N}}\right)^{\otimes G} \rtimes_{r} G\right) \cong K_{*}\left(\left(\mathbb{C} \oplus \mathbb{C}^{N}\right)^{\otimes G} \rtimes_{r} G\right)$.
d) Construct an isomorphism

$$
\left(\mathbb{C} \oplus \mathbb{C}^{N}\right)^{\otimes G} \cong \bigoplus_{F \in \mathrm{FIN}}\left(\mathbb{C}^{N}\right)^{\otimes F} \cong \bigoplus_{F \in \mathrm{FIN}} C\left(\{1, \ldots, N\}^{F}\right)
$$

e)

Main results

Theorem (Chakraborty-Echterhoff-K-Nishikawa)

Let $A \cong M_{k_{0}} \oplus \cdots \oplus M_{k_{N}}$ be a finite-dimensional C^{*}-algebra and G a discrete group satisfying the Baum-Connes conjecture with coefficients. Write $n:=\operatorname{gcd}\left(k_{0}, \ldots, k_{N}\right)$. Then we have

$$
K_{*}\left(A^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash \operatorname{FIN}} \bigoplus_{[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}} K_{*}\left(C_{r}^{*}\left(G_{S}\right)\right)[1 / n] .
$$

Main results

Theorem (Chakraborty-Echterhoff-K-Nishikawa)
Let $A \cong M_{k_{0}} \oplus \cdots \oplus M_{k_{N}}$ be a finite-dimensional C^{*}-algebra and G a discrete group satisfying the Baum-Connes conjecture with coefficients. Write $n:=\operatorname{gcd}\left(k_{0}, \ldots, k_{N}\right)$. Then we have

$$
K_{*}\left(A^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash F I N} \bigoplus_{[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}} K_{*}\left(C_{r}^{*}\left(G_{S}\right)\right)[1 / n] .
$$

Theorem (Chakraborty-Echterhoff-K-Nishikawa) Let H be an amenable group and G as above. Write $B=\operatorname{ker}\left(1_{H}: C_{r}^{*}(H) \rightarrow \mathbb{C}\right)$. Then

$$
K_{*}\left(C_{r}^{*}(H \succ G)\right) \cong \bigoplus_{[F] \in G \backslash F I N} K_{*}\left(B^{\otimes F} \rtimes_{r} G_{F}\right),
$$

where $B^{\otimes \emptyset}:=\mathbb{C}$.

Reminder on Kasparov's $K K^{G}$-theory

Let G be a countable discrete group. There is an additive category $K K^{G}$ with separable $G-C^{*}$-algebras as objects, and a functor

$$
j:\left\{\text { sep. } G-C^{*} \text {-alg. }\right\} \rightarrow K K^{G}
$$

with the following properties:

Reminder on Kasparov's $K K^{G}$-theory

Let G be a countable discrete group. There is an additive category $K K^{G}$ with separable $G-C^{*}$-algebras as objects, and a functor

$$
j:\left\{\text { sep. } G-C^{*} \text {-alg. }\right\} \rightarrow K K^{G}
$$

with the following properties:
a) If we write $K K=K K^{\{e\}}$, then $K_{0}(A) \cong K K(\mathbb{C}, A)$ and $K_{1}(A) \cong K K\left(C_{0}(\mathbb{R}), A\right)$.

Reminder on Kasparov's $K K^{G}$-theory

Let G be a countable discrete group. There is an additive category $K K^{G}$ with separable $G-C^{*}$-algebras as objects, and a functor

$$
j:\left\{\text { sep. } G-C^{*} \text {-alg. }\right\} \rightarrow K K^{G}
$$

with the following properties:
a) If we write $K K=K K^{\{e\}}$, then $K_{0}(A) \cong K K(\mathbb{C}, A)$ and $K_{1}(A) \cong K K\left(C_{0}(\mathbb{R}), A\right)$.
b) The reduced crossed product $A \mapsto A \rtimes_{r} G$ descends to a functor

$$
-\rtimes_{r} G: K K^{G} \rightarrow K K
$$

Reminder on Kasparov's $K K^{G}$-theory

Let G be a countable discrete group. There is an additive category $K K^{G}$ with separable $G-C^{*}$-algebras as objects, and a functor

$$
j:\left\{\text { sep. } G-C^{*} \text {-alg. }\right\} \rightarrow K K^{G}
$$

with the following properties:
a) If we write $K K=K K^{\{e\}}$, then $K_{0}(A) \cong K K(\mathbb{C}, A)$ and $K_{1}(A) \cong K K\left(C_{0}(\mathbb{R}), A\right)$.
b) The reduced crossed product $A \mapsto A \rtimes_{r} G$ descends to a functor

$$
-\rtimes_{r} G: K K^{G} \rightarrow K K
$$

c) For a subgroup $H \subseteq G$, there are induction and restriction functors

$$
\operatorname{Ind}_{H}^{G}: K K^{H} \rightleftarrows K K^{G}: \operatorname{Res}_{G}^{H} .
$$

Reminder on Kasparov's $K K^{G}$-theory

Let G be a countable discrete group. There is an additive category $K K^{G}$ with separable $G-C^{*}$-algebras as objects, and a functor

$$
j:\left\{\text { sep. } G-C^{*} \text {-alg. }\right\} \rightarrow K K^{G}
$$

with the following properties:
d) j sends G-Morita equivalences to isomorphisms ($K K^{G}$-equivalences).

Reminder on Kasparov's $K K^{G}$-theory

Let G be a countable discrete group. There is an additive category $K K^{G}$ with separable $G-C^{*}$-algebras as objects, and a functor

$$
j:\left\{\text { sep. } G-C^{*} \text {-alg. }\right\} \rightarrow K K^{G}
$$

with the following properties:
d) j sends G-Morita equivalences to isomorphisms ($K K^{G}$-equivalences).
e) Suppose A and B are $K K$-equivalent and that H is a finite group. Then $A^{\otimes H}$ and $B^{\otimes H}$ are $K K^{H}$-equivalent (Izumi).

Reminder on Kasparov's $K K^{G}$-theory

Let G be a countable discrete group. There is an additive category $K K^{G}$ with separable $G-C^{*}$-algebras as objects, and a functor

$$
j:\left\{\text { sep. } G-C^{*} \text {-alg. }\right\} \rightarrow K K^{G}
$$

with the following properties:
d) j sends G-Morita equivalences to isomorphisms ($K K^{G}$-equivalences).
e) Suppose A and B are $K K$-equivalent and that H is a finite group. Then $A^{\otimes H}$ and $B^{\otimes H}$ are $K K^{H}$-equivalent (Izumi).
f) If H is finite, then $K K^{H}(\mathbb{C}, \mathbb{C})$ is isomorphic to the representation ring $R_{\mathbb{C}}(H)$.

The Baum-Connes conjecture with coefficients

Conjecture (BCC)
Let G be a discrete group, let A, B be $G-C^{*}$-algebras and $\varphi \in K K^{G}(A, B)$ such that the induced map

$$
K_{*}\left(A \rtimes_{r} H\right) \rightarrow K_{*}\left(B \rtimes_{r} H\right)
$$

is an isomorphism for every finite subgroup $H \subseteq G$.

The Baum-Connes conjecture with coefficients

Conjecture (BCC)

Let G be a discrete group, let A, B be $G-C^{*}$-algebras and $\varphi \in K^{G}(A, B)$ such that the induced map

$$
K_{*}\left(A \rtimes_{r} H\right) \rightarrow K_{*}\left(B \rtimes_{r} H\right)
$$

is an isomorphism for every finite subgroup $H \subseteq G$. Then the induced map

$$
K_{*}\left(A \rtimes_{r} G\right) \rightarrow K_{*}\left(B \rtimes_{r} G\right)
$$

is an isomorphism.

The Baum-Connes conjecture with coefficients

Conjecture (BCC)

Let G be a discrete group, let A, B be $G-C^{*}$-algebras and $\varphi \in K^{G}(A, B)$ such that the induced map

$$
K_{*}\left(A \rtimes_{r} H\right) \rightarrow K_{*}\left(B \rtimes_{r} H\right)
$$

is an isomorphism for every finite subgroup $H \subseteq G$. Then the induced map

$$
K_{*}\left(A \rtimes_{r} G\right) \rightarrow K_{*}\left(B \rtimes_{r} G\right)
$$

is an isomorphism.
Remark
This formulation is due to Meyer-Nest, based on results of
Chabert-Echterhoff-Oyono-Oyono.

The Baum-Connes conjecture with coefficients

Conjecture (BCC)

Let G be a discrete group, let A, B be $G-C^{*}$-algebras and $\varphi \in K K^{G}(A, B)$ such that the induced map

$$
K_{*}\left(A \rtimes_{r} H\right) \rightarrow K_{*}\left(B \rtimes_{r} H\right)
$$

is an isomorphism for every finite subgroup $H \subseteq G$. Then the induced map

$$
K_{*}\left(A \rtimes_{r} G\right) \rightarrow K_{*}\left(B \rtimes_{r} G\right)
$$

is an isomorphism.

Remark

This formulation is due to Meyer-Nest, based on results of
Chabert-Echterhoff-Oyono-Oyono.
BCC holds for all amenable groups (Higson-Kasparov) but not for all groups (Higson-Lafforgue-Skandalis).

An abstract K-theory formula

Theorem (Chakraborty-Echterhoff-K-Nishikawa)

Let G be a discrete group satisfying BCC and let A be a unital C^{*}-algebra. Denote by $\iota: \mathbb{C} \hookrightarrow A$ the unital inclusion. Assume there is a C^{*}-algebra B and $\phi \in K K(B, A)$ such that $\phi \oplus \iota \in K K(B \oplus \mathbb{C}, A)$ is a $K K$-equivalence. Then we have

$$
K_{*}\left(A^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash F I N} K_{*}\left(B^{\otimes F} \rtimes_{r} G_{F}\right)
$$

An abstract K-theory formula

Theorem (Chakraborty-Echterhoff-K-Nishikawa)

Let G be a discrete group satisfying BCC and let A be a unital C^{*}-algebra. Denote by $\iota: \mathbb{C} \hookrightarrow A$ the unital inclusion. Assume there is a C^{*}-algebra B and $\phi \in K K(B, A)$ such that $\phi \oplus \iota \in K K(B \oplus \mathbb{C}, A)$ is a $K K$-equivalence. Then we have

$$
K_{*}\left(A^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash F I N} K_{*}\left(B^{\otimes F} \rtimes_{r} G_{F}\right) .
$$

Sketch of proof.
Using BCC and a $\xrightarrow{\text { lim-argument, we can assume that } G \text { is finite. }}$

An abstract K-theory formula

Theorem (Chakraborty-Echterhoff-K-Nishikawa)

Let G be a discrete group satisfying BCC and let A be a unital C^{*}-algebra. Denote by $\iota: \mathbb{C} \hookrightarrow A$ the unital inclusion. Assume there is a C^{*}-algebra B and $\phi \in K K(B, A)$ such that $\phi \oplus \iota \in K K(B \oplus \mathbb{C}, A)$ is a $K K$-equivalence. Then we have

$$
K_{*}\left(A^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash F I N} K_{*}\left(B^{\otimes F} \rtimes_{r} G_{F}\right) .
$$

Sketch of proof.
Using BCC and a $\xrightarrow{\text { lim-argument, we can assume that } G \text { is finite. }}$ Izumi's Lemma shows that $A^{\otimes G} \sim_{K K G}(B \oplus \mathbb{C})^{\otimes G}$.

An abstract K-theory formula

Theorem (Chakraborty-Echterhoff-K-Nishikawa)

Let G be a discrete group satisfying BCC and let A be a unital C^{*}-algebra. Denote by $\iota: \mathbb{C} \hookrightarrow A$ the unital inclusion. Assume there is a C^{*}-algebra B and $\phi \in K K(B, A)$ such that $\phi \oplus \iota \in K K(B \oplus \mathbb{C}, A)$ is a $K K$-equivalence. Then we have

$$
K_{*}\left(A^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash F I N} K_{*}\left(B^{\otimes F} \rtimes_{r} G_{F}\right)
$$

Sketch of proof.
Using BCC and a $\underset{\longrightarrow}{\text { lim-argument, we can assume that } G \text { is finite. }}$ Izumi's Lemma shows that $A^{\otimes G} \sim_{K K^{G}}(B \oplus \mathbb{C})^{\otimes G}$. Now note that

$$
(B \oplus \mathbb{C})^{\otimes G} \cong \bigoplus_{F \in \mathrm{FIN}} B^{\otimes F}
$$

Examples for $B \oplus \mathbb{C} \sim_{k K} A$

The ring $K K\left(\mathbb{C}^{N}, \mathbb{C}^{N}\right)$ is isomorphic to $M(N \times N, \mathbb{Z})$, the $K K$-equivalences are given by elements in $G L(N, \mathbb{Z})$.

Examples for $B \oplus \mathbb{C} \sim_{k K} A$

The ring $K K\left(\mathbb{C}^{N}, \mathbb{C}^{N}\right)$ is isomorphic to $M(N \times N, \mathbb{Z})$, the $K K$-equivalences are given by elements in $G L(N, \mathbb{Z})$. Denote by $\phi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N+1}$ the map given by $x \mapsto(x, 0)$ and by $\iota: \mathbb{C} \rightarrow \mathbb{C}^{N+1}$ the unital inclusion.

Examples for $B \oplus \mathbb{C} \sim_{K K} A$

The ring $K K\left(\mathbb{C}^{N}, \mathbb{C}^{N}\right)$ is isomorphic to $M(N \times N, \mathbb{Z})$, the $K K$-equivalences are given by elements in $G L(N, \mathbb{Z})$. Denote by $\phi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N+1}$ the map given by $x \mapsto(x, 0)$ and by $\iota: \mathbb{C} \rightarrow \mathbb{C}^{N+1}$ the unital inclusion. Then $\phi \oplus \iota \in K K\left(\mathbb{C}^{N+1}, \mathbb{C}^{N+1}\right)$ is represented by the matrix

$$
\phi \oplus \iota=\left(\begin{array}{ccc}
1 & & 1 \\
& \ddots & \vdots \\
& & 1
\end{array}\right) \in G L(N+1, \mathbb{Z})
$$

and therefore a $K K$-equivalence.

Examples for $B \oplus \mathbb{C} \sim_{K K} A$

The ring $K K\left(\mathbb{C}^{N}, \mathbb{C}^{N}\right)$ is isomorphic to $M(N \times N, \mathbb{Z})$, the $K K$-equivalences are given by elements in $G L(N, \mathbb{Z})$. Denote by $\phi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N+1}$ the map given by $x \mapsto(x, 0)$ and by $\iota: \mathbb{C} \rightarrow \mathbb{C}^{N+1}$ the unital inclusion. Then $\phi \oplus \iota \in K K\left(\mathbb{C}^{N+1}, \mathbb{C}^{N+1}\right)$ is represented by the matrix

$$
\phi \oplus \iota=\left(\begin{array}{ccc}
1 & & 1 \\
& \ddots & \vdots \\
& & 1
\end{array}\right) \in G L(N+1, \mathbb{Z})
$$

and therefore a $K K$-equivalence.
Corollary
Assume that G satisfies BCC. Then we have

$$
K_{*}\left(\left(\mathbb{C}^{N+1}\right)^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash F I N} K_{*}\left(\left(\mathbb{C}^{N}\right)^{\otimes F} \rtimes_{r} G_{F}\right)
$$

Examples for $B \oplus \mathbb{C} \sim_{K K} A$

The ring $K K\left(\mathbb{C}^{N}, \mathbb{C}^{N}\right)$ is isomorphic to $M(N \times N, \mathbb{Z})$, the $K K$-equivalences are given by elements in $G L(N, \mathbb{Z})$. Denote by $\phi: \mathbb{C}^{N} \rightarrow \mathbb{C}^{N+1}$ the map given by $x \mapsto(x, 0)$ and by $\iota: \mathbb{C} \rightarrow \mathbb{C}^{N+1}$ the unital inclusion. Then $\phi \oplus \iota \in K K\left(\mathbb{C}^{N+1}, \mathbb{C}^{N+1}\right)$ is represented by the matrix

$$
\phi \oplus \iota=\left(\begin{array}{ccc}
1 & & 1 \\
& \ddots & \vdots \\
& & 1
\end{array}\right) \in G L(N+1, \mathbb{Z})
$$

and therefore a $K K$-equivalence.
Corollary
Assume that G satisfies BCC. Then we have

$$
K_{*}\left(\left(\mathbb{C}^{N+1}\right)^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash \operatorname{FIN}[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}} K_{*}\left(C_{r}^{*}\left(G_{S}\right)\right)
$$

Question

Let A be a unital C^{*}-algebra, denote by $\iota: \mathbb{C} \rightarrow A$ the unital inclusion. When can you find a C^{*}-algebra B and an element $\phi \in K K(B, A)$ such that $\phi \oplus \iota \in K K(B \oplus \mathbb{C}, A)$ is a $K K$-equivalence?

Question
Let A be a unital C^{*}-algebra, denote by $\iota: \mathbb{C} \rightarrow A$ the unital inclusion. When can you find a C^{*}-algebra B and an element $\phi \in K K(B, A)$ such that $\phi \oplus \iota \in K K(B \oplus \mathbb{C}, A)$ is a $K K$-equivalence?

Answer
Assume the UCT!

The Universal Coefficient Theorem

Definition (Rosenberg-Schochet)
A separable C^{*}-algebra A satisfies the Universal Coefficient Theorem (UCT), if for every separable C^{*}-algebra C, there is a short exact sequence

$$
0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(K_{*}(A), K_{*}(C)\right) \rightarrow K K(A, C) \rightarrow \operatorname{Hom}\left(K_{*}(A), K_{*}(C)\right) \rightarrow 0
$$

The Universal Coefficient Theorem

Definition (Rosenberg-Schochet)

A separable C^{*}-algebra A satisfies the Universal Coefficient Theorem (UCT), if for every separable C^{*}-algebra C, there is a short exact sequence

$$
0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(K_{*}(A), K_{*}(C)\right) \rightarrow K K(A, C) \rightarrow \operatorname{Hom}\left(K_{*}(A), K_{*}(C)\right) \rightarrow 0
$$

Some facts:
a) If H is amenable, then $C_{r}^{*}(H)$ satisfies the UCT (Tu).

The Universal Coefficient Theorem

Definition (Rosenberg-Schochet)

A separable C^{*}-algebra A satisfies the Universal Coefficient Theorem (UCT), if for every separable C^{*}-algebra C, there is a short exact sequence
$0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(K_{*}(A), K_{*}(C)\right) \rightarrow K K(A, C) \rightarrow \operatorname{Hom}\left(K_{*}(A), K_{*}(C)\right) \rightarrow 0$.

Some facts:
a) If H is amenable, then $C_{r}^{*}(H)$ satisfies the UCT (Tu).
b) Conjecturally, all separable, nuclear C^{*}-algebras satisfy the UCT.

The Universal Coefficient Theorem

Definition (Rosenberg-Schochet)

A separable C^{*}-algebra A satisfies the Universal Coefficient Theorem (UCT), if for every separable C^{*}-algebra C, there is a short exact sequence
$0 \rightarrow \operatorname{Ext}_{\mathbb{Z}}^{1}\left(K_{*}(A), K_{*}(C)\right) \rightarrow K K(A, C) \rightarrow \operatorname{Hom}\left(K_{*}(A), K_{*}(C)\right) \rightarrow 0$.

Some facts:
a) If H is amenable, then $C_{r}^{*}(H)$ satisfies the UCT (Tu).
b) Conjecturally, all separable, nuclear C^{*}-algebras satisfy the UCT.
c) Suppose that A and C satisfy the UCT. Then any isomorphism $\phi \in \operatorname{Hom}\left(K_{*}(A), K_{*}(C)\right)$ is induced by a $K K$-equivalence $\bar{\phi} \in K K(A, C)$.

Examples for $A \sim_{K K} \mathbb{C} \oplus B$

Let A be a unital C^{*}-algebra satisfying the UCT such that the unital inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)$ (for example $A=C_{r}^{*}(H)$ with H amenable).

Examples for $A \sim_{K K} \mathbb{C} \oplus B$

Let A be a unital C^{*}-algebra satisfying the UCT such that the unital inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)$ (for example $A=C_{r}^{*}(H)$ with H amenable).
Let B be a C^{*}-algebra satisfying the UCT such hat

$$
K_{*}(B) \cong \operatorname{coker}\left(K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)\right)
$$

$\left(\rightsquigarrow K_{*}(B) \oplus K_{*}(\mathbb{C}) \cong K_{*}(A)\right)$

Examples for $A \sim_{K K} \mathbb{C} \oplus B$

Let A be a unital C^{*}-algebra satisfying the UCT such that the unital inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)$ (for example $A=C_{r}^{*}(H)$ with H amenable).
Let B be a C^{*}-algebra satisfying the UCT such hat

$$
K_{*}(B) \cong \operatorname{coker}\left(K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)\right)
$$

$\left(\rightsquigarrow K_{*}(B) \oplus K_{*}(\mathbb{C}) \cong K_{*}(A)\right)$
Let $\phi \in K K(B, A)$ be an element inducing $K_{*}(B) \rightarrow K_{*}(A)$.

Examples for $A \sim_{K K} \mathbb{C} \oplus B$

Let A be a unital C^{*}-algebra satisfying the UCT such that the unital inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)$ (for example $A=C_{r}^{*}(H)$ with H amenable).
Let B be a C^{*}-algebra satisfying the UCT such hat

$$
K_{*}(B) \cong \operatorname{coker}\left(K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)\right)
$$

$\left(\rightsquigarrow K_{*}(B) \oplus K_{*}(\mathbb{C}) \cong K_{*}(A)\right)$
Let $\phi \in K K(B, A)$ be an element inducing $K_{*}(B) \rightarrow K_{*}(A)$.
Then $\phi \oplus \iota \in K K(B \oplus \mathbb{C}, A)$ induces an isomorphism in K-theory.

Examples for $A \sim_{K K} \mathbb{C} \oplus B$

Let A be a unital C^{*}-algebra satisfying the UCT such that the unital inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)$ (for example $A=C_{r}^{*}(H)$ with H amenable).
Let B be a C^{*}-algebra satisfying the UCT such hat

$$
K_{*}(B) \cong \operatorname{coker}\left(K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)\right)
$$

$\left(\rightsquigarrow K_{*}(B) \oplus K_{*}(\mathbb{C}) \cong K_{*}(A)\right)$
Let $\phi \in K K(B, A)$ be an element inducing $K_{*}(B) \rightarrow K_{*}(A)$.
Then $\phi \oplus \iota \in K K(B \oplus \mathbb{C}, A)$ induces an isomorphism in K-theory. Thus $\phi \oplus \iota$ is a $K K$-equivalence.

Examples for $A \sim_{K K} \mathbb{C} \oplus B$

Let A be a unital C^{*}-algebra satisfying the UCT such that the unital inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)$ (for example $A=C_{r}^{*}(H)$ with H amenable).
Let B be a C^{*}-algebra satisfying the UCT such hat

$$
K_{*}(B) \cong \operatorname{coker}\left(K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)\right)
$$

$\left(\rightsquigarrow K_{*}(B) \oplus K_{*}(\mathbb{C}) \cong K_{*}(A)\right)$
Let $\phi \in K K(B, A)$ be an element inducing $K_{*}(B) \rightarrow K_{*}(A)$.
Then $\phi \oplus \iota \in K K(B \oplus \mathbb{C}, A)$ induces an isomorphism in K-theory. Thus $\phi \oplus \iota$ is a $K K$-equivalence.
Corollary

$$
K_{*}\left(A^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash F I N} K_{*}\left(B^{\otimes F} \rtimes_{r} G_{F}\right)
$$

where $B^{\otimes \emptyset}:=\mathbb{C}$.

More examples for for $A \sim_{K K} \mathbb{C} \oplus B$

There are many unital, separable, C^{*}-algebras A satisfying the UCT such that the inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A)$:

More examples for for $A \sim_{K K} \mathbb{C} \oplus B$

There are many unital, separable, C^{*}-algebras A satisfying the UCT such that the inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A):$
a) $A=C_{r}^{*}(H)$ when H amenable, $B=\operatorname{ker}\left(1_{H}: C_{r}^{*}(H) \rightarrow \mathbb{C}\right)$

More examples for for $A \sim_{K K} \mathbb{C} \oplus B$

There are many unital, separable, C^{*}-algebras A satisfying the UCT such that the inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A):$
a) $A=C_{r}^{*}(H)$ when H amenable, $B=\operatorname{ker}\left(1_{H}: C_{r}^{*}(H) \rightarrow \mathbb{C}\right)$
b) $A=C\left(S^{1}\right), \quad B=C_{0}(\mathbb{R})$

More examples for for $A \sim_{K K} \mathbb{C} \oplus B$

There are many unital, separable, C^{*}-algebras A satisfying the UCT such that the inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A):$
a) $A=C_{r}^{*}(H)$ when H amenable, $B=\operatorname{ker}\left(1_{H}: C_{r}^{*}(H) \rightarrow \mathbb{C}\right)$
b) $A=C\left(S^{1}\right), \quad B=C_{0}(\mathbb{R})$
c) $A=A_{\theta}, \quad B=\mathbb{C} \oplus C_{0}(\mathbb{R}) \oplus C_{0}(\mathbb{R})$

More examples for for $A \sim_{K K} \mathbb{C} \oplus B$

There are many unital, separable, C^{*}-algebras A satisfying the UCT such that the inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A):$
a) $A=C_{r}^{*}(H)$ when H amenable, $B=\operatorname{ker}\left(1_{H}: C_{r}^{*}(H) \rightarrow \mathbb{C}\right)$
b) $A=C\left(S^{1}\right), \quad B=C_{0}(\mathbb{R})$
c) $A=A_{\theta}, \quad B=\mathbb{C} \oplus C_{0}(\mathbb{R}) \oplus C_{0}(\mathbb{R})$
d) $A=\mathcal{T}, \quad B=0$

More examples for for $A \sim_{K K} \mathbb{C} \oplus B$

There are many unital, separable, C^{*}-algebras A satisfying the UCT such that the inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A):$
a) $A=C_{r}^{*}(H)$ when H amenable, $B=\operatorname{ker}\left(1_{H}: C_{r}^{*}(H) \rightarrow \mathbb{C}\right)$
b) $A=C\left(S^{1}\right), \quad B=C_{0}(\mathbb{R})$
c) $A=A_{\theta}, \quad B=\mathbb{C} \oplus C_{0}(\mathbb{R}) \oplus C_{0}(\mathbb{R})$
d) $A=\mathcal{T}, \quad B=0$
e) $A=\mathcal{O}_{\infty}, \quad B=0$.

More examples for for $A \sim_{K K} \mathbb{C} \oplus B$

There are many unital, separable, C^{*}-algebras A satisfying the UCT such that the inclusion $\iota: \mathbb{C} \rightarrow A$ induces a split injection $K_{*}(\mathbb{C}) \hookrightarrow K_{*}(A):$
a) $A=C_{r}^{*}(H)$ when H amenable, $B=\operatorname{ker}\left(1_{H}: C_{r}^{*}(H) \rightarrow \mathbb{C}\right)$
b) $A=C\left(S^{1}\right), \quad B=C_{0}(\mathbb{R})$
c) $A=A_{\theta}, \quad B=\mathbb{C} \oplus C_{0}(\mathbb{R}) \oplus C_{0}(\mathbb{R})$
d) $A=\mathcal{T}, \quad B=0$
e) $A=\mathcal{O}_{\infty}, \quad B=0$.

Remark

The equivariant topological K-theory groups

$$
K_{*}\left(C_{0}(\mathbb{R})^{\otimes F} \rtimes_{r} G_{F}\right) \cong K_{G_{F}}^{*}\left(\mathbb{R}^{F}\right)
$$

can be computed explicitly (Karoubi, Echterhoff-Pfante).

Finite-dimensional algebras

Theorem (Chakraborty-Echterhoff-K-Nishikawa)
Let $A=M_{k_{0}} \oplus \cdots \oplus M_{k_{N}}$ with $\operatorname{gcd}\left(k_{0}, \ldots, k_{N}\right)=1$. Then there is a unital $*$-homomorphism $\phi: \mathbb{C}^{N+1} \rightarrow A$ which is a KK-equivalence.

Finite-dimensional algebras

Theorem (Chakraborty-Echterhoff-K-Nishikawa)
Let $A=M_{k_{0}} \oplus \cdots \oplus M_{k_{N}}$ with $\operatorname{gcd}\left(k_{0}, \ldots, k_{N}\right)=1$. Then there is a unital $*$-homomorphism $\phi: \mathbb{C}^{N+1} \rightarrow A$ which is a KK-equivalence. If furthermore G is a group satisfying BCC, then there is an isomorphism

$$
K_{*}\left(A^{\otimes G} \rtimes_{r} G\right) \cong K_{*}\left(\left(\mathbb{C}^{N+1}\right)^{\otimes G} \rtimes_{r} G\right) .
$$

Finite-dimensional algebras

Theorem (Chakraborty-Echterhoff-K-Nishikawa)

Let $A=M_{k_{0}} \oplus \cdots \oplus M_{k_{N}}$ with $\operatorname{gcd}\left(k_{0}, \ldots, k_{N}\right)=1$. Then there is a unital $*$-homomorphism $\phi: \mathbb{C}^{N+1} \rightarrow A$ which is a $K K$-equivalence. If furthermore G is a group satisfying $B C C$, then there is an isomorphism

$$
K_{*}\left(A^{\otimes G} \rtimes_{r} G\right) \cong K_{*}\left(\left(\mathbb{C}^{N+1}\right)^{\otimes G} \rtimes_{r} G\right)
$$

Sketch of proof.
It suffices to find a matrix $X \in G L(N+1, \mathbb{Z})$ such that $X(1, \ldots, 1)=\left(k_{0}, \ldots, k_{N}\right)$. This exists by the Euclidian algorithm.

UHF-algebras

Theorem (K-Nishikawa)
Let H be a finite group and Z a countably infinite H-set. Then the canonical inclusions

$$
M_{n}^{\otimes Z} \hookrightarrow M_{n}^{\otimes Z} \otimes M_{n}^{\otimes \infty} \hookleftarrow M_{n}^{\otimes \infty}
$$

are $K K^{H}$-equivalences.

UHF-algebras

Theorem (K-Nishikawa)
Let H be a finite group and Z a countably infinite H-set. Then the canonical inclusions

$$
M_{n}^{\otimes Z} \hookrightarrow M_{n}^{\otimes Z} \otimes M_{n}^{\otimes \infty} \hookleftarrow M_{n}^{\otimes \infty}
$$

are $K K^{H}$-equivalences.
Sketch of proof.
If $H \curvearrowright Z$ is trivial, this follows since $M_{n}^{\otimes \infty}$ is strongly self-absorbing.

UHF-algebras

Theorem (K-Nishikawa)
Let H be a finite group and Z a countably infinite H-set. Then the canonical inclusions

$$
M_{n}^{\otimes Z} \hookrightarrow M_{n}^{\otimes Z} \otimes M_{n}^{\otimes \infty} \hookleftarrow M_{n}^{\otimes \infty}
$$

are $K K^{H}$-equivalences.
Sketch of proof.
If $H \curvearrowright Z$ is trivial, this follows since $M_{n}^{\otimes \infty}$ is strongly self-absorbing.
If $Z=H \times \mathbb{N}$, we can write $M_{n}^{\otimes Z} \cong \lim _{\longrightarrow}\left(M_{n}^{\otimes H}\right)^{\otimes k}$.

UHF-algebras

Theorem (K-Nishikawa)

Let H be a finite group and Z a countably infinite H-set. Then the canonical inclusions

$$
M_{n}^{\otimes Z} \hookrightarrow M_{n}^{\otimes Z} \otimes M_{n}^{\otimes \infty} \hookleftarrow M_{n}^{\otimes \infty}
$$

are $K K^{H}$-equivalences.
Sketch of proof.
If $H \curvearrowright Z$ is trivial, this follows since $M_{n}^{\otimes \infty}$ is strongly self-absorbing.
If $Z=H \times \mathbb{N}$, we can write $M_{n}^{\otimes Z} \cong \lim _{\rightarrow k}\left(M_{n}^{\otimes H}\right)^{\otimes k}$.
Use $\left(M_{n}^{\otimes H}\right)^{\otimes k} \sim_{K K^{H}} M_{n}^{\otimes k \mid}$ to "inductively trivialize" the action.

UHF-algebras

Theorem (K-Nishikawa)

Let H be a finite group and Z a countably infinite H-set. Then the canonical inclusions

$$
M_{n}^{\otimes Z} \hookrightarrow M_{n}^{\otimes Z} \otimes M_{n}^{\otimes \infty} \hookleftarrow M_{n}^{\otimes \infty}
$$

are $K K^{H}$-equivalences.
Sketch of proof.
If $H \curvearrowright Z$ is trivial, this follows since $M_{n}^{\otimes \infty}$ is strongly self-absorbing.
If $Z=H \times \mathbb{N}$, we can write $M_{n}^{\otimes Z} \cong \lim _{\rightarrow k}\left(M_{n}^{\otimes H}\right)^{\otimes k}$.
Use $\left(M_{n}^{\otimes H}\right)^{\otimes k} \sim_{K K H} M_{n}^{\otimes k \mid}$ to "inductively trivialize" the action.
Warning: The connecting maps for $\lim _{\rightarrow} M_{n^{|H|}}^{\otimes k}$ involve non-trivial $K K^{H}$-elements (\rightsquigarrow representation theory).

UHF-algebras

Theorem (K-Nishikawa)

Let H be a finite group and Z a countably infinite H-set. Then the canonical inclusions

$$
M_{n}^{\otimes Z} \hookrightarrow M_{n}^{\otimes Z} \otimes M_{n}^{\otimes \infty} \hookleftarrow M_{n}^{\otimes \infty}
$$

are $K K^{H}$-equivalences.
Corollary
Let G be an infinite discrete group satisfying BCC and let A be a G-C*-algebra. Then we have
$K_{*}\left(\left(A \otimes M_{n}^{\otimes G}\right) \rtimes_{r} G\right) \cong K_{*}\left(\left(A \rtimes_{r} G\right) \otimes M_{n}^{\otimes \infty}\right) \cong K_{*}\left(A \rtimes_{r} G\right)[1 / n]$.

Finite-dimensional algebras

Corollary

Let G be an infinite discrete group satisfying $B C C$ and let A be a G-C*-algebra. Then we have
$K_{*}\left(\left(A \otimes M_{n}^{\otimes G}\right) \rtimes_{r} G\right) \cong K_{*}\left(\left(A \rtimes_{r} G\right) \otimes M_{n}^{\otimes \infty}\right) \cong K_{*}\left(A \rtimes_{r} G\right)[1 / n]$.

Finite-dimensional algebras

Corollary

Let G be an infinite discrete group satisfying $B C C$ and let A be a $G-C^{*}$-algebra. Then we have
$K_{*}\left(\left(A \otimes M_{n}^{\otimes G}\right) \rtimes_{r} G\right) \cong K_{*}\left(\left(A \rtimes_{r} G\right) \otimes M_{n}^{\otimes \infty}\right) \cong K_{*}\left(A \rtimes_{r} G\right)[1 / n]$.

Corollary
Let G be an infinite discrete group satisfying BCC and let $B=M_{k_{0}} \oplus \cdots \oplus M_{k_{N}}$ with $\operatorname{gcd}\left(k_{0}, \ldots, k_{N}\right)=n$. We have

$$
K_{*}\left(B^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash \operatorname{FIN}[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}} K_{*}\left(C_{r}^{*}\left(G_{S}\right)\right)[1 / n] .
$$

Finite-dimensional algebras

Corollary

Let G be an infinite discrete group satisfying BCC and let A be a $G-C^{*}$-algebra. Then we have
$K_{*}\left(\left(A \otimes M_{n}^{\otimes G}\right) \rtimes_{r} G\right) \cong K_{*}\left(\left(A \rtimes_{r} G\right) \otimes M_{n}^{\otimes \infty}\right) \cong K_{*}\left(A \rtimes_{r} G\right)[1 / n]$.

Corollary
Let G be an infinite discrete group satisfying BCC and let $B=M_{k_{0}} \oplus \cdots \oplus M_{k_{N}}$ with $\operatorname{gcd}\left(k_{0}, \ldots, k_{N}\right)=n$. We have

$$
\left.K_{*}\left(B^{\otimes G} \rtimes_{r} G\right) \cong \bigoplus_{[F] \in G \backslash F I N}[S] \in G_{F} \backslash\{1, \ldots, N\}^{F}\right]
$$

Proof.
Take $A=\left(M_{k_{0} / n} \oplus \cdots \oplus M_{k_{N} / n}\right)^{\otimes G} \Rightarrow A \otimes M_{n}^{\otimes G}=B^{\otimes G}$.

More applications

Theorem (K-Nishikawa)
Let H be a finite group and Z an infinite H-set. Then the canonical inclusions

$$
M_{n}^{\otimes Z} \hookrightarrow M_{n}^{\otimes Z} \otimes M_{n}^{\otimes \infty} \hookleftarrow M_{n}^{\otimes \infty}
$$

are $K K^{H}$-equivalences.
Corollary
Let H be a finite group and \mathcal{D} a strongly self-absorbing C^{*}-algebra satisfying the UCT (e.g. $M_{n}^{\otimes \infty}$). Then the Bernoulli shift on $\mathcal{D}^{\otimes H} \cong \mathcal{D}$ is $K K^{H}$-equivalent to the trivial action on \mathcal{D}.

More applications

Theorem (K-Nishikawa)
Let H be a finite group and Z an infinite H-set. Then the canonical inclusions

$$
M_{n}^{\otimes Z} \hookrightarrow M_{n}^{\otimes Z} \otimes M_{n}^{\otimes \infty} \hookleftarrow M_{n}^{\otimes \infty}
$$

are $K K^{H}$-equivalences.
Corollary
Let H be a finite group and \mathcal{D} a strongly self-absorbing C^{*}-algebra satisfying the UCT (e.g. $M_{n}^{\otimes \infty}$). Then the Bernoulli shift on $\mathcal{D}^{\otimes H} \cong \mathcal{D}$ is $K K^{H}$-equivalent to the trivial action on \mathcal{D}.

Corollary
Let $\{e\} \neq H$ be a finite group. Then the Bernoulli shift $H \curvearrowright\left(M_{n}^{\otimes \infty}\right)^{\otimes H}$ does not have the Rokhlin property.

Thank you very much!

