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Crossed products

Definition
Let G be a discrete group, A a unital C∗-algebra and
α : G → Aut(A) an action.

The reduced crossed product

Aor G ⊆ L(`2(G ,A))

is the C∗-algebra generated by α̃(A), λ(G) ⊆ L(`2(G ,A)) where

α̃(a)ξ(g) := αg−1(a)ξ(g)

λgξ(h) := ξ(g−1h)

for a ∈ A, ξ ∈ `2(G ,A), g , h ∈ G .
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Crossed products - Examples

a) Cor G = C∗r (G).

b) Let H o G be a semi-direct product of groups. Then

C∗r (H o G) ∼= C∗r (H) or G .

c) Let u : G → U(A) be a unitary representation. Denote by
Ad(u) : G → Aut(A), Ad(ug)(a) := ugau∗g the induced action.
Then

Aor G ∼= A⊗ C∗r (G)
λg 7→ ug ⊗ λg

α̃(a) 7→ a ⊗ 1.
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Bernoulli shifts

Definition
Let G be a discrete group and X a compact Hausdorff space. The
Bernoulli shift of G on X is the shift action

G y XG :=
∏
g∈G

X .

Example (Wreath Products)
Let G ,H be groups, H o G :=

(⊕
g∈G H

)
o G . Then

C∗r (H o G) = C∗r (H)⊗G or G .
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K -theory of the crossed product

Problem
Let G be a discrete group and A a unital C∗-algebra. Can we
compute the K -theory K∗(A⊗G or G)?

Theorem (Xin Li)
Let H be a finite group and G a discrete group satisfying the
Baum–Connes conjecture with coefficients (e.g. an amenable
group). Then

K∗(C∗r (H o G)) ∼=
⊕

[F ]∈G\FIN

⊕
[S]∈GF \{1,...,N}F

K∗(C∗r (GS)),

where FIN denotes the set of finite subsets of G, N is the number
of non-trivial conjugacy classes in H, and GF is the stabilizer of F
in G (note that G∅ = G).
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Roadmap to the proof

K∗(C∗r (H o G)) ∼=
⊕

[F ]∈G\FIN

⊕
[S]∈GF \{1,...,N}F

K∗(C∗r (GS)),

a) Write
C∗r (H oG) ∼= C∗r (H)⊗G or G ∼= (C⊕Mk1 ⊕· · ·⊕MkN )⊗G or G .

b) Construct a unital KK -equivalence
C⊕Mk1 ⊕ · · · ⊕MkN ∼KK C⊕ CN .

c) Use Baum–Connes to conclude
K∗((C⊕Mk1 ⊕ · · · ⊕MkN )⊗G or G) ∼= K∗((C⊕CN)⊗G or G).

d) Construct an isomorphism

(C⊕ CN)⊗G ∼=
⊕

F∈FIN
(CN)⊗F ∼=

⊕
F∈FIN

C({1, . . . ,N}F ).

e) Compute K∗((
⊕

F∈FIN C({1, . . . ,N}F )) or G).
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Main results

Theorem (Chakraborty–Echterhoff–K–Nishikawa)
Let A ∼= Mk0 ⊕ · · · ⊕MkN be a finite-dimensional C∗-algebra and G
a discrete group satisfying the Baum–Connes conjecture with
coefficients. Write n := gcd(k0, . . . , kN). Then we have

K∗(A⊗G or G) ∼=
⊕

[F ]∈G\FIN

⊕
[S]∈GF \{1,...,N}F

K∗(C∗r (GS))[1/n].

Theorem (Chakraborty–Echterhoff–K–Nishikawa)
Let H be an amenable group and G as above. Write
B = ker(1H : C∗r (H)→ C). Then

K∗(C∗r (H o G)) ∼=
⊕

[F ]∈G\FIN
K∗(B⊗F or GF ),

where B⊗∅ := C.
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Reminder on Kasparov’s KKG-theory
Let G be a countable discrete group. There is an additive category
KKG with separable G-C∗-algebras as objects, and a functor

j : {sep. G-C∗-alg.} → KKG

with the following properties:

a) If we write KK = KK {e}, then K0(A) ∼= KK (C,A) and
K1(A) ∼= KK (C0(R),A).

b) The reduced crossed product A 7→ Aor G descends to a
functor

−or G : KKG → KK .

c) For a subgroup H ⊆ G , there are induction and restriction
functors

IndG
H : KKH KKG : ResH

G .
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Let G be a countable discrete group. There is an additive category
KKG with separable G-C∗-algebras as objects, and a functor

j : {sep. G-C∗-alg.} → KKG

with the following properties:
d) j sends G-Morita equivalences to isomorphisms

(KKG -equivalences).

e) Suppose A and B are KK -equivalent and that H is a finite
group. Then A⊗H and B⊗H are KKH -equivalent (Izumi).

f) If H is finite, then KKH(C,C) is isomorphic to the
representation ring RC(H).



Reminder on Kasparov’s KKG-theory
Let G be a countable discrete group. There is an additive category
KKG with separable G-C∗-algebras as objects, and a functor

j : {sep. G-C∗-alg.} → KKG

with the following properties:
d) j sends G-Morita equivalences to isomorphisms

(KKG -equivalences).
e) Suppose A and B are KK -equivalent and that H is a finite

group. Then A⊗H and B⊗H are KKH -equivalent (Izumi).

f) If H is finite, then KKH(C,C) is isomorphic to the
representation ring RC(H).



Reminder on Kasparov’s KKG-theory
Let G be a countable discrete group. There is an additive category
KKG with separable G-C∗-algebras as objects, and a functor

j : {sep. G-C∗-alg.} → KKG

with the following properties:
d) j sends G-Morita equivalences to isomorphisms

(KKG -equivalences).
e) Suppose A and B are KK -equivalent and that H is a finite

group. Then A⊗H and B⊗H are KKH -equivalent (Izumi).
f) If H is finite, then KKH(C,C) is isomorphic to the

representation ring RC(H).



The Baum–Connes conjecture with coefficients

Conjecture (BCC)
Let G be a discrete group, let A,B be G-C∗-algebras and
ϕ ∈ KKG(A,B) such that the induced map

K∗(Aor H)→ K∗(B or H)

is an isomorphism for every finite subgroup H ⊆ G.

Then the
induced map

K∗(Aor G)→ K∗(B or G)

is an isomorphism.

Remark
This formulation is due to Meyer–Nest, based on results of
Chabert–Echterhoff–Oyono-Oyono.
BCC holds for all amenable groups (Higson–Kasparov) but not for
all groups (Higson–Lafforgue–Skandalis).
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An abstract K -theory formula

Theorem (Chakraborty–Echterhoff–K–Nishikawa)
Let G be a discrete group satisfying BCC and let A be a unital
C∗-algebra. Denote by ι : C ↪→ A the unital inclusion. Assume
there is a C∗-algebra B and φ ∈ KK (B,A) such that
φ⊕ ι ∈ KK (B ⊕ C,A) is a KK-equivalence. Then we have

K∗(A⊗G or G) ∼=
⊕

[F ]∈G\FIN
K∗(B⊗F or GF ).

Sketch of proof.
Using BCC and a lim−→-argument, we can assume that G is finite.
Izumi’s Lemma shows that A⊗G ∼KKG (B ⊕ C)⊗G . Now note that

(B ⊕ C)⊗G ∼=
⊕

F∈FIN
B⊗F .
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K∗(A⊗G or G) ∼=
⊕

[F ]∈G\FIN
K∗(B⊗F or GF ).

Sketch of proof.
Using BCC and a lim−→-argument, we can assume that G is finite.
Izumi’s Lemma shows that A⊗G ∼KKG (B ⊕ C)⊗G . Now note that

(B ⊕ C)⊗G ∼=
⊕

F∈FIN
B⊗F .



Examples for B ⊕ C ∼KK A
The ring KK (CN ,CN) is isomorphic to M(N × N,Z), the
KK -equivalences are given by elements in GL(N,Z).

Denote by
φ : CN → CN+1 the map given by x 7→ (x , 0) and by ι : C→ CN+1

the unital inclusion. Then φ⊕ ι ∈ KK (CN+1,CN+1) is represented
by the matrix

φ⊕ ι =


1 1

. . . ...

1

 ∈ GL(N + 1,Z)

and therefore a KK -equivalence.

Corollary
Assume that G satisfies BCC. Then we have

K∗((CN+1)⊗G or G) ∼=
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Question
Let A be a unital C∗-algebra, denote by ι : C→ A the unital
inclusion. When can you find a C∗-algebra B and an element
φ ∈ KK (B,A) such that φ⊕ ι ∈ KK (B ⊕ C,A) is a
KK -equivalence?

Answer
Assume the UCT!
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Let A be a unital C∗-algebra, denote by ι : C→ A the unital
inclusion. When can you find a C∗-algebra B and an element
φ ∈ KK (B,A) such that φ⊕ ι ∈ KK (B ⊕ C,A) is a
KK -equivalence?

Answer
Assume the UCT!



The Universal Coefficient Theorem

Definition (Rosenberg–Schochet)
A separable C∗-algebra A satisfies the Universal Coefficient
Theorem (UCT), if for every separable C∗-algebra C , there is a
short exact sequence

0→ Ext1Z(K∗(A),K∗(C))→ KK (A,C)→ Hom(K∗(A),K∗(C))→ 0.

Some facts:
a) If H is amenable, then C∗r (H) satisfies the UCT (Tu).
b) Conjecturally, all separable, nuclear C∗-algebras satisfy the

UCT.
c) Suppose that A and C satisfy the UCT. Then any

isomorphism φ ∈ Hom(K∗(A),K∗(C)) is induced by a
KK -equivalence φ ∈ KK (A,C).



The Universal Coefficient Theorem

Definition (Rosenberg–Schochet)
A separable C∗-algebra A satisfies the Universal Coefficient
Theorem (UCT), if for every separable C∗-algebra C , there is a
short exact sequence

0→ Ext1Z(K∗(A),K∗(C))→ KK (A,C)→ Hom(K∗(A),K∗(C))→ 0.

Some facts:
a) If H is amenable, then C∗r (H) satisfies the UCT (Tu).

b) Conjecturally, all separable, nuclear C∗-algebras satisfy the
UCT.

c) Suppose that A and C satisfy the UCT. Then any
isomorphism φ ∈ Hom(K∗(A),K∗(C)) is induced by a
KK -equivalence φ ∈ KK (A,C).



The Universal Coefficient Theorem

Definition (Rosenberg–Schochet)
A separable C∗-algebra A satisfies the Universal Coefficient
Theorem (UCT), if for every separable C∗-algebra C , there is a
short exact sequence

0→ Ext1Z(K∗(A),K∗(C))→ KK (A,C)→ Hom(K∗(A),K∗(C))→ 0.

Some facts:
a) If H is amenable, then C∗r (H) satisfies the UCT (Tu).
b) Conjecturally, all separable, nuclear C∗-algebras satisfy the

UCT.

c) Suppose that A and C satisfy the UCT. Then any
isomorphism φ ∈ Hom(K∗(A),K∗(C)) is induced by a
KK -equivalence φ ∈ KK (A,C).



The Universal Coefficient Theorem

Definition (Rosenberg–Schochet)
A separable C∗-algebra A satisfies the Universal Coefficient
Theorem (UCT), if for every separable C∗-algebra C , there is a
short exact sequence

0→ Ext1Z(K∗(A),K∗(C))→ KK (A,C)→ Hom(K∗(A),K∗(C))→ 0.

Some facts:
a) If H is amenable, then C∗r (H) satisfies the UCT (Tu).
b) Conjecturally, all separable, nuclear C∗-algebras satisfy the

UCT.
c) Suppose that A and C satisfy the UCT. Then any

isomorphism φ ∈ Hom(K∗(A),K∗(C)) is induced by a
KK -equivalence φ ∈ KK (A,C).



Examples for A ∼KK C⊕ B

Let A be a unital C∗-algebra satisfying the UCT such that the
unital inclusion ι : C→ A induces a split injection K∗(C) ↪→ K∗(A)
(for example A = C∗r (H) with H amenable).

Let B be a C∗-algebra satisfying the UCT such hat

K∗(B) ∼= coker(K∗(C) ↪→ K∗(A)).

( K∗(B)⊕ K∗(C) ∼= K∗(A))
Let φ ∈ KK (B,A) be an element inducing K∗(B)→ K∗(A).
Then φ⊕ ι ∈ KK (B ⊕ C,A) induces an isomorphism in K -theory.
Thus φ⊕ ι is a KK -equivalence.

Corollary

K∗(A⊗G or G) ∼=
⊕

[F ]∈G\FIN
K∗(B⊗F or GF ),

where B⊗∅ := C.
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More examples for for A ∼KK C⊕ B

There are many unital, separable, C∗-algebras A satisfying the
UCT such that the inclusion ι : C→ A induces a split injection
K∗(C) ↪→ K∗(A):

a) A = C∗r (H) when H amenable, B = ker(1H : C∗r (H)→ C)
b) A = C(S1), B = C0(R)
c) A = Aθ, B = C⊕ C0(R)⊕ C0(R)
d) A = T , B = 0
e) A = O∞, B = 0.

Remark
The equivariant topological K -theory groups

K∗(C0(R)⊗F or GF ) ∼= K ∗GF (RF )

can be computed explicitly (Karoubi, Echterhoff–Pfante).
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Finite-dimensional algebras

Theorem (Chakraborty–Echterhoff–K–Nishikawa)
Let A = Mk0 ⊕ · · · ⊕MkN with gcd(k0, . . . , kN) = 1. Then there is
a unital ∗-homomorphism φ : CN+1 → A which is a
KK-equivalence.

If furthermore G is a group satisfying BCC, then
there is an isomorphism

K∗(A⊗G or G) ∼= K∗((CN+1)⊗G or G).

Sketch of proof.
It suffices to find a matrix X ∈ GL(N + 1,Z) such that
X (1, . . . , 1) = (k0, . . . , kN). This exists by the Euclidian
algorithm.
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UHF-algebras

Theorem (K-Nishikawa)
Let H be a finite group and Z a countably infinite H-set. Then the
canonical inclusions

M⊗Z
n ↪→ M⊗Z

n ⊗M⊗∞n ←↩ M⊗∞n

are KKH -equivalences.

Sketch of proof.
If H y Z is trivial, this follows since M⊗∞n is strongly
self-absorbing.
If Z = H × N, we can write M⊗Z

n
∼= lim−→k(M⊗H

n )⊗k .
Use (M⊗H

n )⊗k ∼KKH M⊗k
n|H| to "inductively trivialize" the action.

Warning: The connecting maps for lim−→k M
⊗k
n|H| involve non-trivial

KKH -elements ( representation theory).
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Corollary
Let G be an infinite discrete group satisfying BCC and let A be a
G-C∗-algebra. Then we have

K∗((A⊗M⊗G
n )or G) ∼= K∗((Aor G)⊗M⊗∞n ) ∼= K∗(Aor G)[1/n].



Finite-dimensional algebras
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Corollary
Let G be an infinite discrete group satisfying BCC and let
B = Mk0 ⊕ · · · ⊕MkN with gcd(k0, . . . , kN) = n. We have

K∗(B⊗G or G) ∼=
⊕

[F ]∈G\FIN

⊕
[S]∈GF \{1,...,N}F

K∗(C∗r (GS))[1/n].

Proof.
Take A = (Mk0/n ⊕ · · · ⊕MkN/n)⊗G ⇒ A⊗M⊗G

n = B⊗G .
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K∗((A⊗M⊗G
n )or G) ∼= K∗((Aor G)⊗M⊗∞n ) ∼= K∗(Aor G)[1/n].

Corollary
Let G be an infinite discrete group satisfying BCC and let
B = Mk0 ⊕ · · · ⊕MkN with gcd(k0, . . . , kN) = n. We have

K∗(B⊗G or G) ∼=
⊕

[F ]∈G\FIN

⊕
[S]∈GF \{1,...,N}F

K∗(C∗r (GS))[1/n].

Proof.
Take A = (Mk0/n ⊕ · · · ⊕MkN/n)⊗G ⇒ A⊗M⊗G

n = B⊗G .



More applications

Theorem (K-Nishikawa)
Let H be a finite group and Z an infinite H-set. Then the
canonical inclusions

M⊗Z
n ↪→ M⊗Z

n ⊗M⊗∞n ←↩ M⊗∞n

are KKH -equivalences.

Corollary
Let H be a finite group and D a strongly self-absorbing C∗-algebra
satisfying the UCT (e.g. M⊗∞n ). Then the Bernoulli shift on
D⊗H ∼= D is KKH -equivalent to the trivial action on D.

Corollary
Let {e} 6= H be a finite group. Then the Bernoulli shift
H y (M⊗∞n )⊗H does not have the Rokhlin property.
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Thank you very much!


