Classifiability of crossed products by nonamenable groups Noncommutativity in the North

Julian Kranz (University of Münster)

joint work with E. Gardella, S. Geffen and P. Naryshkin

March 14, 2022

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (KP, EGLN, TWW, CETWW, ...)

Unital, simple, separable, nuclear, Z-stable C*-algebras in the UCT class are classified by K-theory and traces.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (KP, EGLN, TWW, CETWW, ...)

Unital, simple, separable, nuclear, Z-stable C*-algebras in the UCT class are classified by K-theory and traces.

Question

What C^* -algebras belong to this class (what C^* -algebras are "classifiable")?

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

Theorem (KP, EGLN, TWW, CETWW, ...)

Unital, simple, separable, nuclear, Z-stable C*-algebras in the UCT class are classified by K-theory and traces.

Question

What C^* -algebras belong to this class (what C^* -algebras are "classifiable")?

Question

Let $G \curvearrowright X$ be an action. When is $C(X) \rtimes G$ classifiable?

$$G \curvearrowright X$$
 $C(X) \rtimes G$

$G \curvearrowright X$	C(X) times G
G discrete, X compact	\Rightarrow unital

$G \curvearrowright X$		$C(X) \rtimes G$
G discrete, X compact	\Rightarrow	unital
minimal, topologically free	\Rightarrow	simple

(ロ)、(型)、(E)、(E)、 E) の(()

$G \curvearrowright X$		$C(X) \rtimes G$
G discrete, X compact	\Rightarrow	unital
minimal, topologically free	\Rightarrow	simple
G countable, X 2nd countable	\Rightarrow	separable

(ロ)、(型)、(E)、(E)、 E) の(()

$G \cap X$		$C(X) \rtimes G$
G discrete, X compact	\Rightarrow	unital
minimal, topologically free	\Rightarrow	simple
G countable, X 2nd countable	\Rightarrow	separable
amenable action	\Rightarrow	nuclear, in the UCT class (Tu)

$G \curvearrowright X$		$C(X) \rtimes G$
G discrete, X compact	\Rightarrow	unital
minimal, topologically free	\Rightarrow	simple
G countable, X 2nd countable	\Rightarrow	separable
amenable action	\Rightarrow	nuclear, in the UCT class (Tu)
???	\Rightarrow	$\mathcal{Z} ext{-stable}$

$G \curvearrowright X$		$C(X) \rtimes G$
G discrete, X compact	\Rightarrow	unital
minimal, topologically free	\Rightarrow	simple
G countable, X 2nd countable	\Rightarrow	separable
amenable action	\Rightarrow	nuclear, in the UCT class (Tu)
???	\Rightarrow	$\mathcal{Z} ext{-stable}$

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Theorem (GGKN)

For **many** non-amenable groups, *Z*-stability is automatic!

$G \curvearrowright X$		$C(X) \rtimes G$
G discrete, X compact	\Rightarrow	unital
minimal, topologically free	\Rightarrow	simple
G countable, X 2nd countable	\Rightarrow	separable
amenable action	\Rightarrow	nuclear, in the UCT class (Tu)
G has "paradoxical towers"	\Rightarrow	$\mathcal{Z} ext{-stable}$
Theorem (GGKN)		
For groups with paradoxical tow	vers,	$\mathcal Z$ -stability is automatic!

$G \curvearrowright X$		$C(X) \rtimes G$
G discrete, X compact	\Rightarrow	unital
minimal, topologically free	\Rightarrow	simple
G countable, X 2nd countable	\Rightarrow	separable
amenable action	\Rightarrow	nuclear, in the UCT class (Tu)
G has "paradoxical towers"	\Rightarrow	$\mathcal{Z} ext{-stable}$
Theorem (GGKN) For groups with paradoxical tow	vers,	$\mathcal Z$ -stability is automatic!
Strategy. paradoxical towers $\stackrel{GGKN}{\Rightarrow}$ Kerr's d infinite $\stackrel{Kirchberg-Phillips}{\Rightarrow} Z$ -stable	ynam	ical comparison $\stackrel{Ma}{\Rightarrow}$ purely

(ロ)、(型)、(E)、(E)、 E) の(()

Definition (GGKN)

A group G has *n*-paradoxical towers, if for every finite $D \subseteq G$, there exist $A_1, \ldots, A_n \subseteq G$ and $g_1, \ldots, g_n \in G$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ▲□ ● ● ●

- a) The sets $\{dA_i\}_{d \in D, i=1,...,n}$ are pairwise disjoint
- b) $\bigcup_{i=1}^n g_i A_i = G$

Definition (GGKN)

A group G has *n*-paradoxical towers, if for every finite $D \subseteq G$, there exist $A_1, \ldots, A_n \subseteq G$ and $g_1, \ldots, g_n \in G$ such that

- a) The sets $\{dA_i\}_{d\in D, i=1,...,n}$ are pairwise disjoint
- b) $\bigcup_{i=1}^n g_i A_i = G$

Definition (GGKN)

A group G has *n*-paradoxical towers, if for every finite $D \subseteq G$, there exist $A_1, \ldots, A_n \subseteq G$ and $g_1, \ldots, g_n \in G$ such that

- a) The sets $\{dA_i\}_{d \in D, i=1,...,n}$ are pairwise disjoint
- b) $\bigcup_{i=1}^{n} g_i A_i = G$

Definition (GGKN)

A group G has *n*-paradoxical towers, if for every finite $D \subseteq G$, there exist $A_1, \ldots, A_n \subseteq G$ and $g_1, \ldots, g_n \in G$ such that

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

a) The sets
$$\{dA_i\}_{d\in D, i=1,...,n}$$
 are pairwise disjoint
b) $\bigcup_{i=1}^n g_i A_i = G$

Definition (GGKN)

A group G has *n*-paradoxical towers, if for every finite $D \subseteq G$, there exist $A_1, \ldots, A_n \subseteq G$ and $g_1, \ldots, g_n \in G$ such that

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Exercise

Groups with paradoxical towers are non-amenable.

Definition (GGKN)

A group G has *n*-paradoxical towers, if for every finite $D \Subset G$, there exist $A_1, \ldots, A_n \subseteq G$ and $g_1, \ldots, g_n \in G$ such that

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Exercise

Groups with paradoxical towers are non-amenable.

Exercise

The free group F_k has 2-paradoxical towers.

Definition (GGKN)

A group G has *n*-paradoxical towers, if for every finite $D \subseteq G$, there exist $A_1, \ldots, A_n \subseteq G$ and $g_1, \ldots, g_n \in G$ such that

Exercise

Groups with paradoxical towers are non-amenable.

Exercise

The free group F_k has 2-paradoxical towers.

Exercise

 $F_k \times \mathbb{Z}$ does not have *n*-paradoxical towers for any $n \in \mathbb{N}$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

A systematic way to construct paradoxical towers

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三 のへぐ

Definition (Jolissaint-Robertson)

An action $G \curvearrowright X$ is called *n-filling*, if for every collection of non-empty open subsets $U_1, \ldots, U_n \subseteq X$, there are $g_1, \ldots, g_n \in G$ such that $X = g_1 U_1 \cup \cdots \cup g_n U_n$.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Definition (Jolissaint-Robertson)

An action $G \curvearrowright X$ is called *n-filling*, if for every collection of non-empty open subsets $U_1, \ldots, U_n \subseteq X$, there are $g_1, \ldots, g_n \in G$ such that $X = g_1 U_1 \cup \cdots \cup g_n U_n$.

Proposition

Let $G \curvearrowright X$ be an n-filling action on a Hausdorff space with at least one free orbit. Then G has n-paradoxical towers.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Definition (Jolissaint-Robertson)

An action $G \curvearrowright X$ is called *n-filling*, if for every collection of non-empty open subsets $U_1, \ldots, U_n \subseteq X$, there are $g_1, \ldots, g_n \in G$ such that $X = g_1 U_1 \cup \cdots \cup g_n U_n$.

Proposition

Let $G \curvearrowright X$ be an n-filling action on a Hausdorff space with at least one free orbit. Then G has n-paradoxical towers.

Definition (Jolissaint-Robertson)

An action $G \curvearrowright X$ is called *n-filling*, if for every collection of non-empty open subsets $U_1, \ldots, U_n \subseteq X$, there are $g_1, \ldots, g_n \in G$ such that $X = g_1 U_1 \cup \cdots \cup g_n U_n$.

Proposition

Let $G \curvearrowright X$ be an n-filling action on a Hausdorff space with at least one free orbit. Then G has n-paradoxical towers.

Definition (Jolissaint-Robertson)

An action $G \curvearrowright X$ is called *n-filling*, if for every collection of non-empty open subsets $U_1, \ldots, U_n \subseteq X$, there are $g_1, \ldots, g_n \in G$ such that $X = g_1 U_1 \cup \cdots \cup g_n U_n$.

Proposition

Let $G \curvearrowright X$ be an n-filling action on a Hausdorff space with at least one free orbit. Then G has n-paradoxical towers.

G nonamenable hyperbolic \Rightarrow *G* $\land \partial_{Gromov}$ *G* is 2-filling.

▲□▶ ▲□▶ ▲ □▶ ▲ □▶ □ のへぐ

G nonamenable hyperbolic \Rightarrow *G* $\land \partial_{Gromov}$ *G* is 2-filling.

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ ▲ 三 ● ● ●

G nonamenable hyperbolic \Rightarrow *G* $\land \partial_{Gromov}$ *G* is 2-filling.

 $\emptyset \neq U_1, U_2 \subseteq X$ open

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

G nonamenable hyperbolic \Rightarrow *G* $\land \partial_{Gromov}$ *G* is 2-filling.

 $g \in G$ hyperbolic $,g^{-\infty} \in U_1$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

G nonamenable hyperbolic \Rightarrow *G* $\land \partial_{Gromov}$ *G* is 2-filling.

 $g^\infty \in W$ open, $g^n(U_1^c) \subseteq W$

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

G nonamenable hyperbolic \Rightarrow *G* $\land \partial_{Gromov}$ *G* is 2-filling.

◆□ > ◆□ > ◆豆 > ◆豆 > ・豆

$$s \in G, sW \subseteq U_2$$

G nonamenable hyperbolic \Rightarrow *G* $\land \partial_{Gromov}$ *G* is 2-filling.

 $s \in G, sW \subseteq U_2 \qquad \Rightarrow \partial_{Gromov}G = sg^n(U_1) \cup U_2$

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fact

Let G be a nonamenable hyperbolic group.

> The action $G \curvearrowright \partial_{Gromov} G$ is 2-filling.

▲□▶ ▲□▶ ▲三▶ ▲三▶ 三三 のへで

Fact

Let G be a nonamenable hyperbolic group.

- ▶ The action $G \curvearrowright \partial_{Gromov} G$ is 2-filling.
- ▶ If G has trivial finite radical, then $G \curvearrowright \partial_{Gromov} G$ has a free orbit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ ■ ●の00

Fact

Let G be a nonamenable hyperbolic group.

- ▶ The action $G \curvearrowright \partial_{Gromov} G$ is 2-filling.
- ▶ If *G* has **trivial finite radical**, then $G \frown \partial_{Gromov} G$ has a free orbit.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

 \Rightarrow G has paradoxical towers.

Fact

Let G be a nonamenable hyperbolic group.

- ▶ The action $G \curvearrowright \partial_{Gromov} G$ is 2-filling.
- ▶ If *G* has **trivial finite radical**, then $G \frown \partial_{Gromov} G$ has a free orbit.
- \Rightarrow G has paradoxical towers.

Lemma

Let N < G be a finite normal subgroup. Suppose that G/N has paradoxical towers. Then G has paradoxical towers too.

▲□▶ ▲□▶ ▲□▶ ▲□▶ □ のQで

Fact

Let G be a nonamenable hyperbolic group.

- > The action $G \curvearrowright \partial_{Gromov} G$ is 2-filling.
- ▶ If *G* has **trivial finite radical**, then $G \frown \partial_{Gromov} G$ has a free orbit.
- \Rightarrow G has paradoxical towers.

Lemma

Let N < G be a finite normal subgroup. Suppose that G/N has paradoxical towers. Then G has paradoxical towers too.

Corollary

Nonamenable hyperbolic groups have paradoxical towers.

Groups with paradoxical towers

n-filling action

▲□▶ ▲□▶ ▲ 三▶ ▲ 三▶ 三三 - のへぐ

Groups with paradoxical towers	<i>n</i> -filling action
Acylindrically hyperbolic groups	Gromov boundary

Groups with paradoxical towers	<i>n</i> -filling action
Acylindrically hyperbolic groups	Gromov boundary
Lattices in (many) Lie groups	Poisson boundary

Groups with paradoxical towers	<i>n</i> -filling action
Acylindrically hyperbolic groups	Gromov boundary
Lattices in $(many)$ Lie groups	Poisson boundary
$ ilde{A}_2$ -groups	boundary of the building

Groups with paradoxical towers	<i>n</i> -filling action
Acylindrically hyperbolic groups	Gromov boundary
Lattices in (many) Lie groups	Poisson boundary
$ ilde{A}_2$ -groups	boundary of the building
(many) HNN-extensions	boundary of Bass-Serre tree

Groups with paradoxical towers	<i>n</i> -filling action
Acylindrically hyperbolic groups	Gromov boundary
Lattices in $(many)$ Lie groups	Poisson boundary
\tilde{A}_2 -groups	boundary of the building
$(many) \; HNN\text{-}extensions$	boundary of Bass-Serre tree
(\ensuremath{many}) amalgamated free products	boundary of Bass-Serre tree

Groups with paradoxical towers	<i>n</i> -filling action
Acylindrically hyperbolic groups	Gromov boundary
Lattices in $({\sf many})$ Lie groups	Poisson boundary
$ ilde{A}_2$ -groups	boundary of the building
(many) HNN-extensions	boundary of Bass-Serre tree
$({\sf many})$ amalgamated free products	boundary of Bass-Serre tree
(many) groups acting on CAT(0)-cube complexes (Ma–Wang)	visual boundary / Nevo–Sageev boundary

Groups with paradoxical towers	n-filling action
Acylindrically hyperbolic groups	Gromov boundary
Lattices in $({\sf many})$ Lie groups	Poisson boundary
$ ilde{A}_2$ -groups	boundary of the building
(many) HNN-extensions	boundary of Bass-Serre tree
$({\sf many})$ amalgamated free products	boundary of Bass-Serre tree
(many) groups acting on <i>CAT</i> (0)-cube complexes (Ma–Wang) :	visual boundary / Nevo–Sageev boundary :
Example (modulo caveats)	

 $F_n, MCG(\Sigma), Out(F_n), SL_n(\mathbb{Z}), BS(n, m), RAAGs \& RACGs, \ldots$

Theorem (GGKN)

Let $G \curvearrowright X$ be a minimal, amenable, topologically free action of a countable discrete group on a compact metric space.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (GGKN)

Let $G \curvearrowright X$ be a minimal, amenable, topologically free action of a countable discrete group on a compact metric space.

a) If $G = H \times K$ where H has paradoxical towers, then $C(X) \rtimes G$ is purely infinite.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Theorem (GGKN)

Let $G \curvearrowright X$ be a minimal, amenable, topologically free action of a countable discrete group on a compact metric space.

a) If $G = H \times K$ where H has paradoxical towers, then $C(X) \rtimes G$ is purely infinite.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

b) If G contains F_2 , then $C(X) \rtimes G$ is properly infinite.

Conjecture

Let $G \curvearrowright X$ be a minimal, amenable, topologically free action of a **non-amenable** discrete group on a compact space. Then $C(X) \rtimes G$ is purely infinite.

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Conjecture

Let $G \curvearrowright X$ be a minimal, amenable, topologically free action of a **non-amenable** discrete group on a compact space. Then $C(X) \rtimes G$ is purely infinite.

Question

Are there groups with paradoxical towers that don't contain F_2 ?

▲ロ ▶ ▲周 ▶ ▲ 国 ▶ ▲ 国 ▶ ● の Q @

Thank you!

▲□▶ ▲圖▶ ▲≣▶ ▲≣▶ = のへで