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Classification of C ∗-algebras

Theorem (KP, EGLN, TWW, CETWW, . . . )
Unital, simple, separable, nuclear, Z-stable C∗-algebras in the
UCT class are classified by K-theory and traces.

Question
What C∗-algebras belong to this class (what C∗-algebras are
"classifiable")?

Question
Let G y X be an action. When is C(X ) o G classifiable?
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When is C(X ) o G classifiable?

G y X C(X ) o G
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??? ⇒ Z-stable

Theorem (GGKN)
For many non-amenable groups, Z-stability is automatic!
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Paradoxical towers

Definition (GGKN)
A group G has n-paradoxical towers, if for every finite D b G ,
there exist A1, . . . ,An ⊆ G and g1, . . . , gn ∈ G such that
a) The sets {dAi}d∈D,i=1,...,n are pairwise disjoint
b)

⋃n
i=1 giAi = G
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A systematic way to construct paradoxical towers



n-filling actions

Definition (Jolissaint-Robertson)
An action G y X is called n-filling, if for every collection of
non-empty open subsets U1, . . . ,Un ⊆ X , there are g1, . . . , gn ∈ G
such that X = g1U1 ∪ · · · ∪ gnUn.

Proposition
Let G y X be an n-filling action on a Hausdorff space with at
least one free orbit. Then G has n-paradoxical towers.
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Example: Nonamenable hyperbolic groups

G nonamenable hyperbolic ⇒ G y ∂GromovG is 2-filling.
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Example: Nonamenable hyperbolic groups

Fact
Let G be a nonamenable hyperbolic group.

ä The action G y ∂GromovG is 2-filling.

ä If G has trivial finite radical, then G y ∂GromovG has a free
orbit.

⇒ G has paradoxical towers.

Lemma
Let N < G be a finite normal subgroup. Suppose that G/N has
paradoxical towers. Then G has paradoxical towers too.

Corollary
Nonamenable hyperbolic groups have paradoxical towers.
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More examples

Groups with paradoxical towers n-filling action

Acylindrically hyperbolic groups Gromov boundary

Lattices in (many) Lie groups Poisson boundary

Ã2-groups boundary of the building

(many) HNN-extensions boundary of Bass-Serre tree

(many) amalgamated free products boundary of Bass-Serre tree

(many) groups acting on
CAT (0)-cube complexes (Ma–Wang)

visual boundary /
Nevo–Sageev boundary

...
...

Example (modulo caveats)
Fn,MCG(Σ),Out(Fn),SLn(Z),BS(n,m), RAAGs & RACGs, . . .



More examples

Groups with paradoxical towers n-filling action

Acylindrically hyperbolic groups Gromov boundary

Lattices in (many) Lie groups Poisson boundary
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Further results

Theorem (GGKN)
Let G y X be a minimal, amenable, topologically free action of a
countable discrete group on a compact metric space.

a) If G = H ×K where H has paradoxical towers, then C(X )oG
is purely infinite.

b) If G contains F2, then C(X ) o G is properly infinite.
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Let G y X be a minimal, amenable, topologically free action of a
non-amenable discrete group on a compact space. Then
C(X ) o G is purely infinite.

Question
Are there groups with paradoxical towers that don’t contain F2?
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Thank you!
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