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Abstract

We generically construct a model in which the Π1
3-reduction prop-

erty is true and the Π1
3-uniformization property is false, thus producing

a model which separates these two principles for the first time.

1 Introduction

The reduction property was introduced by K. Kuratowski in 1936 and is
one of the three regularity properties of subsets of the reals which were
extensively studied by descriptive set theorists, along with the separation
and the uniformization property.

Definition 1.1. We say that the Π1
n-reduction property holds in a universe

V if every pair A0, A1 of Π1
n-subsets of the reals in V can be reduced by a

pair of Π1
n-sets D0, D1, which means that D0 Ă A0, D1 Ă A1, D0XD1 “ H

and D0 YD1 “ A0 YA1.

The reduction property for Π1
n is implied by the stronger uniformization

property for Π1
n-sets. Recall that for an A Ă 2ω ˆ 2ω, we say that f is

a uniformization (or a uniformizing function) of A if there is a function
f : 2ω Ñ 2ω, dompfq “ pr1pAq (where pr1pAq is A’s projection on the first
coordinate) and the graph of f is a subset of A. In other words, f chooses
exactly one point of every non-empty section of A.

Definition 1.2. We say that the Π1
n-uniformization property is true, if every

set A Ă 2ω ˆ 2ω, A P Π1
n has a uniformizing function fA whose graph is Π1

n.
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Classical work of M. Kondo, building on ideas of Novikov, shows that
the Π1

1-uniformization (and consequently the Σ1
2-uniformization) property is

true. This is as much as ZFC can prove about the uniformization and the re-
duction property. In Gödel’s constructible universe L, the Σ1

n-uniformization-
property for n ě 3 is true, as L admits a good Σ1

2-wellorder of its reals. On
the other hand, due to Y. Moschovakis’ celebrated result, the axiom of pro-
jective determinacy PD outright implies the Π1

2n`1-uniformization property
for every n P ω, indeed ∆1

2n-determinacy implies the stronger Π1
2n`1-scale

property for every n P ω. By a result of D. Martin and J. Steel, n-many
Woodin cardinals and a measurable above imply Π1

n`1-determinacy, in par-
ticular under the assumption of ω-many Woodin cardinals PD becomes true
which fully settles the behaviour of the uniformization and reduction prop-
erty for projective pointclasses.

Despite the extensive list of deep results that has been produced in the
last 60 years on this topic, there are still some basic and natural questions
concerning the reduction or the uniformization property which remained
open. Note e.g. that in the scenarios above the reduction property holds
because the uniformization property does. As these are the only known ex-
amples in which the reduction property holds, it is possible that reduction
and uniformization for projective pointclasses are in fact equivalent princi-
ples over ZFC. So the very natural question, which surely has been asked
already much earlier, arises whether one can produce universes of set theory
where the reduction property holds for some pointclass, yet the correspond-
ing uniformization property fails. The purpose of our article is to show that
this can be done.

Theorem. There is a generic extension of L in which the Π1
3-reduction prop-

erty is true and the Π1
3-uniformization property is false .

We expect the arguments to be applicable to the canonical inner mod-
els with n-many Woodin cardinals, denoted by Mn, as well, which would
yield models in which the Π1

n`3-reduction property holds, and the Π1
n`3-

uniformization property fails (see [11] for a paradigmatic example of how to
carefully lift the argument designed for L to work for Mn as well).

This article builds on ideas first introduced in [10] and [11]. The proof of
the theorem is, however, far from a mere application of the two mentioned
articles.

The main theme which organises the proof is that the problem of forcing
the Π1

3-reduction property can be rephrased as a fixed point problem for cer-
tain sets of ℵ1-sized proper forcings. This fixed point problem can be solved,
which unlocks a seemingly self-referential definition of an iteration which will
produce a universe of the Π1

3-reduction property. A closer inspection shows
that in this universe the Π1

3-uniformization property is fails to hold.
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2 Preliminaries

The forcings which we will use in the construction are all well-known. We
nevertheless briefly introduce them and their main properties.

Definition 2.1. (see [3]) For a stationary R Ă ω1 the club-shooting forcing
for R, denoted by PR consists of conditions p which are countable functions
from α ` 1 ă ω1 to R whose image is a closed set. PR is ordered by end-
extension.

The club shooting forcing PR is the paradigmatic example for an R-proper
forcing, where we say that P is R-proper if and only if for every condition
p P P, every θ ą 2|P| and every countable M ă Hpθq such that M X ω1 P R
and p,P PM , there is a q ă p which is pM,Pq-generic; and a condition q P P
is said to be pM,Pq-generic if q , “ 9GXM is an M -generic filter”, where 9G
is the canonical name for the generic filter. See also [8].

Lemma 2.2. Let R Ă ω1 be stationary, co-stationary. Then the club-
shooting forcing PR generically adds a club through R. Additionally PR is
R-proper, ω-distributive and hence ω1-preserving. Moreover R and all its
stationary subsets remain stationary in the generic extension.

Proof. We shall just show the ω-distributivity of PR, the rest can be found
in [8], Fact 3.5, 3.6 and Theorem 3.7. Let p P PR and 9x be such that
p , 9x P 2ω. Without loss of generality we assume that 9x is a nice name for
a real, i.e. given by an ω-sequence of PR-maximal antichains. We shall find
a real x in the ground model and a condition q ă p such that q , 9x “ x.
For this, fix θ ą 2|PR| and a countable elementary submodel M ă Hpθq
which contains PR, 9x and p as elements and which additionally satisfies that
M X ω1 P R. Note that we can always assume that such an M exists by the
stationarity of R. We recursively construct a descending sequence ppnqnPω Ă
M of conditions below p “ p0 such that every pn decides the value of 9xpnq
and such that the sequence of maxnPω ranppnq converges to M X ω1. We let
xpnq P 2 be the value of 9x as forced by pn, and let x “ pxpnqqnPω P 2ω X V .

Let q1 “
Ť

nPω pn Ă pM X ω1q. We set q :“ q1 Y tpω,M X ω1qu, which is
function from ω to R with closed image, and hence a condition in PR which
forces that 9x “ x as desired.

We will choose a family of Rβ ’s so that we can shoot an arbitrary pattern
of clubs through its elements such that this pattern can be read off from the
stationarity of the Rβ ’s in the generic extension. For that it is crucial to
recall that for stationary, co-stationary R Ă ω1, R-proper posets can be
iterated with countable support and always yield an R-proper forcing again.
This is proved exactly as in the well-known case for plain proper forcings
(see [8], Theorem 3.9 and the subsequent discussion).
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Fact 2.3. Let R Ă ω1 be stationary, co-stationary. Assume that pPα : α ă
γq is a countable support iteration, let Pγ denote the resulting partial order
obtained using countable support limit and assume also that at every stage
α, Pα , 9Ppαq is R-proper. Then Pγ is R-proper.

Once we decide to shoot a club through a stationary, co-stationary subset
of ω1, this club will belong to all ω1-preserving outer models. This hands
us a robust method of coding arbitrary information into a suitably chosen
sequence of sets which has been used several times already (see e.g. [5]).

Lemma 2.4. Let pRα : α ă ω1q be a partition of ω1 into ℵ1-many stationary
sets, let r P 2ω1 be arbitrary, and let P be a countable support iteration
pPα : α ă ω1q, inductively defined via

Ppαq :“ 9Pω1zR2¨α
if rpαq “ 1

and
Ppαq :“ 9Pω1zRp2¨αq`1

if rpαq “ 0.

Then in the resulting generic extension V rPs, we have that @α ă ω1 :

rpαq “ 1 if and only if R2¨α is nonstationary,

and
rα “ 0 iff Rp2¨αq`1 is nonstationary.

Proof. Assume first without loss of generality that rp0q “ 1, then the itera-
tion will be R1-proper, hence ω1-preserving. Now let α ă ω1 be arbitrary and
assume that rpαq “ 1 in V rPs. Then by definition of the iteration we must
have shot a club through the complement of R2α, thus it is nonstationary in
V rPs.

On the other hand, if R2α is nonstationary in V rPs, then we assume for
a contradiction that we did not use Pω1zR2¨α

in the iteration P. Note that
for β ‰ 2 ¨ α, every forcing of the form Pω1zRβ is R2¨α-proper as Pω1zRβ is
ω1zRβ-proper and R2¨α Ă ω1zRβ . Hence the iteration P will be R2¨α-proper,
thus the stationarity of R2¨α is preserved. But this is a contradiction.

The second forcing we use is the almost disjoint coding forcing due to R.
Jensen and R. Solovay (see [12]). We will identify subsets of ω with their
characteristic function and will use the word reals for both elements of 2ω

as well as for subsets of ω respectively. Let D “ tdα α ă ℵ1u be a family
of almost disjoint subsets of ω, i.e. a family such that if r, s P D then r X s
is finite. Let X Ă κ for κ ď 2ℵ0 be a set of ordinals. Then there is a ccc
forcing, the almost disjoint coding ADpXq which adds a new real x which
codes X relative to the family D in the following way

α P X if and only if xX dα is finite.
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Definition 2.5. The almost disjoint coding ADpXq relative to an almost
disjoint family D consists of conditions pr,Rq P ωăω ˆ Dăω and ps, Sq ă
pr,Rq holds if and only if

1. r Ă s and R Ă S.

2. If α P X and dα P R then r X dα “ sX dα.

For the rest of this paper we let D P L be the definable almost disjoint
family of reals one obtains when recursively adding the ăL-least real to the
family which is almost disjoint from all the previously chosen reals. When-
ever we use almost disjoint coding forcing, we assume that we code relative
to this fixed almost disjoint family D.

The last two forcings we briefly discuss are Jech’s forcing for adding a
Suslin tree with countable conditions and, given a Suslin tree S, the as-
sociated forcing which adds a cofinal branch through S. Recall that a set
theoretic tree pS,ăq is a Suslin tree if it is a normal tree of height ω1 and has
no uncountable antichain. Forcing with a Suslin tree S, where conditions are
just nodes in S, and which we always denote with S again, is a ccc forcing of
size ℵ1. Jech’s forcing to generically add a Suslin tree is defined as follows.

Definition 2.6. Let PJ be the forcing whose conditions are countable, nor-
mal trees ordered by end-extension, i.e. T1 ă T2 if and only if Dα ă

heightpT1qT2 “ tt æ α : t P T1u

It is well-known that PJ is σ-closed and adds a Suslin tree, in fact PJ
is forcing equivalent to the adding a Cohen subset to ω1 with countable
conditions. The generically added tree T has the additional property that
for any Suslin tree S in the ground model S ˆ T will be a Suslin tree in
V rGs. This can be used to obtain a robust coding method (see also [9] for
more applications)

Lemma 2.7. Let V be a universe and let S P V be a Suslin tree. If PJ is
Jech’s forcing for adding a Suslin tree, if g Ă PJ is generic and if T “

Ť

g
is the generic tree, and if we let T P V rgs be the forcing which adds an
ω1-branch through T , then

V rgsrT s |ù S is Suslin.

Proof. Let 9T be the PJ -name for the generic Suslin tree. We claim that
PJ ˚ 9T has a dense subset which is σ-closed. As σ-closed forcings will always
preserve ground model Suslin trees, this is sufficient. To see why the claim
is true consider the following set:

tpp, q̌q : p P PJ ^ heightppq “ α` 1^ q̌ is a node of p of level αu.

It is easy to check that this set is dense and σ-closed in PJ ˚ 9T .
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A similar observation shows that a we can add an ω1-sequence of such
Suslin trees with a countably supported iteration.

Lemma 2.8. Let S be a Suslin tree in V and let P be a countably supported
product of length ω1 of forcings PJ with G its generic filter. Then in V rGs
there is an ω1-sequence of Suslin trees ~T “ pTα : α P ω1q such that for any
finite e Ă ω the tree S ˆ

ś

iPe Ti will be a Suslin tree in V rGs.

These sequences of Suslin trees will be used for coding in our proof and
deserve a name, consistent with [6] and [9].

Definition 2.9. Let ~T “ pTα : α ă κq be a sequence of Suslin trees. We
say that the sequence is an independent family of Suslin trees if for every
finite set of pairwise distinct indices e “ te0, e1, ..., enu Ă κ the product
Te0 ˆ Te1 ˆ ¨ ¨ ¨ ˆ Ten is a Suslin tree again.

2.1 The ground model W of the iteration

We have to first create a suitable ground model W over which the actual
iteration will take place. W will be a generic extension of L, which has no
new reals. Moreover W has the crucial property that in W there is an ω1-
sequence ~S of ω1 trees which is Σ1pω1q-definable over Hpω2q

W and which
forms an independent sequence of Suslin trees in an inner model of W 1. The
sequence ~S will enable a coding method we will use throughout this article
all the time.

To form W , we start with Gödels constructible universe L as our ground
model. We first fix an appropriate sequence of stationary, co-stationary
subsets of ω1 as follows. Recall that ♦ holds in L, i.e. over Lω1 there is a Σ1-
definable sequence paα : α ă ω1q of countable subsets of ω1 such that any set
A Ă ω1 is guessed stationarily often by the aα’s, i.e. tα ă ω1 : aα “ AXαu
is a stationary and co-stationary subset of ω1. The ♦-sequence can be used
to produce an easily definable sequence of stationary, co-stationary subsets:
we list the reals in L in an ω1 sequence prα : α ă ω1q, and let r̃α Ă ω1 be
the unique element of 2ω1 which copies rα on its first ω-entries followed by
ω1-many 0’s. Then, identifying r̃α P 2ω1 with the according subset of ω1, we
define for every β ă ω1 a stationary, co-stationary set in the following way:

R1β :“ tα ă ω1 : aα “ r̃β X αu.

It is clear that @α ‰ βpR1αXR
1
β P NSω1q and we obtain a sequence of pairwise

disjoint stationary sets as usual via setting for every β ă ω1

Rβ :“ R1βz
ď

αăβ

R1α.

1That ~S is an independent sequence of Suslin trees in an inner model of W only has
technical advantages. We have been informed by G. Fuchs that an independent sequence
of Suslin trees of length ω1 actually exists in L already (see [7]). Thus forcing them, as is
done in this section, seems to be redundant, though we have not worked the details out.
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and let ~R “ pRα : α ă ω1q. Via picking out one element of ~R and re-indexing
we assume without loss of generality that there is a stationary, co-stationary
R Ă ω1, which has pairwise empty intersection with every Rβ P ~R. Note
that for any β ă ω1, membership in Rβ is uniformly Σ1-definable over the
model Lω1 , i.e. there is a Σ1-formula ψpx, yq such that for every β ă ω1

α P Rβ ô Lω1 |ù ψpα, βq.
We proceed with adding ℵ1-many Suslin trees using of Jech’s Forcing PJ .

We let
Q0 :“

ź

βPω1

PJ

using countable support. This is a σ-closed, hence proper notion of forcing.
We denote the generic filter of Q0 with ~S “ pSα : α ă ω1q and note that
by Lemma 2.8 ~S is independent. We fix a definable bijection between rω1s

ω

and ω1 and identify the trees in pSα : α ă ω1q with their images under this
bijection, so the trees will always be subsets of ω1 from now on.

We work in LrQ0s and will define the second block of forcings as follows:
we let

Q1 :“
ź

βăω1

Sβ

in other words, we add to each generically created tree from ~S an ω1-branch,
via forcing with the tree. Note that by the argument from the proof of lemma
2.10, this forcing has a dense subset which is σ-closed. Hence LrQ0srQ1s is
a proper and ω-distributive generic extension of L.

In a third step we code the trees from ~S into the sequence of L-stationary
subsets ~R we produced earlier, using Lemma 2.4. It is important to note,
that the forcing we are about to define does preserve Suslin trees, a fact we
will show later. The forcing used in the third step will be denoted by Q2 and
will itself be a countable support iteration of length ω1 ¨ω1 whose components
are countable support iteration themselves. First, fix a definable bijection
h P Lω2 between ω1 ˆ ω1 and ω1 and write ~R from now on in ordertype
ω1 ¨ ω1 making implicit use of h, so we assume that ~R “ pRα : α ă ω1 ¨ ω1q.
We let α ă ω1 and consider the tree Sα Ă ω1. Defining the α-th factor
of our iteration Q2, we let Q2pαq be the countable support iteration which
codes the characteristic function of Sα into the α-th ω1-block of the Rβ ’s just
as in Lemma 2.4. So Q2pαq is a countable support iteration whose factors,
denoted by Q2pαqpγq are defined via

@γ ă ω1 pQpαqpγq :“ 9Pω1zRω1¨α`2γ`1
q if Sαpγq “ 0

and
@γ ă ω1 pQpαqpγq :“ 9Pω1zRω1¨α`2γ

q if Sαpγq “ 1.

Recall that we let R be a stationary, co-stationary subset of ω1 which
is disjoint from all the Rα’s which are used. It follows from Lemma 2.4
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that for every α ă ω1, Q2pαq is an R-proper forcing which additionally is
ω-distributive. Then we let Q2 be the countably supported iteration,

Q2 :“ ˚αăω1Q2pαq

which is again R-proper (and ω-distributive as we shall see later). This
way we can turn the generically added sequence of trees ~S into a definable
sequence of trees. Indeed, if we work in Lr~S ˚ ~b ˚ Gs, where ~S ˚ ~b ˚ G is
Q0 ˚Q1 ˚Q2-generic over L, then, as seen in Lemma 2.4

@α, γ ă ω1pγ P Sα ô Rω1¨α`2¨γ is not stationary and
γ R Sα ô Rω1¨α`2¨γ`1 is not stationaryq

Note here that the above formula can be written in a Σ1pω1q-way, as it
reflects down to ℵ1-sized, transitive models of ZF´ which contain a club
through exactly one element of every pair tpRα, Rα`1q : α ă ω1u.

Our goal is to use ~S for coding. For this it is essential, that the sequence
remains independent in the inner universe LrQ0 ˚ Q2s. Note that this is
reasonable as Q0 ˚Q1 ˚Q2 can be written as Q0 ˚ pQ1 ˆQ2q, hence one can
form the inner model LrQ0 ˚Q2s without problems.

The following line of reasoning is similar to [9]. Recall that for a forcing
P and M ă Hpθq, a condition q P P is pM,Pq-generic iff for every maximal
antichain A Ă P, A PM , it is true that AXM is predense below q. The key
fact is the following (see [14] for the case where P is proper)

Lemma 2.10. Let T be a Suslin tree, R Ă ω1 stationary and P an R-proper
poset. Let θ be a sufficiently large cardinal. Then the following are equivalent:

1. ,P T is Suslin

2. if M ă Hθ is countable, η “ M X ω1 P R, and P and T are in M ,
further if p P PXM , then there is a condition q ă p such that for every
condition t P Tη, pq, tq is pM,Pˆ T q-generic.

Proof. For the direction from 1 to 2 note first that ,P “T is Suslin” implies
,P “T is ccc”, and in particular for any countable elementary submodel
N r 9GPs ă HpθqV r

9GPs, ,P @t P T pt is pN r 9GPs, T q-generic). Now if M ă Hpθq
and M X ω1 “ η P R and P, T P M and p P P XM then there is a q ă p
such q is pM,Pq-generic. So q , @t P T pt is pM r 9GPs, T q-generic, and this in
particular implies that pq, tq is pM,Pˆ T q-generic for all t P Tη.

For the direction from 2 to 1 assume that , 9A Ă T is a maximal an-
tichain. Let B “ tpx, sq P P ˆ T : x ,P š P 9Au, then B is a predense
subset in P ˆ T . Let θ be a sufficiently large regular cardinal and let
M ă Hpθq be countable such that M X ω1 “ η P R and P, B, p, T P M .
By our assumption there is a q ăP p such that @t P Tη ppq, tq is pM,Pˆ T q-
generic). So BXM is predense below pq, tq for every t P Tη, which yields that
q ,P @t P Tη Ds ăT t ps P 9Aq and s can be found in M , hence q , 9A Ă T æ η,
so ,P T is Suslin.
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In a similar way, one can show that Theorem 1.3 of [14] holds true if we
replace proper by R-proper for R Ă ω1 a stationary subset.

Theorem 2.11. Let pPαqαăη be a countable support iteration of length η, let
R Ă ω1 be stationary and suppose that for every α ă η, for the α-th factor
of the iteration 9Ppαq it holds that ,α “ 9Ppαq is R-proper and preserves every
Suslin tree.” Then Pη is R-proper and preserves every Suslin tree.

So in order to argue that our forcing Q2 preserves Suslin trees when
used over the ground model W rQ0s, it is sufficient to show that every factor
preserves Suslin trees. This is indeed the case.

Lemma 2.12. Let R Ă ω1 be stationary, co-stationary, then the club shoot-
ing forcing PR preserves Suslin trees.

Proof. Because of Lemma 2.10, it is enough to show that for for any Suslin
tree T , any regular and sufficiently large θ, every M ă Hθ with M X ω1 “

η P R, and every p P PRXM there is a q ă p such that for every t P Tη, pq, tq
is pM, pPR ˆ T qq-generic. Note first that as T is Suslin, every node t P Tη
is an pM,T q-generic condition. Further, as forcing with a Suslin tree is ω-
distributive, M rts has the sameM rts-countable sets asM . By the argument
of the proof of Lemma 2.2, if M ă Hpθq is such that M Xω1 P R then an ω-
length descending sequence of PR-conditions in M whose domains converge
to M X ω1 has a lower bound as M X ω1 P R.

We construct an ω-sequence of elements of PR which has a lower bound
which will be the desired condition. We list the nodes on Tη, pti : i P ωq
and consider the according generic extensions M rtis. In every M rtis we list
the PR-dense subsets of M rtis, pDti

n : n P ωq and write the so listed dense
subsets of M rtis as an ω ˆ ω-matrix and enumerate this matrix in an ω-
length sequence of dense sets pDi : i P ωq. If p “ p0 P PR XM is arbitrary
we can find, using the fact that @i pPR XM rtis “ M X PR), an ω-length,
descending sequence of conditions below p0 in PR XM , ppi : i P ωq such
that pi`1 P M X PR is in Di. We can also demand that the domain of
the conditions pi converge to M X ω1. Then the ppiq’s have a lower bound
pω P PR and pt, pωq is an pM,T ˆ PRq-generic conditions for every t P Tη as
any t P Tη is pM,T q-generic and every such t forces that pω is pM rT s,PRq-
generic; moreover pω ă p as desired.

Let us set W :“ LrQ0 ˚ Q1 ˚ Q2s which will serve as our ground model
for a second iteration of length ω1. To summarize the above:

Theorem 2.13. The universe W “ LrQ0 ˚ Q1 ˚ Q2s is an ω-distributive
generic extension of L, in particular no new reals are added and ω1 is pre-
served. In W there is a Σ1pω1q-definable, independent sequence of trees ~S
which are Suslin in the inner model LrQ0srQ2s, yet no tree is Suslin in W .
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Proof. The first assertion should be clear from the above discussion. The
second assertion holds by the following standard argument. As Q0 ˚ Q1

does not add any reals it is sufficient to show that Q2 is ω-distributive in
LrQ0srQ1s. Let p P Q2 be a condition and assume that p , “ 9r is a countable
sequence of ordinals”. We shall find a stronger q ă p and a set r in the ground
model such that q , ř “ 9r. Let M ă Hpω3q be a countable elementary
submodel which contains p,Q2 and 9r and such that M X ω1 P R, where R
is our fixed stationary set from above. Inside M we recursively construct
a decreasing sequence pn of conditions in Q2, such that for every n in ω,
pn P M , pn decides 9rpnq and for every α in the support of pn, the sequence
supnPω maxppnpαqq converges towards M X ω1 which is in R. Now, q1 :“
Ť

nPω pn and for every α ă ω1 such that q1pαq ‰ 1 (where 1 is the weakest
condition of the forcing), in other words for every α in the support of q1 we
define qpαq :“ q1pαq Y tpω, suppM X ω1qqu and qpαq “ 1 otherwise. Then
q “ pqpαqqαăω1 is a condition in Q2, as can be readily verified and q , 9r “ ř,
as desired.

The independent sequence ~S will be split into two Σ1pω1q-definable se-
quences via letting

~S1 :“ pSα P ~S : α is evenq

and
~S2 :“ pSα P ~S : α is oddq.

These two sequences will be used for defining the Π1
3-sets witnessing the

reduction property, as we will see soon.
We end with a straightforward lemma which is used later in coding ar-

guments.

Lemma 2.14. Let T be a Suslin tree and let ADpXq be the almost disjoint
coding which codes a subset X of ω1 into a real with the help of an almost
disjoint family of reals D of size ℵ1. Then

ADpXq , T is Suslin

holds.

Proof. This is clear as ADpXq has the Knaster property, thus the product
ADpXq ˆ T is ccc and T must be Suslin in V rADpXqs.

3 Main Proof

3.1 Informal discussion of the idea

We proceed with an informal discussion of the main ideas of the proof. We
focus on reducing one fixed, arbitrary pair Am and Ak of Π1

3-sets. The
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arguments will be uniform, so that reducing every pair of Π1
3-sets will follow

immediately.
The ansatz is to use the two definable sequences of Suslin trees ~S1 and

~S2 for coding and a bookkeeping function F which lists all possible reals in
our iteration. We use an iterated forcing construction over W of length ω1.
At stages β, where F pβq is (the name of) a real number x, we decide whether
to code x into the ~S1-sequence or the ~S2-sequence. Coding here means that
we write the characteristic function of x into ℵ1-many ω-blocks of elements
of ~Si, i P t1, 2u in a way such that the statement “x is coded into ~Si” is a
Σ1
3px, iq-statement and hence a Σ1

3pxq-statement. We will see later that the
definition of iterations of our coding forcing will only depend on the set of
reals which are coded, and that the set of our coding forcings is closed under
products. Our goal is that eventually, after ω1 stages of our iteration, the
resulting universe satisfies

p1q @x P Am YAk, either x is coded into ~S1 or x is coded into ~S2.

This dichotomy has to be strengthened to produce the desired reducing sets
for Am and Ak as follows: We shall aim for a universe in which the set of
reals of Am Y Ak which are not coded into ~S1, will be a subset of Am, and
the set of reals which are not coded into ~S2 will be a subset of Ak. Assuming
we can pull this off, we obtain the following equality

p2q D1
m,k :“tx P Am : x is not coded into ~S1u “

tx P Am YAk : x is coded into ~S2u

Note that the definition of D1
m,k witnesses that D1

m,k is Π1
3, as being coded

is Σ1
3, hence not being coded is Π1

3.
On the other hand, our universe should satisfy that reals in Ak which are

not coded into ~S2 form a set D2
m,k which eventually should reduce Ak:

p3q D2
m,k :“tx P Ak : x is not coded into ~S2u

“tx P Am YAk : x is coded into ~S1u

If we could achieve a universe for which (1), (2) and (3) holds, then D1
m,k Y

D2
m,k “ Am Y Ak, the sets are Π1

3, D1
m,k Ă Am and D2

m,k Ă Ak and D1
m,k X

D2
m,k “ H, i.e. there are reducing sets for Am and Ak.
This set-up has the following difficulties one has to overcome: the eval-

uation of Π1
3-sets changes as we use coding forcings, yet deciding to code a

real into the, say, ~S1-sequence, once performed, can not be undone in future
extensions, by the upwards absoluteness of Σ1

3-formulas.
For an illustration of how this can be problematic, assume that x P L is

a real which is in both Am and Ak. Now we need to decide, where to put
x. As we have not settled on a strategy yet, how to do it, we simply assume
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that we code the real x into ~S2, which is equivalent to put x into D1
m,k. Now

it could happen that this coding forcing, or some later coding forcing we will
use, actually puts x out of Am, while x remains in Ak. The consequence of
this is that x P Am Y Ak witnesses that D1

m,k and D2
m,k do not reduce Am

and Ak, as now x R Am, hence x R D1
m,.k and x is coded into ~S2, hence x is

not an element of D2
m,k either.

In the above situation, two possibilities arise, which already hint in a
simplified setting how we eventually want to solve the problem of forcing
the Π1

3-reduction property. First it could happen that there is an additional
iteration of coding forcings which forces x out of Ak. This would repair the
misery, as after we did this additional forcing, x is not an element of AmYAk
anymore and does not play a role in our task of reducing Am and Ak. Note
however, that this additional forcing could possibly create new problems for
other reals than x; indeed it could happen that we will create a non-empty
set of reals y ‰ x for which the same pathological situation as for x arises.
Thus in order to reduce Am and Ak, we need to ensure that the forcing we
use to repair the situation for x will not create new problems for other reals.
This problem, if interpreted from the right angle, is a fixed point problem for
sets of coding forcings. We will see later that solving this fixed point problem
hands us the right set of coding forcings, which can safely force the real x
out of Am YAk without adding unrepairable further pathological situations
for other reals y ‰ x.

In the second possibility, there is no such iterated coding forcing which
forces x out of Ak. But this also tells us, that instead of coding x into ~S2, we
could have coded x into ~S1, that is we could have put x into D2

m,k and x will
remain in Ak after our coding, as otherwise we would have an iterated coding
forcing which forces x R Ak, which we assumed to not exist. Note that this
argument uses the upwards absoluteness of Σ1

3-formulas, hence Shoenfield
absoluteness, and the earlier mentioned fact that coding forcings are closed
under taking products.

Thus, in the second case, the absence of a way to repair the bad situation
for our real x in fact yields valuable information. It tells us that we can safely
code x into the other of the two definable sequences of ω1-trees, namely ~S1,
and x will remain in Ak, as long as we just stick with iterating the coding
forcings, which is what we will do anyway. So, assuming the second case
applies, at least for the one real x and the two fixed Π1

3-sets Am and Ak we
found an unproblematic way of coding x.

Applying the above reasoning for every real we encounter in our iteration
will lead to a new set of rules how to form an iteration of coding forcings,
called 1-allowable, which, when applied, will yield a more reasonable class
of coding forcings to produce a model for which (1), (2) and (3) holds. For
the set of 1-allowable forcings, the above mentioned pathological situations
can arise again, but as before, we can use these newly arising problems to
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define a new set of rules, yielding a new set of forcings and so on. This
leads to an inductive definition of an operator which acts on sets of iterated
coding forcings. The operator, which can be seen as some sort of derivation,
will be uniformly definable over W . We will set things up in such a way
that the process of applying the operator transfinitely often converges to a
unique and non-empty set of forcings, which we will denote the 8-allowable
forcings. All of these considerations are preliminary.

Eventually, we can use the fact that 8-allowable forcings form a fixed
point to define an iteration in a seemingly self-referential way which, while
iteratively producing the reducing sets D1

m,k and D2
m,k, will take care of

all the pathological situations which arise along its definition. To be a bit
more precise, if P denotes the class of 8-allowable forcings, we can define an
iteration as follows: for any real x and any pair of Π1

3-sets Am and Ak, either
there is a forcing from P which forces x R Am YAk in which case we opt to
use such a forcing from P. Or, for m or k, the real x can not be forced out
of Am or Ak with a forcing from P, in which case we code px,m, kq into to
the corresponding sequence of ω1-trees ~S1 or ~S2 to create our reducing sets.
Most importantly, the so defined iteration is an element of P itself, which
will ultimately imply that one can force the Π1

3-reduction property.
A closer look will then yield that in that universe the Π1

3-uniformization
property fails.

3.2 8-allowable Forcings

3.2.1 The coding forcings

We continue with the construction of the appropriate notions of forcing which
we want to use in our proof. The goal is to iteratively shrink the set of notions
of forcing we want to use until we reach a fixed point. All forcings will belong
to a certain class, which we call “allowable”. These are just forcings which
iteratively code reals into a generically added 2 set of ℵ1-many ω-blocks of
~S1 or ~S2. We first want to present the coding method, which we use to
code a real x up, using the definable sequence of ω1 trees, and subsequently
introduce the notion allowable.

Our ground model shall be W . Let x be a real, and let m, k P ω. The
forcing Pppx,m,kq,1q, which codes the real w, which in turn codes the triple
px,m, kq into ~S1 is defined as a two step iteration Ppx,m,kq,1 :“ pCpω1qq

L ˚

9Ap 9Y q, where pCpω1qq
L is the usual ω1-Cohen forcing, as defined in L, and

9Ap 9Y q is the (name of) an almost disjoint coding forcing, coding a particular
set into as real. We shall describe the second factor 9Ap 9Y q now in detail.

2The idea of generically adding the set of ω-blocks of indices of ~S1 or ~S2 is due to S.
D. Friedman and D. Schrittesser in their landmark [6]. We use it to obtain the closure of
allowable forcings under products.
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We let g Ă ω1 be a Cpω1q
L-generic filter over W , and let ρ : rω1s

ω Ñ ω1

be some canonically definable, constructible bijection between these two sets.
We use ρ and g to define the set h Ă ω1, which eventually shall be the set
of indices of ω-blocks of ~S, where we code up the characteristic function of
the real (px, y,mq. Let h :“ tρpg X αq : α ă ω1u and let X Ă ω1 be the
ă-least set (in some previously fixed well-order of Hpω2q

W rgs which codes
the follwing objects:

• The ă-least set of ω1-branches in W through elments of ~S1 which
code px, y,mq at ω-blocks which start at values in h, that is we collect
tbβ Ă S1

β : β “ ωγ ` 2n, γ P h^ n P ω^ n R px, y,mqu and tbβ Ă S1
β :

β “ ωγ ` 2n` 1, γ P h^ n P ω ^ n P px, y,mqu.

• The ă-least set of ω1 ¨ω ¨ω1-many club subsets through ~R, our Σ1pω1q-
definable sequence of L-stationary subsets of ω1 from the last section,
which are necessary to compute every tree Sβ P ~S1 which shows up
in the above item, using the Σ1pω1q-formula from the previous section
before Lemma 2.10.

Note that, when working in LrXs and if γ P h then we can read off w

and hence px,m, kq via looking at the ω-block of ~S1-trees starting at γ and
determine which tree has an ω1-branch in LrXs:

p˚q n P w if and only if S1
ω¨γ`2n`1 has an ω1-branch, and n R w if and only

if S1
ω¨γ`2n has an ω1-branch.

Indeed if n R w then we added a branch through S1
ω¨γ`2n. If on the other

hand S1
ω¨γ`2n is Suslin in LrXs then we must have added an ω1-branch

through S1
ω¨γ`2n`1 as we always add an ω1-branch through either S1

ω¨γ`2n`1

or S1
ω¨γ`2n and adding branches through some S1

α’s will not affect that some
S1
β is Suslin in LrXs, as ~S1 is independent.
We note that we can apply an argument resembling David’s trick 3 in this

situation. We rewrite the information of X Ă ω1 as a subset Y Ă ω1 using
the following line of reasoning. It is clear that any transitive, ℵ1-sized model
M of ZF´ which contains X will be able to correctly decode out of X all the
information. Consequentially, if we code the model pM, Pq which contains
X as a set XM Ă ω1, then for any uncountable β such that LβrXM s |ù ZF´

and XM P LβrXM s:

LβrXM s |ù “The model decoded out of XM satisfies p˚q for every γ P h”.

In particular there will be an ℵ1-sized ordinal β as above and we can fix a club
C Ă ω1 and a sequence pMα : α P Cq of countable elementary submodels of

3see [4] for the original argument, where the strings in Jensen’s coding machinery are
altered such that certain unwanted universes are destroyed. This destruction is emulated
in our context as seen below.
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LβrXM s such that

@α P CpMα ă LβrXM s ^Mα X ω1 “ αq

Now let the set Y Ă ω1 code the pair pC,XM q such that the odd entries of
Y should code XM and if Y0 :“ EpY q where the latter is the set of even
entries of Y and tcα : α ă ω1u is the enumeration of C then

1. EpY q X ω codes a well-ordering of type c0.

2. EpY q X rω, c0q “ H.

3. For all β, EpY q X rcβ, cβ ` ωq codes a well-ordering of type cβ`1.

4. For all β, EpY q X rcβ ` ω, cβ`1q “ H.

We obtain

p˚˚q For any countable transitive model M of ZF´ such that ωM1 “ pωL1 q
M

and Y X ωM1 P M , M can construct its version of the universe LrY X
ωN1 s, and the latter will see that there is an ℵM1 -sized transitive model
N P LrY X ωN1 s which models p˚q for w and every γ P hXM .

Thus we have a local version of the property p˚q.
In the next step 9Ap 9Y q, working in W rgs, for g Ă Cpω1q generic over

W , we use almost disjoint forcing ADpY q relative to our previously defined,
almost disjoint family of reals D P L (see the paragraph after Definition 2.5)
to code the set Y into one real r. This forcing only depends on the subset
of ω1 we code, thus ADpY q will be independent of the surrounding universe
in which we define it, as long as it has the right ω1 and contains the set Y .

We finally obtained a real r such that

p˚˚˚q For any countable, transitive model M of ZF´ such that ωM1 “ pωL1 q
M

and r P M , M can construct its version of Lrrs which in turn thinks
that there is a transitive ZF´-model N of size ℵM1 such that N believes
p˚q for w and every γ P hXM .

Note that p˚˚˚q is a Π1
2-formula in the parameters r and w, as the set hXM Ă

ωM1 is coded into r. We will often suppress the reals r, w when referring to
p˚˚˚q as they will be clear from the context. We say in the above situation
that the real w, which codes px,m, kq is written into ~S1, or that w is coded
into ~S1 and r witnesses that w is coded. Likewise a forcing Ppx,m,kq,2 is
defined for coding the real w which codes px,m, kq into ~S2.

The projective and local statement p˚˚˚q, if true, will determine how
certain inner models of the surrounding universe will look like with respect
to branches through ~S. That is to say, if we assume that p˚˚˚q holds for a
real w and is the truth of it is witnessed by a real r. Then r also witnesses
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the truth of p˚˚˚q for any transitive ZF´-model M which contains r (i.e. we
can drop the assumption on the countability of M). Indeed if we assume
that there would be an uncountable, transitive M , r P M , which witnesses
that p˚˚˚q is false. Then by Löwenheim-Skolem, there would be a countable
N ăM , r P N which we can transitively collapse to obtain the transitive N̄ .
But N̄ would witness that p˚˚˚q is not true for every countable, transitive
model, which is a contradiction.

Consequentially, the real r carries enough information that the universe
Lrrs will see that certain trees from ~S1 have branches in that

n P w “ px, y,mq ñ Lrrs |ù “S1
ωγ`2n`1 has an ω1-branch”.

and

n R w “ px, y,mq ñ Lrrs |ù “S1
ωγ`2n has an ω1-branch”.

Indeed, the universe Lrrs will see that there is a transitive ZF´-model N
which believes p˚q for every γ P h Ă ω1, the latter being coded into r. But
by upwards Σ1-absoluteness, and the fact that N can compute ~S1 correctly,
if N thinks that some tree in ~S1 has a branch, then Lrrs must think so as
well.

3.2.2 Allowable forcings

Next we define the set of forcings which we will use in our proof. We aim
to iterate the coding forcings. As the first factor is always pCpω1qq

L, the
iteration is actually a hybrid of an iteration and a product. We shall use a
mixed support, that is we use countable support on the coordinates which
use pCpω1qq

L, and finite support on the coordinates which use almost disjoint
coding.

Definition 3.1. A mixed support iteration P “ pPβ : β ă αq is called allow-
able (or 0-allowable, to anticipate later developments) if α ă ω1 and there
exists a bookkeeping function F : α Ñ Hpω2q

2 such that P is defined induc-
tively using F as follows:

• If F p0q “ px, iq, where x is a real, i P t1, 2u, then P0 “ Ppx, iq. Other-
wise P0 is the trivial forcing.

• If β ą 0 and Pβ is defined, Gβ Ă Pβ is a generic filter over W ,
F pβq “ p 9x, iq, where 9x is a Pβ-name of a real, i P t1, 2u and 9xGβ “ x
then, working in W rGβs we let Ppβq :“ Px,i, that is we code x into the
~Si, using our coding forcing.

Note that we use finite support on the parts where almost disjoint coding is
used and countable support on the parts where ω1-Cohen forcing, as computed
in L and seen as a product, is used.
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Informally speaking, a (0-) allowable forcing just decides to code the reals
which the bookkeeping F provides into either ~S1 or ~S2. Note that the notion
of allowable can be defined in exactly the same way over anyW rGs, where G
is a P-generic filter over W for an allowable forcing. We could have defined
allowable in an equivalent way if we first added, over W , ω1-many Cohen
subsets of ω1

~C “ pCα : α ă ω1q (in fact we don’t really need to do this
as we already added them when adding the sequence of ω1-trees ~S1 and ~S2)
with a countably supported product, and then define allowable over the new
ground model W r~Cs as just a finitely supported iteration of almost disjoint
coding forcings which select at each step injectively one element C from ~C
and the real given by the bookkepping F and the i P t1, 2u and then code up
all the branches of the trees from ~S1 or ~S2 according to the real x we code
for every ω-block with starting value in h Ă ω1 derived from C as in the
last section. That is to say, we could have moved the product factors in an
iteration of allowable forcings right at the beginning of our iteration, which
we are allowed to do anyway, as it is a product. Our current and equivalent
approach is a bit easier in terms of notation so we defined allowable the way
we did.

We obtain the following first properties of allowable forcings:

Lemma 3.2. 1. If P “ pPpβq : β ă δq P W is allowable then for every
β ă δ, Pβ , |Ppβq| “ ℵ1, thus every factor of P is forced to have size
ℵ1.

2. Every allowable forcing over W preserves ω1.

3. The product of two allowable forcings is allowable again.

Proof. The first assertion follows immediately from the definition.
To see the second item we exploit some symmetry. Indeed, every al-

lowable P “ ˚βăδP pβq “ ˚βăδpppCpω1qq
L ˚ 9Ap 9Yβqq can be rewritten as

p
ś

βăδpCpω1qq
Lq˚p˚βăδ

9ADp 9Yβqq (again with countable support on the pCpω1qq
L

part and finite support on the almost disjoint coding forcings). The latter
representation is easily seen to be of the form P ˚ p˚βăδ

9ADp 9Yβqq, where P
is σ-closed and the second part is a finite support iteration of ccc forcings,
hence ω1 is preserved.

To see that the third item is true, we note that the definition of an
allowable forcing just depends on F and is independent of the surrounding
universe V Ă W over which it is applied, so we immediately see that a two
step iteration P1˚P2 of two allowable P1,P2 PW is in fact a product P1ˆP2.
As the iteration of two allowable forcings (in fact the iteration of countably
many allowable forcings) is allowable as well, the proof is done.

The proof of the second assertion of the last lemma immediately gives us
the following:
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Corollary 3.3. Let P “ pPpβq : β ă δq P W be an allowable forcing over
W . Then W rPs |ù CH. Further, if P “ pPpαq : α ă ω1q PW is an ω1-length
iteration such that each initial segment of the iteration is allowable over W ,
then W rPs |ù CH.

Let P “ pPpβq : β ă δq be an allowable forcing with respect to some
F P W . The set of (names of) reals which are enumerated by F we call the
set of reals coded by P. That is, for every β, if we let 9xβ be the (name) of a
real listed by F pβq and if we let G Ă P be a generic filter over W and finally
if we let 9xGβ “: xβ , then we say that txβ : β ă αu is the set of reals coded
by P and G (though we will suppress the G). Next we show, that iterations
of 0-allowable forcings will not add unwanted witnesses to the Σ1

3-formula
ψpw, iq which corresponds to the formula p˚˚˚q:

ψpw, iq ” Dr@MpM is countable and transitive and M |ù ZF´

and ωM1 “ pωL1 q
M and r, w PM ÑM |ù ϕpw, iqq

where ϕpw, iq asserts that in M ’s version of Lrrs, there is a transitive, ℵM1 -
sized ZF´-model which witnesses that w is coded into ~Si.

Lemma 3.4. If P P W is allowable, P “ pPβ : β ă δq, G Ă P is generic
over W and txβ : β ă δu is the set of reals which is coded by P. Let ψpv0q be
the distinguished formula from above. Then in W rGs, the set of reals which
satisfy ψpv0q is exactly txβ : β ă δu, that is, we do not code any unwanted
information accidentally.

Proof. Let G be P generic over W . Let g “ pgβ : β ă δq be the set of
the δ many ω1 subsets added by the pCpω1qq

L-part of the factors of P. We
let ρ : prω1s

ωqL Ñ ω1 be our fixed, constructible bijection and let hβ “
tρpgβ X αq : α ă ω1u. Note that the family thβ : β ă δu forms an almost
disjoint family of subsets of ω1. Thus there is α ă ω1 such that for arbitrary
distinct β1, β2 ă δ, α ą hβ1 X hβ2 and additionally, assume that α is an
index which does not show up in the set of indices of the trees we code with
P.

We let S1
α P

~S1. We claim that there is no real in W rGs such that
W rGs |ù Lrrs |ù “S1

α has an ω1-branch”. We show this by pulling out the
forcing S1

α out of P. Indeed if we consider W rPs “ LrQ0srQ1srQ2srPs, and
if S1

α is as described already, we can rearrange this to W rPs “ LrQ0srQ11 ˆ
S1
αsrQ2srPs “W rP1srS1

αs, where Q11 is
ś

β‰α S
1
β and P1 is Q0 ˚Q11 ˚Q2 ˚ P.

Note now that, as S1
α is ω-distributive, 2ωXW rPs “ 2ωXW rP1s, as Sα is

still a Suslin tree in W rP1s by the fact that ~S1 and ~S2 are independent, and
no factor of P1 besides the trees from ~S1 and ~S2 used in P1 destroys Suslin
trees. But this implies that

W rP1s |ù  DrLrrs |ù “S1
α has an ω1-branch”
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as the existence of an ω1-branch through S1
α in the inner model Lrrs would

imply the existence of such a branch in W rP1s. Further and as no new reals
appear when passing to W rPs we also get

W rPs |ù  DrLrrs |ù “S1
α has an ω1-branch”.

On the other hand any unwanted information, i.e. any px,mq R tpxβ,mβq :
β ă δu such that W rGs |ù ψppx, i,mqq will satisfy that there is a real r such
that

n P px, i,mq Ñ Lrrs |ù “S1
ωγ`2n`1 has an ω1-branch”

and
n R px, i,mq Ñ Lrrs |ù “S1

ωγ`2n has an ω1-branch”.

by the discussion of the last subsection for ω1-many γ’s.
But by the argument above, only trees which we used in one of the factors

of P have this property, so there can not be unwanted codes on the ~S1-side.
But the very same argument shows the assertion also for the ~S2-side. So for
our fixed α, there is no real r which codes an ω1 branch over Lrrs. But any
unwanted information would need not only one but even ℵ1-many such α’s
chosen as above. This shows that there can not be unwanted information in
W rGs, as claimed.

We define next a derivative of the class of allowable forcings.Work with
W as our ground model. Inductively we assume that for an ordinal α and an
arbitrary bookkeeping function F PW mapping to Hpω2q

2, we have already
defined the notion of δ-allowable with respect to F for every δ ă α, and
the definition works uniformly for every model W rGs, where G is a generic
filter for an allowable forcing. Note that these inductive requirements are
met for 0-allowable forcings. Now we aim to define the derivation of the
ă α-allowable forcings which we call α-allowable.

Definition 3.5. Let δ ă ω1 then a δ-length iteration P is called α-allowable
if it is recursively constructed using a bookkeeping function F : δ Ñ Hpω2q

2,
such that for every β ă δ, F pβq is a pair pF pβq0, F pβq1q, and two rules at
every stage β ă δ of the iteration. We assume inductively that we already
created the forcing iteration up to β, Pβ and we let Gβ denote a hypothet-
ical Pβ-generic filter over W . We shall now define the next forcing of our
iteration Ppβq. Using the bookkeeping F we split into two cases.

(a) We assume first that the first coordinate of F pβq, pF pβqq0 “ p 9x,m, kq,
where 9x is the Pβ-name of a real and m ă k are natural numbers.
Further we assume that 9xGβ “ x, and W rGβs |ù x P Am Y Ak. We
assume that in W rGβs, the following is true:
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There is an ordinal ζ ă α, which is chosen to be minimal for
which

(i) for every ζ-allowable forcing Q PW rGβs we have that, overW rGβs:

Q , x P Am

In this situation we force with Ppx,m,kq,2 at stage β, that is, in
W rGβs, we set Ppβq :“ Ppx,m,kq,2.

(ii) If (i) for ζ is false but the dual situation is true, i.e. for every
ζ-allowable forcing Q PW rGβs, we have that W rGβs thinks that

Q , x P Ak

Then we define Ppβq to be Ppx,m,kq,1.

If both paqpiq and paqpiiq are true for the same ζ, then we give case
paqpiq preference, and suppress case paqpiiq.

(b) Else F guesses where we code px,m, kq, i.e. we code px,m, kq into
~SF pβq1, provided F pβq1 P t1, 2u (otherwise we decide to code px,m, kq
into ~S1 per default).

This ends the definition of P being α-allowable with respect to F at suc-
cessor stages β ` 1. To define the limit stages β of an α-allowable forcing,
we assume that we have defined already pPγ : γ ă βq and let the limit Pβ
to be defined as the inverse limit of the CL-factors we used in the Pγ’s, and
the direct limit of the factors of Pγ, which correspond to the almost disjoint
coding forcings. In other words we use the already mentioned mixed support,
that is countable support on the ω1-Cohen part, and finite support on the
almost disjoint coding part.

We finally have finished the definition of an α-allowable forcing relative
to a perviously fixed bookkeeping function F . In the following we often drop
the reference to F and simply say that some forcing P is α-allowable, in
which case we always mean that there is some F such that P is α-allowable
relative to F .

We briefly describe a typical run through the cases in the definition of
α-allowable forcings. Given our bookkeeping F : δ Ñ Hpω2q

2, the according
allowable P “ pPpβq : β ă δq forcing is constructed such that at every stage
β ă δ we ask whether there exists for ζ “ 0 a Q such that (a)(i) becomes
true. If not then we ask the same question for (a)(ii). If both are false, we
pass to ζ “ 1, and so on. If (a) (i) or (a) (ii) never applies for any ζ ă α, we
pass to (b). It is therefore intuitively clear, and will be proved in a moment,
that the notion of α-allowable has to satisfy more and more requirements as
α increases, hence the classes of α-allowable forcings should become smaller
and smaller. As a further consequence of this, case (a) in the definition
becomes easier and easier to satisfy, which leads in turn to more restrictions
of how an α-allowable forcing can look like.
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Lemma 3.6. For any ordinal α, the notion α-allowable is definable over the
universe W .

Lemma 3.7. If P is β-allowable and α ă β, then P is also α-allowable.
Thus the classes of α-allowable forcings become smaller with respect to the
subset relation, if α increases.

Proof. Let α ă β, let P be a β-allowable forcing and let F be the bookkeeping
function which, together with the rules (a)+(b) from above determine P. We
will show that there is a bookkeeping function F 1 PW such that P can be seen
as an α-allowable forcing determined by F 1. The first coordinate of F 1 should
always coincide with the first coordinate of F , i.e. @γppF pγq0 “ F 1pγq0q.
The second coordinate, which determines which of the ~Si-sequence is used
for coding when in case (b) is defined via simulating the reasoning for a
β-allowable forcing. This means that at every stage γ of the iteration, we
pretend that we are working with β-allowable forcings, we do the reasoning
described in (a) and (b) for β-allowable using F . If case (a) does apply, and
Ppγq is some Ppx,m,kq,1, then we simply let pF 1pγqq1 “ 1. That is, we let F 1

simulate the reasoning we would apply if P would be a β-allowable forcing
using F , and the forget about β-allowable and just keep the result of the
reasoning. The new bookkeeping F 1 is definable from F , and clearly P is
α-allowable using F 1.

Lemma 3.8. Let α be an arbitrary ordinal, let F1, F2 be two bookkeeping
functions, F1 : δ1 Ñ W 2, F2 : δ2 Ñ W 2, and let P1 “ pP1

β : β ă δ1q and
P2 “ pP2

β : β ă δ2q be the α-allowable forcings one obtains when using F1

and F2 respectively.
Then P :“ P1 ˆ P2 is α-allowable over W , as witnessed by some F :

pδ1 ` δ2q ÑW 2, which is definable from tF1, F2u.

Proof. By induction on α. For α “ 0, this follows immediately from the
definition of 0-allowable.

Now suppose the Lemma is true for α and we want to show it is true
for α ` 1. Given F1 and F2, we define F pγq :“ F1pγq for γ ă δ1 and
F pδ1 ` γq :“ F2pγq for γ ă δ2. We claim that P “ P1 ˆ P2 is α ` 1-
allowable with respect to F over W . This is shown via induction on the
stages β ă δ1 ` δ2, i.e. we shall show that for each β ă δ1 ` δ2,

Pβ “

#

P1
β if β ď δ1

P1 ˆ P2
β´δ1

if β ą δ1

is α` 1-allowable over W .
For β ď δ1, this follows immediately from the fact that P1 is α ` 1-

allowable.
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For β ă δ2, we assume by induction hypothesis that Pδ1`β is α ` 1-
allowable over W , and want to see that also Pδ1`β ˚ Ppδ1 ` β ` 1q is α` 1-
allowable.

We work over the model W rP1srP2
βs. Assume that F pδ1 ` β ` 1q0 “

F2pβ`1q0 “ p 9x,m, kq, let x “ 9xGβ , and assume that, when defining Ppδ1`βq
over W rP1srP2

βs, using the rules for α ` 1-allowable, we are in case (a) (i).
We shall show that in this situation, we are in case (a) (i) at stage β, when
defining P2pβq (again using the rules of α` 1-allowable) over W rP2

βs.
Indeed, as we are in case (a) (i) when defining Ppδ1`βq over W rP1srP2

βs,
there is a minimal ζ ă α ` 1 such that for every Q P W rP1srP2

βs, which
is ζ-allowable, it holds that W rP1srP2

βs |ù Q , x P Am. If we assume for
a contradiction, that we are not in case (a) (i), at stage β when defining
P2pβq over W rP2

βs, then there is a R PW rP2
βs such that R is ζ-allowable and

R , x R Am.
But now, by induction hypothesis, R PW rP1srP2

βs is ζ-allowable there as
well. Indeed, P1 is α` 1-allowable, hence ζ-allowable over W , and so is the
iteration P2

β ˚ R. By induction hypothesis, pP2
β ˚ Rq ˆ P1 is ζ-allowable, and

so R is, in W rP1srP2
βs, a ζ-allowable forcing which forces x to not belong to

Am, by upwards absoluteness of Σ1
3-formulas. Hence we can not be in case

(a) (i) at stage δ1 ` β, when defining P which is a contradiction.
The dual reasoning yields that if we are in case (a) (ii) at stage β in the

definition of P using F over W , then we must be in case (a) (ii) as well at
stage β in the definition of P2pβq over W rP2

βs.
Last, if we are in case (b) at stage β in the definition of P using F over

W rPδ1`βs, then we shall show that we are in case (b) as well at stage β in the
definition of P2pβq over W rP2

βs. Under our assumption, for every ζ ă α` 1

there are ζ-allowable forcings Rζ1 and Rζ2 PW rPδ1`βs such that Rζ1 , x R Am
and Rζ2 , x R Ak.

But by induction hypothesis, P1 ˚ Rζi is ζ-allowable over W rP2
βs, hence

these forcings show that we are in case (b) at stage β in the definition of
P2pβq over W rP2

βs.
To summarize, the above shows that if we define the α ` 1-allowable

forcing P with F as our bookkeeping function, the outcome will be P1 ˆ P2,
so the latter is indeed α` 1-allowable.

Finally if α is a limit ordinal, then P1 ˆ P2 will be ξ-allowable for every
ξ ă α, but this implies that P1 ˆ P2 is α-allowable.

Lemma 3.9. For any α, the set of α-allowable forcings is non-empty.

Proof. By induction on α. If there are α-allowable forcings, then the rules
(a) and (b) above, together with some bookkeeping F will create an α ` 1-
allowable forcing. For limit ordinals α, an α-allowable forcing always exists,
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as for any given bookkeeping function F there will be an α-allowable, non-
trivial forcing with F as its bookkeeping function.

As a direct consequence of the last two observations we obtain that there
must be an ordinal α such that for every β ą α, the set of α-allowable
forcings must equal the set of β-allowable forcings. Indeed every allowable
forcing is an ℵ1-sized partial order, thus there are only set-many of them, and
the classes (which in fact are sets, if we allow ourselves to identify isomorphic
forcings) of α-allowable forcings must eventually stabilize at a set which also
must be non-empty.

Definition 3.10. Let α be the least ordinal such that for every β ą α, the set
of α-allowable forcings is equal to the set of β-allowable forcings. We say that
some forcing P is 8-allowable if and only if it is α-allowable. Equivalently,
a forcing is 8-allowable if it is α-allowable for every ordinal α.

The set of 8-allowable forcings can also be described in the following
way. An δ ă ω1-length iteration P “ pPα : α ă δq is 8-allowable if it is
recursively constructed according to a bookkeeping function F as follows:
For every β ă δ of the iteration:

(a) If the first coordinate of F pβq, pF pβqq0 “ p 9x,m, kq, where 9x is the Pβ-
name of a real. Further we assume that 9xGβ “ x, for Gβ a Pβ-generic
filter over W and W rGβs |ù x P Am YAk. We assume that in W rGβs,
the following is true:

There is an ordinal ζ, which is chosen to be minimal for which

(i) in the universe W rGβs, the following holds:

@QpQ is ζ-allowableÑ Q , x P Amq

(ii) Or if (a) (i) is not true, but it holds in W rGβs that

@QpQ is ζ-allowableÑ Q , x P Akq

We give case (a) (i) preference over (a) (ii) if both are true for the
minimal ζ. If this is the case, then we define the β-th factor of our
iteration as Ppβq :“ Ppx,m,kq,2 if (a) (i) is true. We let Ppβq :“ Ppx,m,kq,1
if case (a) (ii) is true.

(b) Otherwise, we let F pβq1 P t1.2u decide which ~Si-sequence to use and
define Ppβq :“ Ppx,m,kq,F pβq1 .

The next Lemma follows immediately from the definitions of8-allowable
and tells us, when an iteration results in an 8-allowable notion of forcing.
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Lemma 3.11. Let δ ă ω1 and let pPβ : β ă δq be an 8-allowable forcing
over W . Let δ1 ă ω1, pQβ | β ă δ1q P W rGδs be such that W rGδs |ù pQβ |

β ă δ1q is 8-allowable. Then pPβ : β ă δq ˚ p 9Qβ | β ă δ1q is 8-allowable,
over W .

As a consequence, blocks of 8-allowable iterations pPiβ | β ă δiq, i ă
η ă ω1 can be concatenated to one 8-allowable forcing over W . This will be
used to see that the upcoming iteration is indeed an 8-allowable iteration
over W .

3.3 Definition of the universe in which the Π1
3 reduction

property holds

The notion of 8-allowable will be used now to define the universe in which
the Π1

3-reduction property is true. We let W be our ground model and
start an ω1-length iteration such that each initial segment of that iteration,
which of course must have countable lenght, is an 8-allowable forcings. The
iteration is guided by a bookkeeping F : ω1 Ñ Hpω1q

2, which, on its first
coordinate should have the property that for every pa, bq P Hpω1q

2, the pre-
image F´1pa, bq is unbounded in ω1.

The definition of the iteration P “ pPβ : β ď ω1q is as always specified
by induction. At the last stage ω1 we take the direct limit of the previously
construced Pβ . Now to the definition of the Pβ ’s:

1. We assume that we are at stage β ă ω1, the8-allowable forcing Pβ has
been defined. Assume that F pβq “ pβ0, β1q P Hpω1q

2 and β0, β1 ă β.
We further assume that the β1-th (in some previously fixed well-order
ă of Hpω2qq Pβ0-name of a triple of the form p 9a, 9n, 9lq, where 9a is a nice
Pβ0-name of a real, and 9n, 9l are nice Pβ0-names of natural numbers, is
p 9x, 9m, 9kq. We assume 9xGβ “ x, 9mGβ “ m, 9kGβ “ k, k ă m and that
in W rGβs, x P Am Y Ak. Now, if in the universe W rGβs, there is a
minimal ζ ă α0 such that

(i) W rGβs |ù @Q P W rGβspQ is ζ-allowable Ñ Q , x P Amq, then
force with Ppβq :“ Ppx,m,kq,2.
Note that this has as a direct consequence, that if we restrict
ourselves from now on to forcings Q P W rGβ`1s such that Q is
ζ-allowable, then x will remain an element of Am. In particular,
the pathological situation that x R Am, x P Ak while x is coded
into ~S2 is ruled out for px,m, kq.

(ii) If we can kick x out of Am with a ζ-allowable forcing overW rGβs,
yet it is true that

W rGβs |ù @Q PW rGβspQ is ζ-allowable Ñ x P Akq

then force with Ppβq :“ Ppx,m,kq,1.
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2. If F pβq “ px,m, kq and W rGβs |ù x P Am X Ak and neither case 1 (i)
nor 1 (ii) applies, then we obtain that

W rGβs |ù DQpQ is 8-allowable) and Q , x R Amq.

With the same argument we also obtain that

W rGβs |ù DRpR is 8-allowable) and R , x R Akq.

In this situation, we let Q and R the ă-least 8-allowable forcings as
above and use

Ppβq :“ Qˆ R

which is an 8-allowable forcing over W rGβs and which forces that
x R Am YAk.

This ends the definition of the iteration and we shall show that, ifGω1 denotes
a generic filter for the forcing Pω1 , which is defined as the direct limit of the
forcings Pβ , then the resulting universe W rGω1s satisfies the Π1

3-reduction
property. For every pair pm, kq P ω2, we define

D1
m,k :“ tx P 2ω : px,m, kq is not coded into the ~S1-sequenceu

and

D2
m,k :“ tx P 2ω : px,m, kq is not coded into the ~S2-sequenceu.

Our goal is to show that for every pair pm, kq the sets D1
m,k X Am and

D2
m,k XAk reduce the pair of Π1

3-sets Am and Ak.

Lemma 3.12. InW rGω1s, for every pair pm, kq, m, k P ω and corresponding
Π1

3-sets Am and Ak:

(a) D1
m,k XAm and D2

m,k XAk are disjoint.

(b) pD1
m,k XAmq Y pD

2
m,k XAkq “ Am YAk.

(c) D1
m,k XAm and D2

m,k XAk are Π1
3-definable.

Proof. We prove (a) first. If x is an arbitrary real in AmXAk there will be a
least stage β, such that F at stage β considers a triple of names which itself
corresponds to the triple px,m, kq. As x P AmXAk, we know that case 1 (i)
or 1 (ii) must have applied. We argue for case 1 (i) as case (ii) is similar. In
case 1 (i), Ppx,m,kq,2 does code px,m, kq into ~S2, while ensuring that for all
future 8-allowable extensions, x will remain an element of Am. The rules of
the iteration also tell us that px,m, kq will never be coded into ~S1 by a later
factor of the iteration. Thus x P D1

m,k XAm. As we coded px,m, kq into ~S2,
it follows that x R D2

m,k and D1
m,k XAm and D2

m,k XAk are disjoint.
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To prove (b), let x be an arbitrary element of AmYAk. Let β be the stage
of the iteration where the triple px,m, kq is considered first. As x P AmYAk,
either case 1 (i) or (ii) were applied at stage γ. Assume first that it was case
1 (i). Then, as argued above, x P XAm will remain true for the rest of
the iteration, and we will never code px,m, kq into ~S1 at a later stage of
our iteration. Hence x P Am X D1

m,k. If at stage β case (ii) applied, then
x P D2

m,k X Ak, and again, we will never code px,m, kq into ~S1 at a later
stage of our iteration. Thus,either x P D1

m,k XAm or x P D2
m,k XAk and we

are finished.
To prove (c), we claim thatD1

m,k has uniformly the following Π1
3-definition

over W rGω1s, where the Σ1
3-formula ψppx,m, kq, iq is defined right above

Lemma 3.4 (note that in the formulation there the real w is a recursive code
for the triple px,m, kq):

x P D1
m,k XAm ô x P Am^ pDrpψppx,m, kq, 1qq

It is straightforward to see that the right hand side of the equivalence above
is the conjunction of two Π1

3-formulas, so Π1
3 as desired.

3.4 A Π1
3-set which can not be uniformized by a Π1

3-function

The next observations will finish the proof of our main result, namely that
in W rGω1s, there is a Π1

3-set which can not be uniformized by a Π1
3 function.

We first fix some assumptions which will help us to organize the proof. First
note that, using a homeomorphism of 2ω ˆ 2ω and 2ω we know that the
Π1

3-reduction property for sets in the plane holds. In particular, for a pair of
Π1

3-sets Am and Ak in the plane, we obtain the reducing set

D1
m,k “ tpx, yq : px, y,m, kq is not coded somewhere in ~S1u

and

D2
m,k “ tpx, yq : px, y,m, kq is not coded somewhere in ~S2u.

We assume next, without loss of generality, that in our list of Π1
3-formulas,

the first formula ϕ0 has the following form:

ϕ0px, yq ” x “ x^ y “ y.

It is clear that there is no allowable, indeed no forcing at all which kicks pair
px, yq out of A0. As a consequence, whenever we start to run our iteration
to produce W rGω1s, and we hit a stage β such that the triple px, 0, kq is
considered, then we will find ourselves in case 1 (i) or (ii) of the definition
of our iteration to obtain W rGω1s. In particular this means that graphs of
Π1

3-functions are in fact Σ1
3 as well, by the next lemma.
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Lemma 3.13. In W rGω1s, if Am is the Π1
3-set of the graph of a (possibly

partial) function fm, then the complement p2ω ˆ 2ωqzAm is Π1
3 as well.

Proof. Note that as A0px, yq is, by our assumption, the full plane, whenever
Am is the graph of a function, and we are at a stage β in our iteration
such that F considers px, y, 0,mq and px, yq P Am, then, as px, yq P Am in
W rGω1s, we can not force px, yq out of Am, and we must be in case 1 (i) and
force with Ppx,y,0,m,2q. In particular, if we look at the sets D1

0,m and D2
0,m

which reduce A0 and Am we find that

D1
0,m “ tpx, yq : px, y, 0,mq is not coded in ~S1u “ Am

and

D2
0,m “ tpx, yq : px, y, 0,mq is not coded in ~S2u “ p2ω ˆ 2ωqzAm

Thus the complement of the graph of fm is Π1
3, hence Am is also Σ1

3 and so
∆1

3.

Theorem 3.14. In W rGω1s the Π1
3-uniformization property does not hold.

Proof. We use a recursive bijection

h : ω ˆ 2ω Ñ 2ω

to partition 2ω into ω many pairwise disjoint sets. We let Upn, x, yq denote
a universal Π1

3-set in the plane, i.e. a set which satisfies that for any Π1
3 set

B, there is an n P ω, such that px, yq P B ô Upn, x, yq holds true. Then we
define a set A in the plane as follows:

px, yq P Aô @n@x̄phpn, x̄q “ xÑ Upn, x, yqq

Note that A is Π1
3.

We claim that A can not be uniformized by a Π1
3-function inW rGω1s. To

see this, let fm be an arbitrary Π1
3-function, whose graph is Ampx, yq. Using

our last lemma, we know that p2ω ˆ 2ωqzAm is Π1
3 as well and we let k P ω

be such that
Ak “ p2

ω ˆ 2ωqzAm

Now we fix a real x such that there is a x̄ which satisfies x “ hpk, x̄q. Then
we claim that the graph of fm will not intersect A on the k-th part of the
partition of 2ω induced by h. Indeed, as x “ hpk, x̄q, if we assume that
px, fmpxqq P A, then

px, fmpxqq P Aô

pk, x, fmpxqq P U ô

px, fmpxqq P Ak
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but px, fmpxqq P Ak is false as Ak is the complement of the graph of fm.
Thus, given an arbitrary Π1

3-function fm, we can find a real x such that
px, fmpxqq R A, yet the x-section of A is nonempty, as for every y ‰ fmpxq,
we have that px, yq P Ak, and, as x “ hpk, x̄q, px, yq P A.
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