Forcing the IT}-Reduction Property and a Failure
of TT3-Uniformization

Stefan Hoffelner*

22.09.2022

Abstract

We generically construct a model in which the IIi-reduction prop-
erty is true and the II}-uniformization property is false, thus producing
a model which separates these two principles for the first time.

1 Introduction

The reduction property was introduced by K. Kuratowski in 1936 and is
one of the three regularity properties of subsets of the reals which were
extensively studied by descriptive set theorists, along with the separation
and the uniformization property.

Definition 1.1. We say that the 11! -reduction property holds in a universe
V if every pair Ag, Ay of 11} -subsets of the reals in V can be reduced by a
pair of 11} -sets Dy, D1, which means that Do = Ag, D1 < A1, Do n Dy = &
andDg UD1 = AO UAl.

The reduction property for I} is implied by the stronger uniformization
property for II}-sets. Recall that for an A < 2% x 2% we say that f is
a uniformization (or a uniformizing function) of A if there is a function
f:29 =29 dom(f) = pri(A) (where pri(A) is A’s projection on the first
coordinate) and the graph of f is a subset of A. In other words, f chooses
exactly one point of every non-empty section of A.

Definition 1.2. We say that the 11} -uniformization property is true, if every
set A< 2@ x 2% Aelll has a uniformizing function fa whose graph is I1L.

*WWU Miinster. Research funded by the Deutsche Forschungsgemeinschaft (DFG
German Research Foundation) under Germanys Excellence Strategy EXC 2044 390685587,
Mathematics Miinster: Dynamics-Geometry-Structure.

Classical work of M. Kondo, building on ideas of Novikov, shows that
the H%—uniformization (and consequently the E%—uniformization) property is
true. This is as much as ZFC can prove about the uniformization and the re-
duction property. In Gddel’s constructible universe L, the ¥} -uniformization-
property for n > 3 is true, as L admits a good ¥i-wellorder of its reals. On
the other hand, due to Y. Moschovakis’ celebrated result, the axiom of pro-
jective determinacy PD outright implies the I3 41-uniformization property
for every n € w, indeed A} -determinacy implies the stronger II3, 41-sScale
property for every n € w. By a result of D. Martin and J. Steel, n-many
Woodin cardinals and a measurable above imply IIL ,1-determinacy, in par-
ticular under the assumption of w-many Woodin cardinals PD becomes true
which fully settles the behaviour of the uniformization and reduction prop-
erty for projective pointclasses.

Despite the extensive list of deep results that has been produced in the
last 60 years on this topic, there are still some basic and natural questions
concerning the reduction or the uniformization property which remained
open. Note e.g. that in the scenarios above the reduction property holds
because the uniformization property does. As these are the only known ex-
amples in which the reduction property holds, it is possible that reduction
and uniformization for projective pointclasses are in fact equivalent princi-
ples over ZFC. So the very natural question, which surely has been asked
already much earlier, arises whether one can produce universes of set theory
where the reduction property holds for some pointclass, yet the correspond-
ing uniformization property fails. The purpose of our article is to show that
this can be done.

Theorem. There is a generic extension of L in which the H%—Teduction prop-
erty is true and the H%-uniformz’zation property is false .

We expect the arguments to be applicable to the canonical inner mod-
els with n-many Woodin cardinals, denoted by M,,, as well, which would
yield models in which the IT} y3-reduction property holds, and the 15 43"
uniformization property fails (see [11] for a paradigmatic example of how to
carefully lift the argument designed for L to work for M,, as well).

This article builds on ideas first introduced in [10] and [11]. The proof of
the theorem is, however, far from a mere application of the two mentioned
articles.

The main theme which organises the proof is that the problem of forcing
the H%—reduetion property can be rephrased as a fixed point problem for cer-
tain sets of Ny-sized proper forcings. This fixed point problem can be solved,
which unlocks a seemingly self-referential definition of an iteration which will
produce a universe of the H%—reduotion property. A closer inspection shows
that in this universe the Hé—uniformization property is fails to hold.

2 Preliminaries

The forcings which we will use in the construction are all well-known. We
nevertheless briefly introduce them and their main properties.

Definition 2.1. (see [3]) For a stationary R wy the club-shooting forcing
for R, denoted by Pr consists of conditions p which are countable functions
from a +1 < wy to R whose image is a closed set. Pgr is ordered by end-
extension.

The club shooting forcing Pp is the paradigmatic example for an R-proper
forcing, where we say that P is R-proper if and only if for every condition
p e P, every 6 > 2Pl and every countable M < H(f) such that M nw; € R
and p,P € M, there is a ¢ < p which is (M, P)-generic; and a condition g € P
is said to be (M, P)-generic if ¢ |- “G'~ M is an M-generic filter”, where G
is the canonical name for the generic filter. See also [8].

Lemma 2.2. Let R < w; be stationary, co-stationary. Then the club-
shooting forcing Pr generically adds a club through R. Additionally Pg is
R-proper, w-distributive and hence wy-preserving. Moreover R and all its
stationary subsets remain stationary in the generic extension.

Proof. We shall just show the w-distributivity of Pg, the rest can be found
in [8], Fact 3.5, 3.6 and Theorem 3.7. Let p € Pgr and & be such that
p - @ € 2¥. Without loss of generality we assume that z is a nice name for
a real, i.e. given by an w-sequence of Pr-maximal antichains. We shall find
a real x in the ground model and a condition ¢ < p such that ¢ - = = =.
For this, fix # > 2/Prl and a countable elementary submodel M < H(6)
which contains Pr, & and p as elements and which additionally satisfies that
M nwy € R. Note that we can always assume that such an M exists by the
stationarity of R. We recursively construct a descending sequence (pp,)new <
M of conditions below p = pg such that every p, decides the value of z(n)
and such that the sequence of max,e, ran(p,) converges to M n w;. We let
x(n) € 2 be the value of & as forced by p,, and let x = (2(n))npe, €29 N V.

Let ¢ = U e Pn © (M nwi). Weset g := ¢ U {(w, M nwi)}, which is
function from w to R with closed image, and hence a condition in Pr which
forces that = = x as desired.

O]

We will choose a family of Rg’s so that we can shoot an arbitrary pattern
of clubs through its elements such that this pattern can be read off from the
stationarity of the Rg’s in the generic extension. For that it is crucial to
recall that for stationary, co-stationary R < wi, R-proper posets can be
iterated with countable support and always yield an R-proper forcing again.
This is proved exactly as in the well-known case for plain proper forcings
(see [8], Theorem 3.9 and the subsequent discussion).

Fact 2.3. Let R c w; be stationary, co-stationary. Assume that (P @ a <
7v) is a countable support iteration, let P, denote the resulting partial order
obtained using countable support limit and assume also that at every stage
a, Py I- P(a) is R-proper. Then P, is R-proper.

Once we decide to shoot a club through a stationary, co-stationary subset
of wy, this club will belong to all wi-preserving outer models. This hands
us a robust method of coding arbitrary information into a suitably chosen
sequence of sets which has been used several times already (see e.g. [5]).

Lemma 2.4. Let (R, : « < w) be a partition of wy into Ny -many stationary
sets, let r € 2*1 be arbitrary, and let P be a countable support iteration
(Py : a <wy), inductively defined via

P(a) := Pm\Rza if r(a) =1

and '
P(a) := Pyp\Rey.0,, o 7(@) = 0.

Then in the resulting generic extension V[P], we have that Vo < wy :
r(a) = 1 if and only if Ra.o is nonstationary,

and
To = 0 iff Rig.0)41 15 nonstationary.

Proof. Assume first without loss of generality that 7(0) = 1, then the itera-
tion will be Ri-proper, hence wi-preserving. Now let a < wy be arbitrary and
assume that r(a) = 1 in V[P]. Then by definition of the iteration we must
have shot a club through the complement of Ra,, thus it is nonstationary in
V[P].
On the other hand, if Ry, is nonstationary in V[P], then we assume for
a contradiction that we did not use P, \g, , in the iteration P. Note that
for B # 2 - a, every forcing of the form Py \r, is Ro.o-proper as Py \g, is
wi\Rg-proper and R.. < wi\Rg. Hence the iteration P will be Rg.o-proper,
thus the stationarity of Rs., is preserved. But this is a contradiction.
O

The second forcing we use is the almost disjoint coding forcing due to R.
Jensen and R. Solovay (see [12]). We will identify subsets of w with their
characteristic function and will use the word reals for both elements of 2%
as well as for subsets of w respectively. Let D = {d, « < R;} be a family
of almost disjoint subsets of w, i.e. a family such that if r,s € D then r n s
is finite. Let X < & for & < 2% be a set of ordinals. Then there is a ccc
forcing, the almost disjoint coding Ap(X) which adds a new real which
codes X relative to the family D in the following way

« € X if and only if n d, is finite.

Definition 2.5. The almost disjoint coding Ap(X) relative to an almost
disjoint family D consists of conditions (r,R) € w=* x D<¥ and (s,S) <
(r, R) holds if and only if

I.rcsand Rc S.
2. Ifae X and dy € R then r ndy = s N d,,.

For the rest of this paper we let D € L be the definable almost disjoint
family of reals one obtains when recursively adding the <j-least real to the
family which is almost disjoint from all the previously chosen reals. When-
ever we use almost disjoint coding forcing, we assume that we code relative
to this fixed almost disjoint family D.

The last two forcings we briefly discuss are Jech’s forcing for adding a
Suslin tree with countable conditions and, given a Suslin tree S, the as-
sociated forcing which adds a cofinal branch through S. Recall that a set
theoretic tree (9, <) is a Suslin tree if it is a normal tree of height wy and has
no uncountable antichain. Forcing with a Suslin tree S, where conditions are
just nodes in S, and which we always denote with S again, is a ccc forcing of
size Ny. Jech’s forcing to generically add a Suslin tree is defined as follows.

Definition 2.6. Let Pj be the forcing whose conditions are countable, nor-
mal trees ordered by end-extension, i.e. Ty < Ty if and only if da <
height(Tl)Tg = {t la:te Tl}

It is well-known that P; is o-closed and adds a Suslin tree, in fact Py
is forcing equivalent to the adding a Cohen subset to w; with countable
conditions. The generically added tree 1" has the additional property that
for any Suslin tree S in the ground model S x T will be a Suslin tree in
V[G]. This can be used to obtain a robust coding method (see also [9] for
more applications)

Lemma 2.7. Let V be a universe and let S € V be a Suslin tree. If Py is
Jech’s forcing for adding a Suslin tree, if g < Py is generic and if T = |Jg
is the generic tree, and if we let T € V|g]| be the forcing which adds an
w1-branch through T, then

VIgl[T] E S is Suslin.

Proof. Let T be the P -name for the generic Suslin tree. We claim that
P, «T has a dense subset which is o-closed. As o-closed forcings will always
preserve ground model Suslin trees, this is sufficient. To see why the claim
is true consider the following set:

{(p,q) : pe Py A height(p) = o+ 1 A ¢ is a node of p of level a}.

It is easy to check that this set is dense and o-closed in P * T.

A similar observation shows that a we can add an wi-sequence of such
Suslin trees with a countably supported iteration.

Lemma 2.8. Let S be a Suslin tree in V' and let P be a countably supported
product of length wy of forcings Py with G its generic filter. Then in V|[G]
there is an wi-sequence of Suslin trees T = (T, : « € wy) such that for any
finite e € w the tree S x [[, T;i will be a Suslin tree in V[G].

i€e
These sequences of Suslin trees will be used for coding in our proof and
deserve a name, consistent with |6] and [9].

Definition 2.9. Let T = (T, : o < k) be a sequence of Suslin trees. We
say that the sequence is an independent family of Suslin trees if for every
finite set of pairwise distinct indices e = {eqg,e€1,...,en} < Kk the product
Tey x Ty x - -+ xTg, is a Suslin tree again.

2.1 The ground model W of the iteration

We have to first create a suitable ground model W over which the actual
iteration will take place. W will be a generic extension of L, which has no
new reals. Moreover W has the crucial property that in W there is an wi-
sequence S of wy trees which is ¥1(w1)-definable over H(wz)" and which
forms an independent sequence of Suslin trees in an inner model of W!. The
sequence S will enable a coding method we will use throughout this article
all the time.

To form W, we start with Godels constructible universe L as our ground
model. We first fix an appropriate sequence of stationary, co-stationary
subsets of w as follows. Recall that { holds in L, i.e. over L, there is a ;-
definable sequence (a, : o < wy) of countable subsets of w; such that any set
A c wy is guessed stationarily often by the ay’s, i.e. {a <wy : aq = AN a}
is a stationary and co-stationary subset of wy. The {-sequence can be used
to produce an easily definable sequence of stationary, co-stationary subsets:
we list the reals in L in an w; sequence (r, : a < wy), and let 7, < w; be
the unique element of 2“! which copies r, on its first w-entries followed by
wi-many 0’s. Then, identifying 7, € 2“! with the according subset of w;, we
define for every § < w; a stationary, co-stationary set in the following way:

Ry :={a<wi : aq =7g N a}.

It is clear that Vo # B(R., mR/’B e NS,,,) and we obtain a sequence of pairwise
disjoint stationary sets as usual via setting for every 5 < wq

Rg:=Rp\ | J R,

a<f

'That S is an independent sequence of Suslin trees in an inner model of W only has
technical advantages. We have been informed by G. Fuchs that an independent sequence
of Suslin trees of length w; actually exists in L already (see [7]). Thus forcing them, as is
done in this section, seems to be redundant, though we have not worked the details out.

and let R = (R : a < wi). Viapicking out one element of R and re-indexing
we assume without loss of generality that there is a stationary, co-stationary
R < wy, which has pairwise empty intersection with every Rg € R. Note
that for any 8 < wi, membership in Rg is uniformly ¥;-definable over the
model L, , i.e. there is a ¥j-formula ¢ (x,y) such that for every f < w;

a€ Rg < Ly, EvY(o,).
We proceed with adding N;-many Suslin trees using of Jech’s Forcing P;.

We let
QY := H Py

BEw1

using countable support. This is a o-closed, hence proper notion of forcing.
We denote the generic filter of Q° with § = (S, : a < w;) and note that
by Lemma 2.8 S is independent. We fix a definable bijection between [w;]*
and wy and identify the trees in (S, : a < w;) with their images under this
bijection, so the trees will always be subsets of wy from now on.

We work in L[Q"] and will define the second block of forcings as follows:

we let
Q!:= H Ss

B<wi

in other words, we add to each generically created tree from S an w1-branch,
via forcing with the tree. Note that by the argument from the proof of lemma
2.10, this forcing has a dense subset which is o-closed. Hence L[Q°][Q'] is
a proper and w-distributive generic extension of L.

In a third step we code the trees from S into the sequence of L-stationary
subsets R we produced earlier, using Lemma 2.4. It is important to note,
that the forcing we are about to define does preserve Suslin trees, a fact we
will show later. The forcing used in the third step will be denoted by Q2 and
will itself be a countable support iteration of length w; -w; whose components
are countable support iteration themselves. First, fix a definable bijection
h € L,, between w; x w; and w; and write R from now on in ordertype
w1 - wy making implicit use of h, so we assume that R = (Ro : @ <wy-wi).
We let @ < wy and consider the tree S, < wi. Defining the a-th factor
of our iteration Q2, we let Q?(a) be the countable support iteration which
codes the characteristic function of S, into the a-th wi-block of the Rg’s just
as in Lemma 2.4. So Q?(a) is a countable support iteration whose factors,

denoted by Q?(a)(v) are defined via

¥y < w1 (Qa)(7) = Pu\ Ry asaysn) 1 Sa(7) =0

and

vy <w Q@) (V) 1= Pup\ Ry, ave,) 1 Sal(y) = 1.

Recall that we let R be a stationary, co-stationary subset of w; which
is disjoint from all the R,’s which are used. It follows from Lemma 2.4

that for every a < wy, Q%(a) is an R-proper forcing which additionally is
w-distributive. Then we let Q2 be the countably supported iteration,

Q2 = *a<w1(@2(a)

which is again R-proper (and w-distributive as we shall see later). This
way we can turn the generically added sequence of trees S into a definable
sequence of trees. Indeed, if we work in L[g « b * G], where S«bxGis
Q0 % Q! % Q%-generic over L, then, as seen in Lemma 2.4

Va,v < wi(y € Sa © Ruy.a+2. 1s not stationary and

v ¢ Sa © Ry, .a+2.4+1 is not stationary)

Note here that the above formula can be written in a ¥ (w;)-way, as it
reflects down to Ni-sized, transitive models of ZF~ which contain a club
through exactly one element of every pair {(Rqy, Ra+1) @ @ < wi}.

Our goal is to use S for coding. For this it is essential, that the sequence
remains independent in the inner universe L[Q? * Q?]. Note that this is
reasonable as Q" * Q! * Q2 can be written as Q" * (Q! x Q?), hence one can
form the inner model L[Q° x Q?] without problems.

The following line of reasoning is similar to [9]. Recall that for a forcing
P and M < H(#), a condition g € P is (M, P)-generic iff for every maximal
antichain A ¢ P, A € M, it is true that A n M is predense below g. The key
fact is the following (see [14] for the case where P is proper)

Lemma 2.10. Let T be a Suslin tree, R w1 stationary and P an R-proper
poset. Let 6 be a sufficiently large cardinal. Then the following are equivalent:

1. IFp T is Suslin

2. if M < Hy is countable, n = M nwy € R, and P and T are in M,
further if p e P M, then there is a condition q < p such that for every
condition t € T), (q,t) is (M,P x T)-generic.

Proof. For the direction from 1 to 2 note first that |p “I" is Suslin” implies
IFp “T" is ccc”, and in particular for any countable elementary submodel
N|[Gp] < HO)VIC? bp Vit e T (t is (N[Gp], T)-generic). Now if M < H(6)
and M nwy =ne Rand P,T € M and p € Pn M then there is a ¢ < p
such ¢ is (M, P)-generic. So q -Vt € T (t is (M[Gp], T')-generic, and this in
particular implies that (g,t) is (M, P x T')-generic for all ¢t € T,.

For the direction from 2 to 1 assume that - A ¢ T is a maximal an-
tichain. Let B = {(z,s) e Px T : z |p § € A}, then B is a predense
subset in P x T. Let 6 be a sufficiently large regular cardinal and let
M < H(0) be countable such that M nw; = n € R and P, B,p,T € M.
By our assumption there is a ¢ <p p such that Vt € T}, ((¢,t) is (M, P x T')-
generic). So Bn M is predense below (g, t) for every t € T;), which yields that
ql-p VteT,3s <pt(se A) and s can be found in M, hence ¢ |- A< T | 7,
so |kp T is Suslin. O

In a similar way, one can show that Theorem 1.3 of [14] holds true if we
replace proper by R-proper for R < wi a stationary subset.

Theorem 2.11. Let (Py)a<y be a countable support iteration of length 1), let
R < wy be stationary and suppose that for every a < m, for the a-th factor
of the iteration P(a) it holds that I “P(a) is R-proper and preserves every
Suslin tree.” Then P, is R-proper and preserves every Suslin tree.

So in order to argue that our forcing Q? preserves Suslin trees when
used over the ground model W[QV], it is sufficient to show that every factor
preserves Suslin trees. This is indeed the case.

Lemma 2.12. Let R c wy be stationary, co-stationary, then the club shoot-
ing forcing Pr preserves Suslin trees.

Proof. Because of Lemma 2.10, it is enough to show that for for any Suslin
tree T', any regular and sufficiently large 6, every M < Hy with M nw;, =
n € R, and every p € Prn M there is a ¢ < p such that for every t € T, (¢,)
is (M, (Pr x T'))-generic. Note first that as T" is Suslin, every node t € T,
is an (M, T)-generic condition. Further, as forcing with a Suslin tree is w-
distributive, M[t] has the same M [t]-countable sets as M. By the argument
of the proof of Lemma 2.2, if M < H(0) is such that M nw; € R then an w-
length descending sequence of Pr-conditions in M whose domains converge
to M n wy has a lower bound as M nwy € R.

We construct an w-sequence of elements of Pr which has a lower bound
which will be the desired condition. We list the nodes on T;, (t; : i € w)
and consider the according generic extensions M|t;]. In every M[t;] we list
the Pr-dense subsets of M|[t;], (DY : n € w) and write the so listed dense
subsets of M|[t;] as an w x w-matrix and enumerate this matrix in an w-
length sequence of dense sets (D; : i € w). If p = py € Pr n M is arbitrary
we can find, using the fact that Vi (Pr n M|[t;] = M n Pgr), an w-length,
descending sequence of conditions below pg in Pr n M, (p; : i € w) such
that p;s1 € M n Pg is in D;. We can also demand that the domain of
the conditions p; converge to M n wy. Then the (p;)’s have a lower bound
Pw € Pr and (t,py) is an (M, T x Pg)-generic conditions for every t € T}, as
any t € T, is (M, T)-generic and every such ¢ forces that p,, is (M[T],Pg)-
generic; moreover p,, < p as desired. O

Let us set W := L[Q? + Q! % Q?] which will serve as our ground model
for a second iteration of length wy. To summarize the above:

Theorem 2.13. The universe W = L[Q° + Q' « Q?] is an w-distributive
generic extension of L, in particular no new reals are added and wy is pre-
served. In W there is a X1 (w1)-definable, independent sequence of trees S
which are Suslin in the inner model L[Q"][Q?], yet no tree is Suslin in W.

Proof. The first assertion should be clear from the above discussion. The
second assertion holds by the following standard argument. As Q° x Q!
does not add any reals it is sufficient to show that Q2 is w-distributive in
L[QY][Q!]. Let p € Q? be a condition and assume that p |- “7 is a countable
sequence of ordinals”. We shall find a stronger ¢ < p and a set 7 in the ground
model such that ¢ - 7 = 7. Let M < H(ws) be a countable elementary
submodel which contains p, Q? and 7 and such that M n w; € R, where R
is our fixed stationary set from above. Inside M we recursively construct
a decreasing sequence p, of conditions in Q?, such that for every n in w,
pn € M, p,, decides 7(n) and for every « in the support of p,,, the sequence
SUpP,,e,, Mmax(py(ar)) converges towards M n w; which is in R. Now, ¢ :=
e Pn and for every a < wy such that ¢'(«) # 1 (where 1 is the weakest
condition of the forcing), in other words for every « in the support of ¢’ we
define g(a) = ¢'(a) U {(w, sup(M N w1))} and g(«) = 1 otherwise. Then
q = (¢(@))a<w, is a condition in Q?, as can be readily verified and ¢ |- 7 = 7,
as desired. O

The independent sequence S will be split into two 31 (w1)-definable se-
quences via letting
S':= (S, €S : ais even)

and

52:= (S, €S : aisodd).

These two sequences will be used for defining the H%—sets witnessing the
reduction property, as we will see soon.

We end with a straightforward lemma which is used later in coding ar-
guments.

Lemma 2.14. Let T be a Suslin tree and let Ap(X) be the almost disjoint
coding which codes a subset X of wy into a real with the help of an almost
disjoint family of reals D of size R1. Then

Ap(X) I+ T is Suslin
holds.

Proof. This is clear as Ap(X) has the Knaster property, thus the product
Ap(X) x T is ccc and T must be Suslin in V[Ap(X)]. O

3 Main Proof

3.1 Informal discussion of the idea

We proceed with an informal discussion of the main ideas of the proof. We
focus on reducing one fixed, arbitrary pair A, and Aj of IIi-sets. The

10

arguments will be uniform, so that reducing every pair of H%—Sets will follow
immediately.

The ansatz is to use the two definable sequences of Suslin trees S and
S2 for coding and a bookkeeping function F' which lists all possible reals in
our iteration. We use an iterated forcing construction over W of length w;.
At stages 3, where F'(f3) is (the name of) a real number x, we decide whether
to code x into the St -sequence or the S 52 -sequence. Coding here means that
we write the characteristic function of x into Nj-many w-blocks of elements
of St i e {1,2} in a way such that the statement “z is coded into 5% is a
Yi(w,i)-statement and hence a Y3 (z)-statement. We will see later that the
definition of iterations of our coding forcing will only depend on the set of
reals which are coded, and that the set of our coding forcings is closed under
products. Our goal is that eventually, after w; stages of our iteration, the
resulting universe satisfies

(1) Vax e Ay U Ag, either x is coded into ST or z is coded into S2.

This dichotomy has to be strengthened to produce the desired reducing sets
for Ay, and Ay as follows: We shall aim for a universe in which the set of
reals of A,, U A} which are not coded into S!, will be a subset of A,,, and
the set of reals which are not coded into S2 will be a subset of Ay. Assuming
we can pull this off, we obtain the following equality

(2) D}mk :={x € A,,, : x is not coded into §1} =

{xe A, u A : xis coded into STQ}

Note that the definition of D}mk witnesses that D}n’ i 18 I1}, as being coded
is Eé, hence not being coded is Hé.

On the other hand, our universe should satisfy that reals in Aj which are
not coded into S? form a set D%%k which eventually should reduce Ay:

(3) D2, & ={z € A} : z is not coded into 6?2}
—{x € Ay U A ¢ zis coded into S1}

If we could achieve a universe for Which (1), (2) and (3) holds, then D}n,k‘ U

D? k= = Ay, U Ay, the sets are 113, D ik < A, and D?n,k c A and D}n’k N
D%I i = J, i.e. there are reducing sets for A,, and Aj.

This set-up has the following difficulties one has to overcome: the eval-
uation of ITi-sets changes as we use coding forcings, yet deciding to code a
real into the, say, S L_sequence, once performed, can not be undone in future
extensions, by the upwards absoluteness of Zé—formulas.

For an illustration of how this can be problematic, assume that x € L is
a real which is in both A,, and Ax. Now we need to decide, where to put
x. As we have not settled on a strategy yet, how to do it, we simply assume

11

that we code the real x into §2, which is equivalent to put x into D}n i Now
it could happen that this coding forcing, or some later coding forcing7 we will
use, actually puts x out of A,,, while x remains in Ag. The consequence of
this is that x € A,, U Aj witnesses that D}mk and DZM do not reduce A,,

and A, as now x ¢ A,,, hence x ¢ D’rln,.k and zx is coded into 5’2, hence x is
not an element of D?n ;. either.

In the above situzition, two possibilities arise, which already hint in a
simplified setting how we eventually want to solve the problem of forcing
the Hé—reduction property. First it could happen that there is an additional
iteration of coding forcings which forces x out of Ag. This would repair the
misery, as after we did this additional forcing, x is not an element of A,, U A
anymore and does not play a role in our task of reducing A,, and Ag. Note
however, that this additional forcing could possibly create new problems for
other reals than x; indeed it could happen that we will create a non-empty
set of reals y # x for which the same pathological situation as for x arises.
Thus in order to reduce A,, and Ay, we need to ensure that the forcing we
use to repair the situation for z will not create new problems for other reals.
This problem, if interpreted from the right angle, is a fixed point problem for
sets of coding forcings. We will see later that solving this fixed point problem
hands us the right set of coding forcings, which can safely force the real x
out of A,, U Aj without adding unrepairable further pathological situations
for other reals y # x.

In the second possibility, there is no such iterated coding forcing which
forces x out of Ag. But this also tells us, that instead of coding x into S2 we
could have coded z into S-, G, that is we could have put z into D? ok and x will
remain in A after our codlng, as otherwise we would have an 1terated coding
forcing which forces x ¢ Ag, which we assumed to not exist. Note that this
argument uses the upwards absoluteness of Eé—formulas, hence Shoenfield
absoluteness, and the earlier mentioned fact that coding forcings are closed
under taking products.

Thus, in the second case, the absence of a way to repair the bad situation
for our real « in fact yields valuable information. It tells us that we can safely
code z into the other of the two definable sequences of wi-trees, namely S1,
and z will remain in Ay, as long as we just stick with iterating the coding
forcings, which is what we will do anyway. So, assuming the second case
applies, at least for the one real z and the two fixed IT3-sets A, and Ay we
found an unproblematic way of coding z.

Applying the above reasoning for every real we encounter in our iteration
will lead to a new set of rules how to form an iteration of coding forcings,
called 1-allowable, which, when applied, will yield a more reasonable class
of coding forcings to produce a model for which (1), (2) and (3) holds. For
the set of 1-allowable forcings, the above mentioned pathological situations
can arise again, but as before, we can use these newly arising problems to

12

define a new set of rules, yielding a new set of forcings and so on. This
leads to an inductive definition of an operator which acts on sets of iterated
coding forcings. The operator, which can be seen as some sort of derivation,
will be uniformly definable over W. We will set things up in such a way
that the process of applying the operator transfinitely often converges to a
unique and non-empty set of forcings, which we will denote the co-allowable
forcings. All of these considerations are preliminary.

Eventually, we can use the fact that oo-allowable forcings form a fixed
point to define an iteration in a seemingly self-referential way which, while
iteratively producing the reducing sets D! , and Dfn o Will take care of
all the pathological situations which arise aiong its definition. To be a bit
more precise, if P denotes the class of co-allowable forcings, we can define an
iteration as follows: for any real and any pair of IT3-sets A,, and Ay, either
there is a forcing from P which forces = ¢ A,, U A in which case we opt to
use such a forcing from P. Or, for m or k, the real x can not be forced out
of Ay, or Ay with a forcing from P, in which case we code (x, m, k) into to
the corresponding sequence of wi-trees St or S? to create our reducing sets.
Most importantly, the so defined iteration is an element of P itself, which
will ultimately imply that one can force the II}-reduction property.

A closer look will then yield that in that universe the Hé—uniformization
property fails.

3.2 oo-allowable Forcings
3.2.1 The coding forcings

We continue with the construction of the appropriate notions of forcing which
we want to use in our proof. The goal is to iteratively shrink the set of notions
of forcing we want to use until we reach a fixed point. All forcings will belong
to a certain class, which we call “allowable”. These are just forcings which
iteratively code reals into a generically added 2 set of Nj-many w-blocks of
St or S2. We first want to present the coding method, which we use to
code a real x up, using the definable sequence of wy trees, and subsequently
introduce the notion allowable.

Our ground model shall be W. Let x be a real, and let m,k € w. The
forcing P((4,m,k),1), Which codes the real w, which in turn codes the triple

(x,m, k) into S is defined as a two step iteration P p 1)1 := (Cwn)) #
A(Y), where (C(w1))* is the usual w;-Cohen forcing, as defined in L, and
A(Y') is the (name of) an almost disjoint coding forcing, coding a particular

set into as real. We shall describe the second factor A(Y') now in detail.

2The idea of generically adding the set of w-blocks of indices of St or §? is due to S.
D. Friedman and D. Schrittesser in their landmark [6]. We use it to obtain the closure of
allowable forcings under products.

13

We let g = wy be a C(w;) -generic filter over W, and let p : [wi]¥ — wy
be some canonically definable, constructible bijection between these two sets.
We use p and g to define the set h = wy, which eventually shall be the set
of indices of w-blocks of S , where we code up the characteristic function of
the real ((xz,y,m). Let h := {p(g n @) : @ < wy} and let X < w; be the
<-least set (in some previously fixed well-order of H(w2)" [g] which codes
the follwing objects:

e The <-least set of wi-branches in W through elments of S1 which
code (z,y,m) at w-blocks which start at values in h, that is we collect
{bsg Sé, B=wy+2n,yeharnewarng (x,y,m)} and {bg CS[13 :
f=wy+2n+1l,yehArnewane (x,y,m)}.

e The <-least set of wy -w-wi-many club subsets through ﬁ, our ¥ (wy)-
definable sequence of L-stationary subsets of wy from the last section,
which are necessary to compute every tree Sg € S! which shows up
in the above item, using the 31 (wq)-formula from the previous section
before Lemma 2.10.

Note that, when working in L[X] and if v € h then we can read off w

and hence (z,m, k) via looking at the w-block of Sl-trees starting at v and
determine which tree has an wq-branch in L[X]:

(%) n € w if and only if Sola-7+2n+1 has an wi-branch, and n ¢ w if and only

gl
if S,,.42, has an wi-branch.

Indeed if n ¢ w then we added a branch through S(}),V+2n. If on the other
hand S 5, is Suslin in L[X] then we must have added an w;-branch
through SulJ-7+2n+1 as we always add an w;-branch through either Sulj,w%“
or S&;-'y-&-2n
Sé is Suslin in L[X], as S* is independent.

We note that we can apply an argument resembling David’s trick 2 in this
situation. We rewrite the information of X < w; as a subset Y < w; using
the following line of reasoning. It is clear that any transitive, Ni-sized model
M of ZF~ which contains X will be able to correctly decode out of X all the
information. Consequentially, if we code the model (M, €) which contains
X as a set Xy < wi, then for any uncountable 5 such that Lg[Xy/] = ZF~
and XM € L,B[XM]3

and adding branches through some S.’s will not affect that some

Lg[X] | “The model decoded out of X/ satisfies (*) for every v € h”.

In particular there will be an Ni-sized ordinal 8 as above and we can fix a club
C < w; and a sequence (M, : a € C) of countable elementary submodels of

3see [4] for the original argument, where the strings in Jensen’s coding machinery are
altered such that certain unwanted universes are destroyed. This destruction is emulated
in our context as seen below.

14

Lg[X] such that
Vae C(My < Lg[Xn] A My nwi =)

Now let the set Y < wy code the pair (C, X)s) such that the odd entries of
Y should code Xy and if Yy := E(Y) where the latter is the set of even
entries of Y and {c, : @ < w} is the enumeration of C' then

1. E(Y) nw codes a well-ordering of type cg.

2. E(Y)n|w,c0) = .

3. For all 8, E(Y) n [cg,cs + w) codes a well-ordering of type cg1.
4. For all B, E(Y) n [cg + w,cpt1) = .

We obtain
(#+) For any countable transitive model M of ZF~ such that w{! = (wf)M
and Y nw? € M, M can construct its version of the universe L[Y n

w{'], and the latter will see that there is an R} -sized transitive model

N € L[Y nwi¥] which models (%) for w and every v € h n M.

Thus we have a local version of the property (x).
In the next step A(Y), working in W{g], for g ¢ C(w;) generic over
W, we use almost disjoint forcing Ap(Y') relative to our previously defined,
almost disjoint family of reals D € L (see the paragraph after Definition 2.5)
to code the set Y into one real r. This forcing only depends on the subset
of wy we code, thus Ap(Y') will be independent of the surrounding universe
in which we define it, as long as it has the right w; and contains the set Y.
We finally obtained a real r such that
(###) For any countable, transitive model M of ZF~ such that w}! = (wf)M
and 7 € M, M can construct its version of L[r] which in turn thinks
that there is a transitive ZF~-model N of size 8 such that N believes
(%) for w and every y € h n M.

Note that (##x) is a II3-formula in the parameters r and w, as the set hbn M <
wM is coded into r. We will often suppress the reals r,w when referring to
(##x) as they will be clear from the context. We say in the above situation

that the real w, which codes (x,m, k) is written into S, or that w is coded
into ST and r witnesses that w is coded. Likewise a forcing Py m 1,2 18
defined for coding the real w which codes (z,m, k) into S2.

The projective and local statement (#xx), if true, will determine how
certain inner models of the surrounding universe will look like with respect
to branches through §. That is to say, if we assume that (s#x) holds for a
real w and is the truth of it is witnessed by a real r. Then r also witnesses

15

the truth of (#xx) for any transitive ZF~-model M which contains r (i.e. we
can drop the assumption on the countability of M). Indeed if we assume
that there would be an uncountable, transitive M, » € M, which witnesses
that (x#x) is false. Then by Lowenheim-Skolem, there would be a countable
N < M, r € N which we can transitively collapse to obtain the transitive V.
But N would witness that (###) is not true for every countable, transitive
model, which is a contradiction.

Consequentially, the real r carries enough information that the universe
L[r] will see that certain trees from S! have branches in that

new = (z,y,m)= L[r] = “Sjwwnﬂ has an wy-branch”.
and
n¢w=(zr,y,m)= L[r] = * ul},y+2n has an wy-branch”.

Indeed, the universe L[r]| will see that there is a transitive ZF~-model N
which believes (x) for every v € h < wy, the latter being coded into r. But
by upwards ¥j-absoluteness, and the fact that N can compute St correctly,
if N thinks that some tree in S has a branch, then L[r] must think so as
well.

3.2.2 Allowable forcings

Next we define the set of forcings which we will use in our proof. We aim
to iterate the coding forcings. As the first factor is always (C(w;))¥, the
iteration is actually a hybrid of an iteration and a product. We shall use a
mixed support, that is we use countable support on the coordinates which
use (C(wy))¥, and finite support on the coordinates which use almost disjoint
coding.

Definition 3.1. A mized support iteration P = (Pg : B < «) is called allow-
able (or 0-allowable, to anticipate later developments) if o < wy and there
exists a bookkeeping function F : o — H(ws)? such that P is defined induc-
tively using F' as follows:

e IfF(0) = (z,i), where x is a real, i € {1,2}, then Py = P(x,4). Other-

wise Py is the trivial forcing.

o If B > 0 and Pg is defined, Gg < Pg is a generic filter over W,
F(B) = (d,1), where & is a Pg-name of a real, i € {1,2} and i% = x
then, working in W[Gg| we let P(B) := Py, that is we code x into the
S‘i’ using our coding forcing.

Note that we use finite support on the parts where almost disjoint coding is
used and countable support on the parts where wi-Cohen forcing, as computed
m L and seen as a product, is used.

16

Informally speaking, a (0-) allowable forcmg just decides to code the reals
which the bookkeeping F' provides into either S 51 or S2. Note that the notion
of allowable can be defined in exactly the same way over any W|[G], where G
is a P-generic filter over W for an allowable forcing. We could have defined
allowable in an equivalent way if we first added, over W, wi-many Cohen
subsets of w; € = (Cy : @ < wy) (in fact we don’t really need to do this
as we already added them when adding the sequence of wi-trees St and §2)
with a countably supported product, and then define allowable over the new
ground model W[é] as just a finitely supported iteration of almost disjoint
coding forcings which select at each step injectively one element C' from c
and the real given by the bookkepplng F and the i € {1,2} and then code up
all the branches of the trees from S' or §2 according to the real x we code
for every w-block with starting value in A < w; derived from C as in the
last section. That is to say, we could have moved the product factors in an
iteration of allowable forcings right at the beginning of our iteration, which
we are allowed to do anyway, as it is a product. Our current and equivalent
approach is a bit easier in terms of notation so we defined allowable the way
we did.

We obtain the following first properties of allowable forcings:

Lemma 3.2. 1. IfP = (P(B) : B < 0) € W is allowable then for every
B <6, Ps I |P(B)| = Ny, thus every factor of P is forced to have size
Ny,

2. FEwvery allowable forcing over W preserves wy.
8. The product of two allowable forcings is allowable again.

Proof. The first assertion follows immediately from the definition.

To see the second item we exploit some symmetry. Indeed, every al-
lowable P = skgsP(8) = #p<s(((Clw)Y % A(Y3)) can be rewritten as
(I Tp<s(Clw)9 #(kg<5Ap(Y3)) (again with countable support on the (C(wy))"
part and finite support on the almost disjoint coding forcmgs) The latter
representation is easily seen to be of the form P = (*5<5AD(Y5)), where P
is o-closed and the second part is a finite support iteration of ccc forcings,
hence wy is preserved.

To see that the third item is true, we note that the definition of an
allowable forcing just depends on F' and is independent of the surrounding
universe V' < W over which it is applied, so we immediately see that a two
step iteration Py # Py of two allowable P1, [Py € W is in fact a product Py x Ps.
As the iteration of two allowable forcings (in fact the iteration of countably
many allowable forcings) is allowable as well, the proof is done. O

The proof of the second assertion of the last lemma immediately gives us
the following:

17

Corollary 3.3. Let P = (P(B) : 8 <) € W be an allowable forcing over
W. Then W[P] = CH. Further, if P = (P(a) : @ <wi) € W is an w;-length
iteration such that each initial segment of the iteration is allowable over W,

then W[P] = CH.

Let P = (P(8) : B < d) be an allowable forcing with respect to some
F e W. The set of (names of) reals which are enumerated by F' we call the
set of reals coded by P. That is, for every 3, if we let @5 be the (name) of a
real listed by F(5) and if we let G < P be a generic filter over W and finally
if we let l'g =: xg, then we say that {xg : 8 < a} is the set of reals coded
by P and G (though we will suppress the G). Next we show, that iterations
of 0-allowable forcings will not add unwanted witnesses to the E%—formula
¥ (w, i) which corresponds to the formula (sxx):

Y(w,i) = IrYM (M is countable and transitive and M = ZF~
and w! = (WM and r,we M — M | ¢(w, 1))

where o(w, i) asserts that in M’s version of L[r], there is a transitive, R}/-
sized ZF~-model which witnesses that w is coded into S°.

Lemma 3.4. If P € W is allowable, P = (Pg : § < 0), G < P is generic
over W and {xg : B < 0} is the set of reals which is coded by P. Let 1(vg) be
the distinguished formula from above. Then in W|G], the set of reals which
satisfy ¥ (vo) is exactly {xg : B < 0}, that is, we do not code any unwanted
information accidentally.

Proof. Let G be P generic over W. Let g = (g3 : f < 0) be the set of
the § many w; subsets added by the (C(w;))-part of the factors of P. We
let p : ([w1]®)Y — w; be our fixed, constructible bijection and let hs =
{p(gs N @) : @ < wi}. Note that the family {hg : B < ¢} forms an almost
disjoint family of subsets of wy. Thus there is a < wy such that for arbitrary
distinct 31, B2 < &, @ > hg, N hg, and additionally, assume that o« is an
index which does not show up in the set of indices of the trees we code with
P.

We let S} e S§'. We claim that there is no real in W[G] such that
WG] & L[r] & “S. has an w;-branch”. We show this by pulling out the
forcing S} out of P. Indeed if we consider W[P] = L[Q°][Q'][Q?][P], and
if S! is as described already, we can rearrange this to W[P] = L[Q°][Q"! x
SH[Q?][P] = W[P'][SL], where Q! is [1520 Sé and P is Q0 + Q! « Q? % P.

Note now that, as S} is w-distributive, 2¥ " W[P] = 2¥ n W[P'], as S, is
still a Suslin tree in W[P’] by the fact that S* and S2 are independent, and
no factor of P besides the trees from S and S2 used in P’ destroys Suslin
trees. But this implies that

W[P'] = —3rL[r] = “S. has an w;-branch”

18

as the existence of an w;-branch through S} in the inner model L[r] would
imply the existence of such a branch in W[P’]. Further and as no new reals
appear when passing to W[P] we also get

WI[P] &= —3rL[r] &= “Sé has an wi-branch”.

On the other hand any unwanted information, i.e. any (x,m) ¢ {(x3,mg) :
B < ¢} such that W[G] = ¥((x,i,m)) will satisfy that there is a real r such
that
ne (x,i,m) - L[r] &= “S}J,HQHH has an wy-branch”

and
n¢ (z,i,m) — L[r] E “Sc})'y—i-Qn has an wy-branch”.

by the discussion of the last subsection for wi-many ~’s.

But by the argument above, only trees which we used in one of the factors
of P have this property, so there can not be unwanted codes on the Soside.
But the very same argument shows the assertion also for the S2-side. So for
our fixed «, there is no real r which codes an w; branch over L[r]. But any
unwanted information would need not only one but even Ni-many such a’s
chosen as above. This shows that there can not be unwanted information in
WG], as claimed.

O

We define next a derivative of the class of allowable forcings.Work with
W as our ground model. Inductively we assume that for an ordinal a and an
arbitrary bookkeeping function F' € W mapping to H(ws2)?, we have already
defined the notion of d-allowable with respect to F for every § < «, and
the definition works uniformly for every model W[G], where G is a generic
filter for an allowable forcing. Note that these inductive requirements are
met for O-allowable forcings. Now we aim to define the derivation of the
< a-allowable forcings which we call a-allowable.

Definition 3.5. Let § < wy then a d-length iteration PP is called a-allowable
if it is recursively constructed using a bookkeeping function F : 6 — H(ws)?,
such that for every 8 < 6, F(B) is a pair (F(B8)o, F(8)1), and two rules at
every stage 8 < § of the iteration. We assume inductively that we already
created the forcing iteration up to B, Pg and we let Gg denote a hypothet-
ical Pg-generic filter over W. We shall now define the next forcing of our
iteration P(B). Using the bookkeeping F we split into two cases.

(a) We assume first that the first coordinate of F(B), (F(8))o = (¢,m, k),
where & is the Pg-name of a real and m < k are natural numbers.
Further we assume that 39¢ = x, and W[Gg] |= © € Ay, U Ay, We
assume that in W|[Gpg], the following is true:

19

There is an ordinal { < «, which is chosen to be minimal for

which
(1) for every -allowable forcing Q € W[Gg| we have that, over W[Gp]:

Qlrze A,

In this situation we force with P, 1) o at stage B, that is, in
W[Gg], we set P(B) := Py k) 2-

(ii) If (i) for C is false but the dual situation is true, i.e. for every
C-allowable forcing Q € W[Gg|, we have that W|[Gg] thinks that

@ -x € Ak
Then we define P(B) to be Py 1 1),1-

If both (a)(i) and (a)(ii) are true for the same (, then we give case
(a)(i) preference, and suppress case (a)(it).

(b) Else F guesses where we code (xz,m,k), i.e. we code (x,m,k) into
SEWB provided F(B)1 € {1,2} (otherwise we decide to code (x,m, k)
into St per default).

This ends the definition of P being a-allowable with respect to F' at suc-
cessor stages B+ 1. To define the limit stages B of an a-allowable forcing,
we assume that we have defined already (P, : v <) and let the limit Pg
to be defined as the inverse limit of the CL-factors we used in the P, ’s, and
the direct limit of the factors of P, which correspond to the almost disjoint
coding forcings. In other words we use the already mentioned mixed support,
that is countable support on the wi-Cohen part, and finite support on the
almost disjoint coding part.

We finally have finished the definition of an a-allowable forcing relative
to a perviously fixed bookkeeping function F. In the following we often drop
the reference to F' and simply say that some forcing P is a-allowable, in
which case we always mean that there is some F' such that P is a-allowable
relative to F.

We briefly describe a typical run through the cases in the definition of
a-allowable forcings. Given our bookkeeping F : § — H(w2)?, the according
allowable P = (P(8) : 8 < ¢) forcing is constructed such that at every stage
B < ¢ we ask whether there exists for (= 0 a Q such that (a)(i) becomes
true. If not then we ask the same question for (a)(ii). If both are false, we
pass to ¢ = 1, and so on. If (a) (i) or (a) (ii) never applies for any (< «, we
pass to (b). It is therefore intuitively clear, and will be proved in a moment,
that the notion of a-allowable has to satisfy more and more requirements as
« increases, hence the classes of a-allowable forcings should become smaller
and smaller. As a further consequence of this, case (a) in the definition
becomes easier and easier to satisfy, which leads in turn to more restrictions
of how an a-allowable forcing can look like.

20

Lemma 3.6. For any ordinal «, the notion a-allowable is definable over the
universe W.

Lemma 3.7. If P is B-allowable and oo < (3, then P is also a-allowable.
Thus the classes of a-allowable forcings become smaller with respect to the
subset relation, if a increases.

Proof. Let a < 8, let P be a S-allowable forcing and let F’ be the bookkeeping
function which, together with the rules (a)+(b) from above determine P. We
will show that there is a bookkeeping function F’ € W such that P can be seen
as an a-allowable forcing determined by F’. The first coordinate of F should
always coincide with the first coordinate of F, i.e. Vy((F(v)o = F'(7)o).
The second coordinate, which determines which of the §i—sequence is used
for coding when in case (b) is defined via simulating the reasoning for a
B-allowable forcing. This means that at every stage v of the iteration, we
pretend that we are working with S-allowable forcings, we do the reasoning
described in (a) and (b) for S-allowable using F'. If case (a) does apply, and
P(v) is some P, 1, 1,1, then we simply let (F'(7)); = 1. That is, we let F’
simulate the reasoning we would apply if P would be a (-allowable forcing
using F', and the forget about S-allowable and just keep the result of the
reasoning. The new bookkeeping F” is definable from F, and clearly P is
a-allowable using F”.

O

Lemma 3.8. Let a be an arbitrary ordinal, let Fy, Fy be two bookkeeping
functions, Fy : 61 — W2, Fy : 69 — W?2, and let P! = (IP’}; : B < 1) and
P? = (IP’% : B < 62) be the a-allowable forcings one obtains when using Fy
and Fy respectively.

Then P := P! x P? is a-allowable over W, as witnessed by some F :
(81 + d2) — W2, which is definable from {F, F5}.

Proof. By induction on «. For a = 0, this follows immediately from the
definition of 0-allowable.

Now suppose the Lemma is true for o and we want to show it is true
for a + 1. Given F; and Fy, we define F(v) := Fi(y) for v < 40; and
F(61 +7) := Fy(y) for v < 6. We claim that P = P! x P? is a + 1-
allowable with respect to F' over W. This is shown via induction on the
stages 8 < 01 + do, i.e. we shall show that for each 8 < §; + 2,

1 .
P! x P3_; if § > 4y

is a + 1-allowable over W.
For 8 < 41, this follows immediately from the fact that P; is a + 1-
allowable.

21

For B < 02, we assume by induction hypothesis that Ps 45 is o + 1-
allowable over W, and want to see that also Ps, 15 *P(01 + 5+ 1) is a + 1-
allowable.

We work over the model W[Pl][]P’%]. Assume that F(d; + 8+ 1) =
Fy(B+1)o = (&, m, k), let z = £, and assume that, when defining P(6; + 3)
over W[P'|[P3], using the rules for « + 1-allowable, we are in case (a) (i).
We shall show that in this situation, we are in case (a) (i) at stage 3, when
defining P?() (again using the rules of o + 1-allowable) over W[IP’%]

Indeed, as we are in case (a) (i) when defining P(§; +) over W[]P’l][IP’%],
there is a minimal (< a + 1 such that for every Q € W[Pl][]P’%], which
is (-allowable, it holds that W[IP’I][IP%] EQIFxe A, If we assume for
a contradiction, that we are not in case (a) (i), at stage § when defining
P?(53) over W[P%], then there is a R € W[P3] such that R is (-allowable and
RiFxé¢ An.

But now, by induction hypothesis, R € W[Pl][IP’%] is C-allowable there as
well. Indeed, P! is a 4 1-allowable, hence ¢-allowable over W, and so is the
iteration }P’% * R. By induction hypothesis, (}P’% +R) x P! is C-allowable, and
so R is, in W[IF’I][IF’%], a (-allowable forcing which forces = to not belong to
A, by upwards absoluteness of Eé—formulas. Hence we can not be in case
(a) (i) at stage 91 + 3, when defining P which is a contradiction.

The dual reasoning yields that if we are in case (a) (ii) at stage § in the
definition of P using F' over W, then we must be in case (a) (ii) as well at
stage 3 in the definition of P?(3) over W[]P%]

Last, if we are in case (b) at stage 8 in the definition of P using F' over
W[Ps, 4], then we shall show that we are in case (b) as well at stage 3 in the
definition of P?(3) over W[]P’%] Under our assumption, for every (< a + 1

there are (-allowable forcings }Rg and]Rg € W[P;, +3] such that R% -xz¢ A,
and Rg I-x ¢ Ag.

But by induction hypothesis, P! * Rf is (-allowable over W[]P%], hence
these forcings show that we are in case (b) at stage 8 in the definition of
P2(B) over W[IP%]

To summarize, the above shows that if we define the o + 1-allowable
forcing P with F as our bookkeeping function, the outcome will be P! x P2,
so the latter is indeed « + 1-allowable.

Finally if « is a limit ordinal, then P! x P? will be &-allowable for every
€ < a, but this implies that P! x P? is a-allowable. O

Lemma 3.9. For any «, the set of a-allowable forcings is non-empty.

Proof. By induction on «. If there are a-allowable forcings, then the rules
(a) and (b) above, together with some bookkeeping F' will create an a + 1-
allowable forcing. For limit ordinals o, an a-allowable forcing always exists,

22

as for any given bookkeeping function F' there will be an a-allowable, non-
trivial forcing with F' as its bookkeeping function. O

As a direct consequence of the last two observations we obtain that there
must be an ordinal «a such that for every 8 > «, the set of a-allowable
forcings must equal the set of S-allowable forcings. Indeed every allowable
forcing is an Nj-sized partial order, thus there are only set-many of them, and
the classes (which in fact are sets, if we allow ourselves to identify isomorphic
forcings) of a-allowable forcings must eventually stabilize at a set which also
must be non-empty.

Definition 3.10. Let « be the least ordinal such that for every B > «, the set
of a-allowable forcings is equal to the set of 5-allowable forcings. We say that
some forcing P is co-allowable if and only if it is a-allowable. Equivalently,
a forcing is co-allowable if it is a-allowable for every ordinal c.

The set of oco-allowable forcings can also be described in the following
way. An 0 < wi-length iteration P = (P, : a < ¢) is oo-allowable if it is
recursively constructed according to a bookkeeping function F' as follows:
For every 8 < § of the iteration:

(a) If the first coordinate of F(8), (F(B))o = (&, m, k), where & is the Pg-
name of a real. Further we assume that 98 = z, for G a Pg-generic
filter over W and W{Gg]| = x € Ay, U Ap. We assume that in W[Gg],
the following is true:

There is an ordinal ¢, which is chosen to be minimal for which
(i) in the universe W[Gpg], the following holds:

VQ(Q is ¢-allowable » Q Iz € Ay,)
(ii) Orif (a) (i) is not true, but it holds in W[Gpg] that
VQ(Q is ¢-allowable - Q |- x € Ag)

We give case (a) (i) preference over (a) (ii) if both are true for the
minimal . If this is the case, then we define the g-th factor of our
iteration as P(83) := Py 1,2 if (a) (1) is true. Welet P(8) := Py 1)1
if case (a) (ii) is true.

(b) Otherwise, we let F(8)1 € {1.2} decide which Si-sequence to use and
deﬁne P(ﬂ) =]P)(a:,m,k),F(B)l'

The next Lemma follows immediately from the definitions of co-allowable
and tells us, when an iteration results in an oo-allowable notion of forcing.

23

Lemma 3.11. Let § < wy and let (Pg : B < 0) be an co-allowable forcing
over W. Let §' < wi, (Qg | B < ¢') e W[Gs] be such that W|[Gs] = (Qp |
B < &) is co-allowable. Then (Pg : f < 0) * (@B | B < ¢') is oo-allowable,
over W.

As a consequence, blocks of co-allowable iterations (IP”B | B <6, i<
1 < w1 can be concatenated to one co-allowable forcing over W. This will be
used to see that the upcoming iteration is indeed an co-allowable iteration
over W.

3.3 Definition of the universe in which the I} reduction
property holds

The notion of co-allowable will be used now to define the universe in which
the ITi-reduction property is true. We let W be our ground model and
start an wp-length iteration such that each initial segment of that iteration,
which of course must have countable lenght, is an co-allowable forcings. The
iteration is guided by a bookkeeping F : wy — H(wi)?, which, on its first
coordinate should have the property that for every (a,b) € H(w)?, the pre-
image F~1(a,b) is unbounded in w.

The definition of the iteration P = (Pg : 8 < wi) is as always specified
by induction. At the last stage w; we take the direct limit of the previously
construced Pg. Now to the definition of the Pg’s:

1. We assume that we are at stage 3 < wy, the co-allowable forcing P has
been defined. Assume that F(3) = (8o, $1) € H(w1)? and fBo, B1 < f5.
We further assume that the £1-th (in some previously fixed well-order
< of H(wz)) Pg,-name of a triple of the form (a, n, [), where @ is a nice
Pg,-name of a real, and h,i are nice Pg-names of natural numbers, is
(z,m, k) We assume 798 = z, mG% = m, k¥ = k, k < m and that
in W[Gg]|, € Ay, U A. Now, if in the universe W[G3], there is a
minimal { < ag such that

(i) W[G3s] = YQ € W[G3](Q is (-allowable — Q |- z € A,,), then
force with P(83) := Py 1) 2-
Note that this has as a direct consequence, that if we restrict
ourselves from now on to forcings Q € W[Gg41] such that Q is
(-allowable, then x will remain an element of A,,. In particular,
the pathological situation that = ¢ A, z € Ag while z is coded
into S? is ruled out for (z,m, k).

(ii) If we can kick x out of A,, with a (-allowable forcing over W|[Gpgl|,
yet it is true that

W[Gs] E YQ eW[G3](Q is C-allowable — x € Ay)
then force with P(8) := P(4 m 1),1-

24

2. If F(B) = (x,m, k) and W[Gg] = x € Ay, 0 Ap, and neither case 1 (i)
nor 1 (ii) applies, then we obtain that

W|[Gs] E IQ(Q is co-allowable) and Q I x ¢ A,y,).
With the same argument we also obtain that
W|[Gp] E IR(R is co-allowable) and R |-z ¢ Ay).

In this situation, we let Q and R the <-least co-allowable forcings as
above and use

P(5):=Q xR

which is an co-allowable forcing over W|[Gg| and which forces that
¢ Am v Ag.

This ends the definition of the iteration and we shall show that, if G,, denotes
a generic filter for the forcing P,,,, which is defined as the direct limit of the
forcings Pg, then the resulting universe W[G,,, | satisfies the IIi-reduction
property. For every pair (m, k) € w?, we define

D;%k :={x e 2¥: (x,m,k) is not coded into the §1—sequence}
and
Dfn’k :={xe2¥: (x,m,k) is not coded into the gi—sequence}.

Our goal is to show that for every pair (m,k) the sets D71nk N A, and
ng,k N Ay, reduce the pair of H%—sets A, and Ag.

Lemma 3.12. In W|[G,, |, for every pair (m, k), m,k € w and corresponding
Hé—sets A, and Ay:

(a) D}n’k N A, and D?mk N Ay are disjoint.
(b) (Dy, 0 Ap) U (D%lk N Ag) = A U Ag.
(c) D}mk N Ay, and D72n7k N Ay are I1}-definable.

Proof. We prove (a) first. If is an arbitrary real in A,, n Ay there will be a
least stage (3, such that F' at stage 8 considers a triple of names which itself
corresponds to the triple (x,m, k). As x € A, N Ag, we know that case 1 (i)
or 1 (ii) must have applied. We argue for case 1 (i) as case (ii) is similar. In
case 1 (i), P(gm k)2 does code (z,m, k) into S_é, while ensuring that for all
future co-allowable extensions, z will remain an element of A;,. The rules of
the iteration also tell us that (x,m, k) will never be coded into S' by a later
factor of the iteration. Thus = € D}n’k N Ap,. As we coded (x, m, k) into S2,
it follows that x ¢ Dfmk and D}n,k N A, and Dfmk N Ay are disjoint.

25

To prove (b), let « be an arbitrary element of A,, U Ay. Let 8 be the stage
of the iteration where the triple (x, m, k) is considered first. As z € A,, U Ay,
either case 1 (i) or (ii) were applied at stage . Assume first that it was case
1 (i). Then, as argued above, x € NnA,, will remain true for the rest of
the iteration, and we will never code (x,m,k) into S! at a later stage of
our iteration. Hence z € A,, N D}n’k. If at stage (case (ii) applied, then
T € DTQn,k N Ag, and again, we will never code (x,m, k) into St at a later
stage of our iteration. Thus,either z € D}mk NAporze D?n,k N Aj and we
are finished.

To prove (c), we claim that D}n’ ;. has uniformly the following H%—deﬁnition
over W[Gy,], where the Xi-formula ((z,m,k),i) is defined right above
Lemma 3.4 (note that in the formulation there the real w is a recursive code
for the triple (z,m,k)):

z €Dy}, ;N Ay < x € Apn—(Ir(¥((z,m, k), 1))

It is straightforward to see that the right hand side of the equivalence above
is the conjunction of two Hé—formulas,) Hzl)) as desired. O

3.4 A IIi-set which can not be uniformized by a II}-function

The next observations will finish the proof of our main result, namely that
in W[G,,], there is a IT}-set which can not be uniformized by a II3 function.
We first fix some assumptions which will help us to organize the proof. First
note that, using a homeomorphism of 2* x 2 and 2“ we know that the
H%—reduetion property for sets in the plane holds. In particular, for a pair of
Hé—sets A, and Ag in the plane, we obtain the reducing set

D,lnyk = {(z,y) : (z,y,m, k) is not coded somewhere in 571}
and
Dfmk = {(z,y) : (z,y,m, k) is not coded somewhere in §2}

We assume next, without loss of generality, that in our list of H},—formulas,
the first formula g has the following form:

po(z,y) =x =2 rYy=Uy.

It is clear that there is no allowable, indeed no forcing at all which kicks pair
(z,y) out of Ag. As a consequence, whenever we start to run our iteration
to produce W[G,,], and we hit a stage 8 such that the triple (z,0,k) is
considered, then we will find ourselves in case 1 (i) or (ii) of the definition
of our iteration to obtain W|[G,,]. In particular this means that graphs of
I1}-functions are in fact ¥ as well, by the next lemma.

26

Lemma 3.13. In W[G,,], if Am is the II3-set of the graph of a (possibly
partial) function fp,, then the complement (2° x 2°)\A,, is 11} as well.

Proof. Note that as Ag(x,y) is, by our assumption, the full plane, whenever
A, is the graph of a function, and we are at a stage [in our iteration
such that F' considers (x,y,0,m) and (z,y) € A,,, then, as (z,y) € A, in
WGy, |, we can not force (x,y) out of A,,, and we must be in case 1 (i) and
force with P, 4 0m,2)- In particular, if we look at the sets D} . and Dam

which reduce Ay and A,, we find that o

D(%,m = {(x,y) : (x,y,0,m) is not coded in ,571} =An
and

D%,m = {(z,y) : (z,y,0,m) is not coded in §2} = (2“ x 2\ A4,,
Thus the complement of the graph of f,, is Hé, hence A,, is also E% and so
Al O
Theorem 3.14. In W[G,,,] the I1}-uniformization property does not hold.
Proof. We use a recursive bijection
h:wx?2Y—2%

to partition 2“ into w many pairwise disjoint sets. We let U(n, z,y) denote
a universal H%-set in the plane, i.e. a set which satisfies that for any H% set
B, there is an n € w, such that (z,y) € B < U(n,x,y) holds true. Then we
define a set A in the plane as follows:

(x,y) e A= VnVz(h(n,z) =z — U(n,z,y))

Note that A is IT3.

We claim that A can not be uniformized by a II}-function in W[Gy,]. To
see this, let f,,, be an arbitrary II3-function, whose graph is A,,(z,y). Using
our last lemma, we know that (2¥ x 2*)\4,, is II3 as well and we let k € w
be such that

A = (2° x 2“)\4,,

Now we fix a real = such that there is a £ which satisfies z = h(k,Z). Then
we claim that the graph of f,,, will not intersect A on the k-th part of the
partition of 2¢ induced by h. Indeed, as x = h(k,z), if we assume that
(z, fm(x)) € A, then

(z, fm(z)) € A=
(kyz, fn(z)) e U <
(z, fm(z)) € Ag

27

but (z, f(x)) € Ag is false as Ay is the complement of the graph of fy,.
Thus, given an arbitrary ITi-function f,,, we can find a real z such that
(z, fm(z)) ¢ A, yet the z-section of A is nonempty, as for every y # f,(x),
we have that (z,y) € Ag, and, as x = h(k, Z), (z,y) € A. O

References

[1] U. Abraham Proper Forcing, Handbook of Set Theory Vol.1. Springer

[2] J. Addison Some consequences of the axiom of constructibility, Funda-
menta Mathematica, vol. 46 (1959), pp. 337-357.

[3] J. Baumgartner, L. Harrington and E. Kleinberg Adding a closed un-
bounded set. Journal of Symbolic Logic, 41(2), pp. 481-482, 1976.

[4] R. David A very absolute I1s-real singleton. Annals of Mathematical Logic
23, pp. 101-120, 1982.

[5] V. Fischer and S.D. Friedman Cardinal characteristics and projective
wellorders. Annals of Pure and Applied Logic 161, pp. 916-922, 2010.

[6] S. D. Friedman and D. Schrittesser Projective Measure without Projective
Baire. Memoirs of the American Mathematical Society vol. 267, 1298.
2020.

[7] G. Fuchs and J. Hamkins Degrees of rigidity for Souslin Trees. Journal
of Symbolic Logic 74(2), pp. 423-454, 2009.

[8] M. Goldstern A Taste of Proper Forcing. Di Prisco, Carlos Augusto (ed.)
et al., Set theory: techniques and applications. Proceedings of the confer-
ences, Curacao, Netherlands Antilles, June 26-30, 1995 and Barcelona,
Spain, June 10-14, 1996. Dordrecht: Kluwer Academic Publishers. 71-82
(1998).

[9] S. Hoffelner NS,,, Aj-definable and saturated. Journal of Symbolic Logic
86(1), pp. 25 - 59, 2021.

[10] S. Hoffelner Forcing the E%-sepamtion property. Accepted at the Journal
of Mathematical Logic.

[11] S. Hoffelner Forcing the I} -uniformization property. Submitted.

[12] R. Jensen and R. Solovay Some Applications of Almost Disjoint Sets.
Studies in Logic and the Foundations of Mathematics Volume 59, 1970,
pp. 84-104

[13] N. Lusin Sur le proble‘me de M. J. Hadamard d’uniformisation des en-
sembles, Comptes Rendus Acad. Sci. Paris, vol. 190, pp. 349-351.

28

[14] T. Miyamoto wi-Suslin trees under countable support iterations. Funda-
menta Mathematicae, vol. 143 (1993), pp. 257-261.

[15] Y. Moschovakis Descriptive Set Theory. Mathematical Surveys and
Monographs 155, AMS.

[16] Y. Moschovakis Uniformization in a playful Universe. Bulletin of the
American Mathematical Society 77 (1971), no. 5, 731-736.

29

