
Forcing the Σ1
3-Separation Property

Stefan Hoffelner∗

21.07.2022

Abstract

We generically construct a model in which the Σ1
3-separation prop-

erty is true, i.e. every pair of disjoint Σ1
3-sets can be separated by a

∆1
3-definable set. This answers an old question from the problem list

“Surrealist landscape with figures” by A. Mathias from 1968. We also
construct a model in which the (lightface) Σ1

3-separation property is
true.

1 Introduction

The separation property, together with the reduction property and the uni-
formization property, are three classical notions which were introduced and
studied first by Polish and Russian descriptive set theorists in the 1920’s and
1930’s.

Definition 1.1. Let Γ be a (lightface or boldface) projective pointclass, and
let Γ̌ = {X : ωω\X ∈ Γ} denote the dual pointclass of Γ.

• We say that Γ has the separation property iff every pair A1 and A2 of
disjoint elements of Γ has a separating set C ∈ Γ∩Γ̌, where C separates
A1 and A2 if A1 ⊂ C and A2 ⊂ ωω\C.

• Γ has the reduction property if for any pair A1 and A2 in Γ, there are
disjoint sets B1 ⊂ A1 and B2 ⊂ A2 both in Γ such that A1 ∪ A2 =
B1 ∪B2.

∗WWUMünster. Research funded by thr Deutsche Forschungsgemsinschaft (DFG Ger-
man Research Foundation) under Germanys Excellence Strategy EXC 2044 390685587,
Mathematics Münster: Dynamics-Geometry-Structure. The author was additionally par-
tially supported by FWF-GACR grant no. 17-33849L, Filters, ultrafilters and connec-
tions with forcing. He thanks S. D. Friedman for several discussions on a related topic.
He thanks A. Lietz for discussions and several improvements, and F. Schlutzenberg, R.
Schindler and L. Wu for more discussions.

1

• Γ has the uniformization property if for every A ⊂ ωω × ωω there is
a uniformizing function fA whose graph is in Γ, where we say that
fA is a uniformizing function of A if domfA = pr1(A) = {x ∈ ωω :
∃y((x, y) ∈ A)} and fA ⊂ A.

It is rather straightforward to see that the uniformization property for Γ
implies the reduction property for Γ. A classical result due to Novikov shows
that the reduction property can not hold simultaneously at both Γ and Γ̌.
Passing to complements immediately yields that the reduction property for Γ
implies that the dual Γ̌ has the separation property (see e.g. Y. Moschovakis
book [16] for many more information on the orgin and history of these no-
tions). Consequentially, Σ1

1 and Π1
2-sets have the separation property due

to M. Kondo’s theorem that Π1
1, hence also Σ1

2 has the uniformization prop-
erty. The fact that the Σ1

1-separation property is true has been proved by
N. Lusin already in 1927. This is as much as ZFC can prove about the
separation property.

In Gödel’s constructible universe L there is a good Σ1
2-definable wellorder

of the reals, hence the Σ1
n-uniformization property holds for n ≥ 3, so Π1

n-
separation must hold as well. On the other hand, by the celebrated results
of Y. Moschovakis∆1

2n-determinacy implies theΠ1
2n+1-uniformization prop-

erty, so in particular under ∆1
2-determinacy Σ1

3-separation holds. Note here,
that due to H. Woodin, ∆1

2-determinacy together with Π1
1-determinacy al-

ready implies that M#
1 exists and is ω1-iterable (see [17], Theorem 1.22)

which in turn implies the existence of an inner model with a Woodin cardi-
nal.

On the other hand, in the presence of “every reals has a sharp”, if theΣ1
3-

separation property holds, then it does so because already ∆1
2-determinacy

holds. The above follows from Steel’s and Woodin’s solution to the fourth
Delfino problem. Steel, showed that in the presence of “every reals has a
sharp”, the Σ1

3-separation property implies the existence of an inner model
with a Woodin cardinal as well (see [19], Theorem 0.7), more precisely, under
the stated assumptions, for any real y, there is a proper class model M with
y ∈ M , and an ordinal δ such that VM

δ+1 is countable and δ is a Woodin
cardinal in M . Now results of Woodin which were later reproved by I.
Neeman using different methods (see [18], Corollary 2.3) the latter assertion
implies that ∆1

2-determinacy must hold in V .
It is natural to ask whether one can get a model of the Σ1

3-separation
property from just assuming the consistency of ZFC. Indeed, this ques-
tion has been asked long before the connection of determinacy assumptions
and large cardinals has been uncovered; it appears as Problem 3029 in A.
Mathias’s list of open problems compiled in 1968 (see [14], or [9], where
the problem is stated again). The problem itself seems to have a nontrivial
history of attempted solutions (see [10] for an account).

Put in wider context, this paper can be seen as following a tradition

2

of establishing consequences from (local forms of) projective determinacy
using the methods of forcing. There is an extensive list of results which
deal with forcing statements concerning the Lebesgue measurability and the
Baire property of certain levels of the projective hierarchy. For the sepa-
ration property, L. Harrington, in unpublished notes dating back to 1974,
constructed a model in which the separation property fails for both Σ1

3 and
Π1

3-sets. In the same set of handwritten notes, he outlines how his proof
can be altered to work for arbitrary n ≥ 3. Very recently, using different
methods, V. Kanovei and V. Lyubetsky devised a forcing which, given an ar-
bitrary n ≥ 3, produces a universe in which the Σ1

n- and the Π1
n-separation

property fails (see [9]).
Yet tools for producing models which deal with the separation property,

the reduction property or the uniformization property in a positive way were
non-existent. Goal of this paper is to show that the Σ1

3-separation property
has no large cardinal strength, which answers Mathias question.

Theorem. Starting with L as the ground model, one can produce a set-
generic extension L[G] in which the Σ1

3-separation property holds.

The proof method also allows to tackle the Σ1
3-separation property:

Theorem. Starting with L as the ground model, one can produce a set-
generic extension L[G] in which the Σ1

3-separation property holds.

As always, the flexibility of the forcing method can be exploited to pro-
duce effects which can not be inferred from projective determinacy assump-
tions alone. An example would be that the above proofs lift without pain to
statements about the Σ1

1-separation property in the generalized Baire space
ωω1
1 . Another example, though speculative, involves lifting the above results

to inner models with finitely many Woodin cardinals. We strongly believe
that the proofs of the theorems above can serve as a blueprint to obtain
models where the Σ1

n+3-separation property holds, for arbitrary n ∈ ω, while
working over the canonical inner model with nWoodin cardinalsMn instead
of L, as we do in this article. Note here, that for even n this would pro-
duce models, which display a behaviour of the separation property which
contradicts the one implied by PD.

We finish the introduction with a short summary of the present article.
In section two we briefly introduce the forcings which will be used in order
to prove the two main theorems. In the third section we shall construct a
mild generic extension of L denoted with W which is for our needs the right
ground model to work with. In the third subsection of section three, we prove
an auxiliary result whose purpose is to highlight several important ideas in
an easier setting. Our hopes are that this way, the reader obtains a better
understanding of the proofs of the later main theorems. In section four we
prove the boldface separation property and in the fifth section we prove the

3

lightface separation property. The latter relies on several arguments from
the boldface case and can not be read separately. In the sixth section we
discuss some interesting and open questions.

2 Preliminaries

2.1 Notation

The notation we use will be mostly standard, we hope. We write P = (Pα :
α < γ) for a forcing iteration of length γ with initial segments Pα. The α-th
factor of the iteration will be denoted with P(α). Note here that we drop
the dot on P(α), even though P(α) is in fact a Pα-name of a partial order.
If α′ < α < γ, then we write Pα′α to denote the intermediate forcing of P
which happens in the interval [α′, α), i.e. Pα′α is such that P ∼= Pα′ ∗ Pα′α.

We write P ϕ whenever every condition in P forces ϕ, and make de-
liberate use of restricting partial orders below conditions, that is, if p ∈ P is
such that p ϕ, we let P′ := P≤p := {q ∈ P : q ≤ p} and use P′ instead
of P. This is supposed to reduce the notational load of some definitions and
arguments. We also sometimes write V [P] |= ϕ to indicate that for every
P-generic filter G over V , V [G] |= ϕ.

2.2 The forcings which are used

The forcings which we will use in the construction are all well-known. We
nevertheless briefly introduce them and their main properties.

Definition 2.1. For a stationary S ⊂ ω1 the club-shooting forcing with
finite conditions for S, denoted by PS consists of conditions p which are
finite partial functions from ω1 to S and for which there exists a normal
function f : ω1 → ω1 such that p ⊂ f . PS is ordered by end-extension.

The club shooting forcing PS is the paradigmatic example for an S-proper
forcing, where we say that P is S-proper if and only if for every condition
p ∈ PS , every sufficiently large θ and every countable M ≺ H(θ) such that
M ∩ ω1 ∈ S and p,PS ∈M , there is a q < p which is (M,PS)-generic.

Lemma 2.2. The club-shooting forcing PS generically adds a club through
the stationary set S ⊂ ω1, while being S-proper and hence ω1-preserving.
Moreover stationary subsets T of S remain stationary in the generic exten-
sion.

We will choose a family of Sβ ’s so that we can shoot an arbitrary pattern
of clubs through its elements such that this pattern can be read off from
the stationarity of the Sβ ’s in the generic extension. For that it is crucial
to recall that S-proper posets can be iterated with countable support and
always yield an S-proper forcing again. This is proved exactly as in the
well-known case for plain proper forcings (see [6], 3.19. for a proof).

4

Fact 2.3. Let (Pα : α < γ) be a countable support iteration, assume also
that at every stage α, Pα α P(α) is S-proper. Then the iteration is an
S-proper notion of forcing again.

Once we decide to shoot a club through a stationary, co-stationary subset
of ω1, this club will belong to all ω1-preserving outer models. This hands
us a robust method of coding arbitrary information into a suitably chosen
sequence of sets. Let (Sα : α < ω1) be a sequence of stationary, co-stationary
subsets of ω1 such that ∀α, β < ω1(Sα ∩ Sβ ∈ NSω), and let S ⊂ ω1 be
stationary and such that S ∩ Sα ∈ NSω). Note that we can always assume
that these objects exist. The following coding method has been used several
times already (see [3]).

Lemma 2.4. Let r ∈ 2ω1 be arbitrary, and let P be a countable support
iteration (Pα : α < ω1), inductively defined via

P(α) := Pω1\S2·α if r(α) = 1

and
P(α) := Pω1\S(2·α)+1

if r(α) = 0.

Then in the resulting generic extension V [P], we have that ∀α < ω1 :

r(α) = 1 if and only if S2·α is nonstationary,

and
rα = 0 iff S(2·α)+1 is nonstationary.

Proof. Note first that the iteration will be S-proper, hence ω1-preserving.
Assume that r(α) = 1 in V [P]. Then by definition of the iteration we must
have shot a club through the complement of Sα, thus it is nonstationary in
V [P].

On the other hand, if S2·α is nonstationary in V [P], then as for β 6= 2 ·α,
every forcing of the form PSβ is S2·α-proper, we can iterate with countable
support and preserve S2·α-properness, thus the stationarity of S2·α. So if
S2·α is nonstationary in V [P], we must have used PS2·α in the iteration, so
r(α) = 1.

The second forcing we use is the almost disjoint coding forcing due to R.
Jensen and R. Solovay. We will identify subsets of ω with their characteristic
function and will use the word reals for elements of 2ω and subsets of ω
respectively. Let D = {dα : α < ℵ1} be a family of almost disjoint subsets
of ω, i.e. a family such that if d, d′ ∈ D then d ∩ d′ is finite. Let X ⊂ κ for
κ ≤ 2ℵ0 be a set of ordinals. Then there is a ccc forcing, the almost disjoint
coding AD(X) which adds a new real x which codes X relative to the family
D in the following way

α ∈ X if and only if x ∩ dα is finite.

5

Definition 2.5. The almost disjoint coding AD(X) relative to an almost
disjoint family D consists of conditions (r,R) ∈ ω<ω × D<ω and (s, S) <
(r,R) holds if and only if

1. r ⊂ s and R ⊂ S.

2. If α ∈ X and dα ∈ R then r ∩ dα = s ∩ dα.

For the rest of this paper we let D ∈ L be the definable almost disjoint
family of reals one obtains when recursively adding the <L-least real to the
family which is almost disjoint from all the previously picked reals. Whenever
we use almost disjoint coding forcing, we assume that we code relative to
this fixed almost disjoint family D.

The last two forcings we briefly discuss are Jech’s forcing for adding a
Suslin tree with countable conditions and, given a Suslin tree T , the as-
sociated forcing which adds a cofinal branch through T . Recall that a set
theoretic tree (T,<) is a Suslin tree if it is a normal tree of height ω1 and has
no uncountable antichain. As a result, forcing with a Suslin tree S, where
conditions are just nodes in S, and which we always denote with S again,
is a ccc forcing of size ℵ1. Jech’s forcing to generically add a Suslin tree is
defined as follows.

Definition 2.6. Let PJ be the forcing whose conditions are countable, nor-
mal trees ordered by end-extension, i.e. T1 < T2 if and only if ∃α <
height(T1)T2 = {t � α : t ∈ T1}.

It is wellknown that PJ is σ-closed and adds a Suslin tree. In fact more
is true, the generically added tree T has the additional property that for
any Suslin tree S in the ground model S × T will be a Suslin tree in V [G].
This can be used to obtain a robust coding method (see also [7] for more
applications)

Lemma 2.7. Let V be a universe and let S ∈ V be a Suslin tree. If PJ
is Jech’s forcing for adding a Suslin tree, g ⊂ PJ be a generic filter and if
T =

⋃
g is the generic tree then

V [g][T] |= S is Suslin.

Proof. Let Ṫ be the PJ -name for the generic Suslin tree. We claim that
PJ ∗ Ṫ has a dense subset which is σ-closed. As σ-closed forcings will always
preserve ground model Suslin trees, this is sufficient. To see why the claim
is true consider the following set:

{(p, q̌) : p ∈ PJ ∧ height(p) = α+ 1 ∧ q̌ is a node of p of level α}.

It is easy to check that this set is dense and σ-closed in PJ ∗ Ṫ .

6

A similar observation shows that we can add an ω1-sequence of such
Suslin trees with a countably supported iteration.

Lemma 2.8. Let S be a Suslin tree in V and let P be a countably supported
product of length ω1 of forcings PJ . Then in the generic extension V [G] there
is an ω1-sequence of Suslin trees ~T = (Tα : α ∈ ω1) such that for any finite
e ⊂ ω the tree S ×

∏
i∈e Ti will be a Suslin tree in V [~T].

These sequences of Suslin trees will be used for coding in our proof and
get a name.

Definition 2.9. Let ~T = (Tα : α < κ) be a sequence of Suslin trees. We say
that the sequence is an independent family of Suslin trees if for every finite
set e = {e0, e1, ..., en} ⊂ κ the product Te0 × Te1 × · · · × Ten is a Suslin tree
again.

The upshot of being an independent sequence is that we can pick our
favourite subset of indices and decide to shoot a branch through every tree
whose index belongs to the set, while guaranteeing that no other Suslin tree
from the sequence is destroyed. The following fact can be easily seen via
induction on κ.

Fact 2.10. Let ~T = (Tα : α < κ) be independent and let I ⊂ κ be arbitrary.
If we form the finitely supported product of forcings P :=

∏
α∈I Tα, then for

every β /∈ I, V [P] |= “Tβ is a Suslin tree”.

Thus independent Suslin trees are suitable to encode information, as soon
as we can make the independent sequence definable.

3 A first step towards the proof of the boldface sep-
aration property

3.1 The ground model W of the iteration

We have to first create a suitable ground model W over which the actual
iteration will take place. W will be a generic extension of L, satisfying CH
and, as stated already earlier, has the property that it contains two ω1-
sequences ~S = ~S1 ∪ ~S2 of mutually independent Suslin trees. The goal is to
add the trees generically, and in a second forcing, use an L-definable sequence
of stationary subsets of ω1 to code up the trees. The resulting universe will
have the feature that any further outer universe, which preserves stationary
subsets, can decode the information written into the L-stationary subsets in
a Σ1(ω1)-definable way, and hence has access to the sequence of independent
Suslin trees ~S. This property can be used to create two Σ1(ω1)-predicates
which are empty first and which can be filled with arbitrary reals x, using
ℵ1-sized forcings with the countable chain condition. These forcing have the

7

crucial feature that they will be independent of the ground model they live
in, a feature we will exploit heavily later on.

We start with Gödels constructible universe L as our ground model.
Next we fix an appropriate sequence of stationary subsets of ω1. Recall
that ♦ holds in our ground model L, i.e. there is a Σ1-definable sequence
(aα : α < ω1) of countable subsets of ω1 such that any set A ⊂ ω1 is guessed
stationarily often by the aα’s, i.e. {α < ω1 : aα = A ∩ α} is a stationary
subset of ω1. The ♦-sequence can be used to produce an easily definable
sequence of stationary subsets: using a definable bijection between ω1 and
ω1 · ω1, we list the reals in L in an ω1 · ω1 sequence (rβ : β < ω1 · ω1) and
define for every β < ω1 · ω1 a stationary set in the following way:

Rβ := {α < ω1 : aα = rβ}.

and let ~R = (Rβ : β < ω1 · ω1) denote the sequence.
We proceed with adding an ω1-sequence of Suslin trees with a countably

supported product of Jech’s Forcing PJ . We let

R :=
∏
β∈ω1

PJ

using countable support. This is a σ-closed, hence proper notion of forcing.
We denote the generic filter of R with ~S = (Sα : α < ω1) and note that
whenever I ⊂ ω1 is a set of indices then for every j /∈ I, the Suslin tree Sj
will remain a Suslin tree in the universe L[~S][g], where g ⊂

∏
i∈I Si denotes

the generic filter for the forcing with the finitely supported product of the
trees Si, i ∈ I (see [7] for a proof of this fact). We fix a definable bijection
between [ω1]

ω and ω1 and identify the trees in (Sα : α < ω1) with their
images under this bijection, so the trees will always be subsets of ω1 from
now on.

In a second step, we destroy each element of ~S, via adding generically
branches. That is, we let the second forcing

R′ :=
∏
α<ω1

Sα,

using countable support. Note that by the argument from the proof of
Lemma 2.7, R ∗R′ has a dense subset which is σ-closed, hence the L[R ∗R′]
is a σ-closed generic extension of L.

In a third step we code the trees from ~S into the sequence of L-stationary
subsets ~R we produced earlier, using club shooting forcing. It is important to
note, that the forcing we are about to define does preserve Suslin trees, a fact
we will show later. The forcing used in the second third will be denoted by
S. Fix α < ω1 and consider the ω1 tree Sα ⊂ ω1. We let Rα be the countable
support product which codes the characteristic function of Sα into the α-th
ω1-block of the Rβ ’s.

8

Rα =
∏
γ∈Sα

Pω1\Rω1·α+2·γ ×
∏
γ /∈Sα

Pω1\Rω1·α+2·γ+1

Recall that for a stationary, co-stationary R ⊂ ω1, PR denotes the club
shooting forcing which shoots a club through R, thus Rα codes up the tree
Sα via writing the 0,1-pattern of the characteristic function of Sα into the
α-th ω1-block of ~R.

If we let R be some stationary subset of ω1 which is disjoint from all the
Rα’s, whose existence is guaranteed by ♦, then it is obvious that for every
α < ω1, Rα is an R-proper forcing which additionally is ω-distributive. Then
we let S be the countably supported iteration,

S :=Fα<ω1Rα

which is again R-proper and ω-distributive. This way we can turn the gener-
ically added sequence of ω1-trees ~S into a definable sequence of ω1-trees.
Indeed, if we work in L[~S ∗G], where ~S ∗G is R ∗ S-generic over L, then

∀α, γ < ω1(γ ∈ Sα ⇔ Rω1·α+2·γ is not stationary and
γ /∈ Sα ⇔ Rω1·α+2·γ+1 is not stationary)

Note here that the above formula can be written in a Σ1(ω1)-way, as it
reflects down to ℵ1-sized, transitive models of ZF− which contain a club
through exactly one element of every pair {(Rα, Rα+1) : α < ω1}. Finally
we partition ~S into its even and its odd members and let

~S1 := {Sα ∈ ~S : α is even }

and
~S2 := {Sβ ∈ ~S : β is odd}

Again, both sequences ~S1 and ~S2 are Σ1(ω1)-definable in W and all station-
ary set preserving outer models of W .

Our goal is to use ~S1 and ~S2 for coding again. For this it is essential, that
both sequences remain independent in the inner model L[R][S], after forcing
with S. The following line of reasoning is similar to [7]. Recall that for a
forcing P and M ≺ H(θ), a condition q ∈ P is (M,P)-generic iff for every
maximal antichain A ⊂ P, A ∈ M , it is true that A ∩M is predense below
q. The key fact is the following (see [15] for the case where P is proper)

Lemma 3.1. Let T be a Suslin tree, S ⊂ ω1 stationary and P an S-proper
poset. Let θ be a sufficiently large cardinal. Then the following are equivalent:

1. P T is Suslin

2. if M ≺ Hθ is countable, η = M ∩ ω1 ∈ S, and P and T are in M ,
further if p ∈ P∩M , then there is a condition q < p such that for every
condition t ∈ Tη, (q, t) is (M,P× T)-generic.

9

Proof. For the direction from left to right note first that P T is Suslin
implies P T is ccc, and in particular it is true that for any countable ele-
mentary submodel N [ĠP] ≺ H(θ)V [ĠP], P ∀t ∈ T (t is (N [ĠP], T)-generic).
Now if M ≺ H(θ) and M ∩ ω1 = η ∈ S and P, T ∈ M and p ∈ P ∩M then
there is a q < p such that q is (M,P)-generic. So q ∀t ∈ T (t is (M [ĠP], T)-
generic, and this in particular implies that (q, t) is (M,P×T)-generic for all
t ∈ Tη.

For the direction from right to left assume that Ȧ ⊂ T is a maximal
antichain. Let B = {(x, s) ∈ P × T : x P š ∈ Ȧ}, then B is a predense
subset in P × T . Let θ be a sufficiently large regular cardinal and let M ≺
H(θ) be countable such that M ∩ ω1 = η ∈ S and P, B, p, T ∈ M . By
our assumption there is a q <P p such that ∀t ∈ Tη((q, t) is (M,P × T)-
generic). So B ∩M is predense below (q, t) for every t ∈ Tη, which yields
that q P ∀t ∈ Tη∃s <T t(s ∈ Ȧ) and hence q Ȧ ⊂ T � η, so P T is
Suslin.

In a similar way, one can show that Theorem 1.3 of [15] holds true if we
replace proper by S-proper for S ⊂ ω1 a stationary subset.

Theorem 3.2. Let (Pα)α<η be a countable support iteration of length η, let
S ⊂ ω1 be stationary and suppose that for every α < η, for the α-th factor
of the iteration Ṗ(α) it holds that α “Ṗ(α) is S-proper and preserves every
Suslin tree.” Then Pη is S-proper and preserves every Suslin tree.

So in order to argue that our forcing S preserves Suslin trees if used over
L[R], it is sufficient to show that every factor preserves Suslin trees. This is
indeed the case.

Lemma 3.3. Let S ⊂ ω1 be stationary, co-stationary, then the club shooting
forcing PS preserves Suslin trees.

Proof. Because of Lemma 3.1, it is enough to show that for any regular
and sufficiently large θ, every M ≺ Hθ with M ∩ ω1 = η ∈ S, and every
p ∈ PS∩M there is a q < p such that for every t ∈ Tη, (q, t) is (M, (PS×T))-
generic. Note first that as T is Suslin, every node t ∈ Tη is an (M,T)-generic
condition. Further, as forcing with a Suslin tree is ω-distributive, M [t] has
the sameM [t]-countable sets asM . It is not hard to see that ifM ≺ H(θ) is
such thatM∩ω1 ∈ S then an ω-length descending sequence of PS-conditions
in M whose domains converge to M ∩ ω1 has a lower bound as M ∩ ω1 ∈ S.

We construct an ω-sequence of elements of PS which has a lower bound
which will be the desired condition. We list the nodes on Tη, (ti : i ∈ ω)
and consider the according generic extensions M [ti]. In every M [ti] we list
the PS-dense subsets of M [ti], (Dti

n : n ∈ ω) and write the so listed dense
subsets of M [ti] as an ω × ω-matrix and enumerate this matrix in an ω-
length sequence of dense sets (Di : i ∈ ω). If p = p0 ∈ PS ∩M is arbitrary
we can find, using the fact that ∀i (PS ∩ M [ti] = M ∩ PS), an ω-length,

10

descending sequence of conditions below p0 in PS ∩M , (pi : i ∈ ω) such
that pi+1 ∈ M ∩ PS is in Di. We can also demand that the domain of
the conditions pi converge to M ∩ ω1. Then the (pi)’s have a lower bound
pω ∈ PS and (t, pω) is an (M,T × PS)-generic conditions for every t ∈ Tη as
any t ∈ Tη is (M,T)-generic and every such t forces that pω is (M [T],PS)-
generic; moreover pω < p as desired.

Putting things together we obtain:

Theorem 3.4. The forcing S, defined above preserves Suslin trees.

Let us set W := L[R ∗ (R′ × S)] which will serve as our ground model
for a second iteration of length ω1. Note that W satisfies that it is an ω-
distributive generic extension of L.

We end with a straightforward lemma which is used later in coding ar-
guments.

Lemma 3.5. Let T be a Suslin tree and let AF (X) be the almost disjoint
coding which codes a subset X of ω1 into a real with the help of an almost
disjoint family of reals of size ℵ1. Then

AF (X) T is Suslin

holds.

Proof. This is clear as AF (X) has the Knaster property, thus the product
AF (X)× T is ccc and T must be Suslin in V AF (X).

3.2 Coding reals into Suslin trees

We introduced the model W for one specific purpose: the possibility to code
up reals into the sequence of definable Suslin trees ~S1 or ~S2 using a method
which is not sensitive to its ground model.

For the following, we let W be our ground model, though the definitions
will work, and will be used for suitable outer models of W as well. We
will encounter this situation as ultimately we will iterate the coding forcings
we are about to define. Let x ∈ W be an arbitrary real, ;et m, k ∈ ω, let
(x,m, k) denote the real which codes the triple consisting of x,m and k in
some fixed recursive way, and let i ∈ {1, 2}. Then we shall define the forcing
Code(x, i), which codes the real x into ℵ1-many ω-blocks of ~Si as a two step
iteration:

Code((x,m, k), i) := C(ω1)
L ∗ Ȧ(Ẏx,i)

where the first factor is ordinary ω1-Cohen forcing, but defined in L, and the
second factor codes a specific subset of ω1 denoted with Y(x,m,k),i into a real
using almost disjoint coding forcing relative to the canonical, constructible

11

almost disjoint family of reals D. We emphasize, that in iterations of coding
forcings, we still fall back to force with (C(ω1))

L as our first factor, that is we
never use the ω1-Cohen forcing of the current universe. Thus, iterating the
coding forcings is in fact a hybrid of a product (namely the coordinates where
we use (C(ω1))

L) and a finites support iteration (the coordinates where we
use the almost disjoint coding forcing). We shall discuss this later in more
detail.

We let g ⊂ ω1 be a C(ω1)
L-generic filter over W , and let ρ : [ω1]

ω → ω1

be some canonically definable, constructible bijection between these two sets.
We use ρ and g to define the set h ⊂ ω1, which eventually shall be the set
of indices of ω-blocks of ~Si, where we code up the characteristic function of
the real ((x,m, k). Let h := {ρ(g ∩ α) : α < ω1} and let X ⊂ ω1 be the
<-least set (in some previously fixed well-order of H(ω2)

W [g] which codes
the follwing objects:

• The <-least set of ω1-branches in W through elments of ~S which code
(x,m, k) at ω-blocks which start at values in h, that is we collect
{bβ ⊂ Sβ : β = ωγ + 2n, γ ∈ h ∧ n ∈ ω ∧ n /∈ (x,m, k)} and {bβ ⊂
Sβ : β = ωγ + 2n+ 1, γ ∈ h ∧ n ∈ ω ∧ n ∈ (x,m, k)}.

• The <-least set of ω1 ·ω ·ω1-many club subsets through ~R, our Σ1(ω1)-
definable sequence of L-stationary subsets of ω1 from the last section,
which are necessary to compute every tree Sβ ∈ ~S which shows up
in the above item, using the Σ1(ω1)-formula from the previous section
before Lemma 2.10.

Note that, when working in L[X] and if γ ∈ h then we can read off
(x,m, k) via looking at the ω-block of ~Si-trees starting at γ and determine
which tree has an ω1-branch in L[X]:

(∗) n ∈ (x,m, k) if and only if Siω·γ+2n+1 has an ω1-branch, and n /∈
(x,m, k) if and only if Siω·γ+2n has an ω1-branch.

Note that (∗) is actually a formula (∗)((x, y,m), γ) with two parameters
(x, y,m) and γ but we will suppress this, as the parameters usually are
clear from the context. Indeed if n /∈ (x,m, k) then we added a branch
through Siω·γ+2n. If on the other hand Siω·γ+2n is Suslin in L[X] then we must
have added an ω1-branch through Siω·γ+2n+1 as we always add an ω1-branch
through either Siω·γ+2n+1 or Siω·γ+2n and adding branches through some Siα’s
will not affect that some Siβ is Suslin in L[X], as ~S is independent.

We note that we can apply an argument resembling David’s trick in this
situation. We rewrite the information of X ⊂ ω1 as a subset Y ⊂ ω1 using
the following line of reasoning. It is clear that any transitive, ℵ1-sized model
M of ZF− which contains X will be able to correctly decode out of X all the
information. Consequentially, if we code the model (M,∈) which contains

12

X as a set XM ⊂ ω1, then for any uncountable β such that Lβ[XM] |= ZF−

and XM ∈ Lβ[XM]:

Lβ[XM] |= “The model decoded out of XM satisfies (∗) for every γ ∈ h ⊂ ω1”.

In particular there will be an ℵ1-sized ordinal β as above and we can fix
a club C ⊂ ω1 and a sequence (Mα : α ∈ C) of countable elementary
submodels such that

∀α ∈ C(Mα ≺ Lβ[XM] ∧Mα ∩ ω1 = α)

Now let the set Y ⊂ ω1 code the pair (C,XM) such that the odd entries of
Y should code XM and if Y0 := E(Y) where the latter is the set of even
entries of Y and {cα : α < ω1} is the enumeration of C then

1. E(Y) ∩ ω codes a well-ordering of type c0.

2. E(Y) ∩ [ω, c0) = ∅.

3. For all β, E(Y) ∩ [cβ, cβ + ω) codes a well-ordering of type cβ+1.

4. For all β, E(Y) ∩ [cβ + ω, cβ+1) = ∅.

We obtain

(∗∗) For any countable transitive model M of ZF− such that ωM1 = (ωL1)M

and Y ∩ωM1 ∈M ,M can construct its version of the universe L[Y ∩ωM1],
and the latter will see that there is an ℵM1 -sized transitive model N ∈
L[Y ∩ ωM1] which models (∗) for (x,m, k) and every γ ∈ h ⊂ ωM1 .

Thus we have a local version of the property (∗).
In the next step Ȧ(Ẏ), working in W [g], for g ⊂ C(ω1) generic over W ,

we use almost disjoint forcing AD(Y) relative to the <L-least almost disjoint
family of reals D ∈ L to code the set Y into one real r. This forcing is
well-known, has the ccc and its definition only depends on the subset of ω1

we code, thus the almost disjoint coding forcing AD(Y) will be independent
of the surrounding universe in which we define it, as long as it has the right
ω1 and contains the set Y .

We finally obtained a real r such that

(∗∗∗) For any countable, transitive model M of ZF− such that ωM1 = (ωL1)M

and r ∈ M , M can construct its version of L[r] which in turn thinks
that there is a transitive ZF−-model N of size ℵM1 such that N believes
(∗) for (x,m, k) and every γ ∈ h.

Note that the above is a Π1
2(r)-statement. We say in this situation that

the real (x,m, k) is written into ~Si, or that (x,m, k) is coded into ~Si. If
(x,m, k) is coded into ~Si and r is a real witnessing this, then the set h

13

which is equal to {γ < ω1 ; γ is a starting point for an ω-block where (∗)
for (x, y,m) holds} is dubbed (following [5]) the coding area of (x,m, k)
with respect to r.

We want to iterate these coding forcings. As the first factor of a coding
forcing will always be (C(ω1))

L, an iteration of the coding forcing is in fact a
hybrid of a (countably supported) product (namely the coordinates where we
use (C(ω1))

L) and an actual finite support iteration (the coordinates where
we use almost disjoint coding forcing).

Definition 3.6. A mixed support iteration P = (Pβ : β < α) is called legal
if α < ω1 and there exists a bookkeeping function F : α→ H(ω2)

2 such that
P is defined inductively using F as follows:

• If F (0) = (x, i), where x is a real, i ∈ {1, 2}, then P0 = Code(x, i).
Otherwise P0 is the trivial forcing.

• If β > 0 and Pβ is defined, Gβ ⊂ Pβ is a generic filter over W , F (β) =
(ẋ, i), where ẋ is a Pβ-name of a real, i ∈ {1, 2} and ẋGβ = x then,
working in W [Gβ] we let P(β) := Code(x, i), that is we code x into the
~Si, using our coding forcing. We shall use full (i.e. countable) support
on the (C(ω1))

L-coordinates and finite support on the coordinates where
we use almost disjoint coding forcing.

Informally speaking, a legal forcing just decides to code the reals which
the bookkeeping F provides into either ~S1 or ~S2. Note further that the no-
tion of legal can be defined in exactly the same way over anyW [G], where G
is a P-generic filter over W for an legal forcing. Finally note that instead of
creating ω-blocks of Suslin trees using C(ω1)

L where we code the branches
every single time we code a real, we could have also defined an altered ground
modelW ′ asW [g], where g ⊂

∏
C(ω1) is generic for the countably supported

product of ℵ1-many copies of ω1-Cohen forcing, and then worked over W ′

using exclusively almost disjoint coding forcings which pick first one coordi-
nate gα, α < ω1 of g in an injective way, and then code the ℵ1-many branches
along gα using almost disjoint coding forcings as described above. The dif-
ference between these approaches is only of symbolic nature, we opted for
the one we chose because of a slightly neater presentation.

We obtain the following first properties of legal forcings:

Lemma 3.7. 1. If P = (P(β) : β < δ) ∈W is legal then for every β < δ,
Pβ |P(β)| = ℵ1, thus every factor of P is forced to have size ℵ1.

2. Every legal forcing over W preserves ℵ1 and CH.

3. The product of two legal forcings is legal again.

Proof. The first assertion follows immediately from the definition.

14

To see the second item we exploit some symmetry. Indeed, every legal
P =Fβ<δP (β) =Fβ<δ(((C(ω1))

L ∗ Ȧ(Ẏβ)) can be rewritten as

(
∏
β<δ

(C(ω1))
L) ∗Fβ<δȦD(Ẏβ)

(again with mixed support). The latter representation is easily seen to be
of the form P ∗Fβ<δȦD(Ẏβ), where P is σ-closed and the second part is a
finite support iteration of ccc forcings, hence ℵ1 is preserved. That CH holds
is standard.

To see that the third item is true, we recall that the definition of Codex,i
is independent of the surrounding universe as long as it contains the real x,
thus we see that a two step iteration P1 ∗ P2 of two legal P1,P2 ∈ W is in
fact a product. As the iteration of two legal forcings (in fact the iteration of
countably many legal forcings) is legal as well, the proof is done.

The second assertion of the last lemma immediately gives us the follow-
ing:

Corollary 3.8. Let P = (P(β) : β < δ) ∈ W be an legal forcing over W .
Then W [P] |= CH. Further, if P = (P(α) : α < ω1) ∈ W is an ω1-length
iteration such that each initial segment of the iteration is legal over W , then
W [P] |= CH.

In an iteration of coding forcing we do not add any unwanted or accidental
solutions to our Σ1

3 predicate give by (∗∗∗), which we shall show now.
The set of triples of (names of) reals which are enumerated by the book-

keeping function F ∈ W which comes along with an legal P = (P(β) : β <
δ), we call the set of reals coded by P. That is, if

P(β) = (C(ω1))
L ∗ ȦD(Ẏ(ẋβ ,ẏβ ,ṁβ))

and G ⊂ P is a generic filter and if we let for every β < δ, ẋGβ =: xβ ,
ẏGβ =: yβ , ṁG

β =: mβ , then {(xβ, yβ,mβ) : β < α} is the set of reals coded
by P and G (though we will suppress the G).

Lemma 3.9. If P ∈ W is legal, P = (Pβ : β < δ), G ⊂ P is generic over
W and {(xβ, yβ,mβ) : β < δ} is the set of (triples of) reals which is coded
as we use P. Let

A := {(x,m, k) ∈W [G] : ∃r((∗∗∗) holds for r and (x,m, k)}.

Then in W [G], the set of reals which belong to A is exactly {(xβ, yβ,mβ) :
β < δ}, that is, we do not code any unwanted information accidentally.

15

Proof. Let G be P generic over W . Let g = (gβ : β < δ) be the set of
the δ many ω1 subsets added by the (C(ω1))

L-part of the factors of P. We
let ρ : ([ω1]

ω)L → ω1 be our fixed, constructible bijection and let hβ =
{ρ(gβ ∩ α) : α < ω1}. Note that the family {hβ : β < δ} forms an almost
disjoint family of subsets of ω1. Thus there is α < ω1 such that α > hβ1∩hβ2
for β1 6= β2 < δ and additionally, α is an index not used by the iterated
coding forcing P, where we say that an index i of ~S is used by P whenever
an ω1-branch through Si is coded by a factor of P.

We fix such an α and Sα ∈ ~S. We claim that there is no real in W [G]
such that W [G] |= L[r] |= “Sα has an ω1-branch”. We show this by pulling
the forcing Sα out of P. Indeed if we consider W [P] = L[Q0][Q1][Q2][P], and
if Sα is as described already, we can rearrange this to W [P] = L[Q0][Q′1 ×
Sα][Q2][P] = W [P′][Sα], where Q′1 is

∏
β 6=α Sβ and P′ is Q0 ∗Q′1 ∗Q2 ∗ P.

Note now that, as Sα is ω-distributive, 2ω ∩W [P] = 2ω ∩W [P′], as Sα is
still a Suslin tree inW [P′] by the fact that ~S is independent, and no factor of
P′ besides the trees from ~S used in P′ destroys Suslin trees. But this implies
that

W [P′] |= ¬∃rL[r] |= “Sα has an ω1-branch”

as the existence of an ω1-branch through Sα in the inner model L[r] would
imply the existence of such a branch in W [P′]. Further and as no new reals
appear when passing to W [P] we also get

W [P] |= ¬∃rL[r] |= “Sα has an ω1-branch”.

On the other hand any unwanted information, i.e. any (x,m, k) /∈
{(xβ,mβ, kβ) : β < δ} such that W [G] |= (x,m, k) ∈ A, will also witness
that

L[r] |= “Sα has an ω1-branch”

for unboundedly many α’s which are not in any of the hβ ’s from above.
Indeed, if r witnesses (∗∗∗) for (x, y,m), then there must also be an

uncountable M , r ∈ M , M |= ZF−, whose local version of L[r] believes (∗)
for every γ ∈ h, as otherwise we could find r, x ∈ M0 ≺ M , M0 countable,
and the transitive collapse M̄0 of M0 is a counterexample to the truth of
(∗∗∗), which is a contradiction.

IfM is an uncountable, transitive ZF− model as above, then L[r]M |= “Sα
has an ω1-branch”, and as the trees from ~S are Σ1(ω1)-definable, and as the
existence of an ω1-branch is again a Σ1(ω1)-statement, we obtain by upwards
absoluteness that L[r] |= “Sα has an ω1-branch”, as claimed.

In particular, as (x,m, k) ∈ A, r will satisfy that

n ∈ (x, y,m)→ L[r] |= “Sωγ+2n+1 has an ω1-branch”

and
n /∈ (x, y,m)→ L[r] |= “Sωγ+2n has an ω1-branch”.

16

for ω1-many γ’s.
But by the argument above, only trees which we used in one of the factors

of P have this property, so there can not be unwanted codes.

3.3 An auxiliary result

We proceed via proving first the following auxiliary theorem whose proof
introduces some of the key ideas, and will serve as a simplified blueprint for
the proof of the main results.

Theorem 3.10. There is a generic extension L[G] of L in which there is a
real R0 such that every pair of disjoint (ligthface) Σ1

3-sets can be separated
by a ∆1

3(R0)-formula.

For its proof, we will use the two easily definable ω1-sequences of Suslin
trees on ω1, ~S = ~S1∪ ~S2 and branch shooting forcings to create for every pair
(Am, Ak) of disjoint Σ1

3-definable sets of reals a ∆1
3(α0)-definable separating

set Dm,k ⊃ Am. Using a bookkeeping function we list all the triples (x,m, k)
where x is a real and m, k ∈ ω, and decide for every such triple whether we
code it into ~S1 which is equivalent to put it intoDm,k or code it into ~S2 which
eventually should become the complement Dc

m,k. Using coding arguments
the sets Dm,k and its complement will be Σ1

3(R0)-definable. The fact that
we have to decide at every stage where to put the current real x before the
iteration is actually finished seems to be somewhat daring as the evaluation
of the Π1

3 and Σ1
3-sets vary as we generically enlarge our surrounding universe

along the iteration. Additionally one has to deal with possible degenerated
cases which stem from a certain amount of self referentiality in the way we
set up things. Indeed it could happen that forcing a triple (x,m, k) into
one side, Dm,k say, could force simultaneously that x will become a member
of Ak in the generic extension, thus preventing Dm,k to actually separate
Am and Ak. A careful case distinction will show that this problem can be
overcome though.

3.4 Definition of the iteration over W

For n ∈ ω let
ϕn(v0) = ∃v1ψn(v0, v1)

be the n-th formula in an enumeration of the Σ1
3-formulas with one free

variable. Let
An := {x ∈ 2ω : ϕn(x) is true},

so An is the set of reals whose definition uses the n-th Σ1
3-formula in our

enumeration. We force with an ω1-length mixed support iteration of legal

17

forcings which all have size ℵ1, and use a definable, surjective bookkeeping-
function

F : ω1 → ω1 × ω1 × ω × ω

to determine the iteration. We demand that every α < ω1 is always strictly
bigger than the first projection of F (α). We also assume that every quadruple
(β, γ,m, k) in ω1 × ω1 × ω × ω is hit unboundedly often by F .

The purpose of F is to list all triples of the form (x,m, k), where x is a
real in some intermediate universe of our iteration and m, k ∈ ω corresponds
to a pair (ϕm, ϕk) of Σ1

3-formulas. The iteration will be defined in such a
way, that, at every stage β of the iteration, whenever some triple (x,m, k)
is considered by F , we must decide immediately whether to code (a real
coding) the triple (x,m, k) somewhere into the ~S1 or ~S2-sequence. The set
of codes written into ~S1 which contain m, k will result in the Σ1

3-set D1
m,k

which is a supset of Am, the set of codes containing m, k which are written
into ~S2 shall result in the Σ1

3-supset D2
m,k of Ak. The real R0 will be used

to indicate, in a uniform way for all m, k, the set of ℵ1-many ω-blocks of ~S,
which represent insecure data we should not use for our separating sets. The
reader should think of R0 as an error term, modulo which the separating
sets will work. That is R0 ∈ 2ω is such that it codes ℵ1-many ω-blocks of
~S, and D1

m,k and D2
m,k should be the set of (x,m, k)’s which are coded into

~S1 and ~S2 respectively whose coding areas are almost disjoint from the set
of ordinals coded by R0, in that their intersection is bounded below ω1.

More precisely let

D1
m,k(R0) := {(x,m, k) :x ∈ 2ω ∧ (x,m, k) is coded into ~S1

and its coding area is almost disjoint
from the indices coded by R0}

and let D2
m,k(R0) be defined similarly. Our goal is to have D1

m,k(R0) ∩
D2
m,k(R0) = ∅ for every m, k ∈ ω. Thus we have found our separating sets

for Am and Ak.
We proceed with the details of the inductive construction of the forcing

iteration. Assume that we are at some stage α < ω1 of our iteration, let Pα
denote the partial order we have defined so far, let Gα denote a generic filter
for Pα. We inductively assume in addition, that we have created a Pα-name
of a set ḃα which is forced to be a set of countably many ω-blocks of ~S1 and
~S2. Our goal is to define the next forcing Q̇α which we shall use. As will
become clear after finishing the definition of the iteration, we can assume
that Pα is a legal notion of forcing. We look at the value F (α) and define
the forcing Q̇α according to F (α) by cases as follows.

18

3.4.1 Case a

For the first case we assume that F (α) = (β, γ,m, k), and that the γ-th (in
some wellorder of W) name of a real of W Pβ is ẋ. We ask, whether there
exists a forcing P such that

W [Gα] |= P is legal and P ∃z(ϕm(z) ∧ ϕk(z)).

If there is such a legal P, then we use it, i.e. we fix the <-least such forcing
and let P(α) := P, let Pα+1 = Pα ∗P(α), and let G(α+1) be P(α+1)-generic
over W .

3.4.2 Case b

We assume again that F (α) = (β, γ,m, k), and that the γ-th (in some
wellorder of W) name of a real of W Pβ is ẋ. Let ẋGα = x. Now we as-
sume that case a is wrong, i.e. in W [Gα], there is no legal P such that
P ∃z(ϕm(z) ∧ ϕk(z)). We shall distinguish three sub-cases.

(i) First assume that there is a legal forcing Q such that

W [Gα] |=Q ϕm(x)

In this situation, we will code (x,m, k) into the ~S1-sequence, i.e. we
let

P(α) := Code((x,m, k), 1)

and set Pα+1 := Pα ∗ P(α). The upshot of the arguments above is the
following:

Claim: Let Gα+1 be a Pα+1-generic filter over W and let P be an
arbitrary legal forcing in W [Gα+1]. Then

�P x ∈ Ak.

Proof. Indeed if not, then pick P ∈ W [Gα+1] such that there is a
p ∈ P such that p P x ∈ Ak. If we consider P below the condition
p, we obtain a legal forcing P≤p again, and Q × P≤p x ∈ Am ∩
Ak, because Q introduces a real rm which witnesses that ϕm(x) holds
true. In particular ϕm(x) is true in all outer models of W [Gα+1][Q] by
upwards absoluteness of Σ1

3-statements, which follows from Shoenfield
absoluteness.

Likewise, P≤p shows that W [Gα+1][P≤p |= ϕk(x), thus Q × P≤p is a
legal forcing which forces x ∈ Am ∩Ak which is a contradiction.

19

(ii) The second subcase is symmetric to the first one. We assume that
there is no legal forcing Q, for which Q ϕm(x) is true, but there is a
legal Q for which it is true that

W [Gα] |= Q ϕk(x).

Then we code x into the ~S2-sequence with the usual coding. Note that
by the symmetric argument from above, no further legal extension will
ever satisfy that x ∈ Am.

(iii) In the final subcase, there is no legal forcing which forces x ∈ Am∪Ak,
and we are free to choose where to code x. In that situation we settle
to code (x,m, k) into ~S1.

This ends the inductive definition of the iteration.

3.4.3 Discussion of case b

We pause here to discuss briefly the crucial case b of the iteration. At first
glance it seems promising, when in the first subcase of case b of the iteration,
to use the legal forcing Q, granted to exist by assumption, in order to obtain
x ∈ Am. After all, we know that case a is not true here, so if we can force
x ∈ Am with a legal forcing, we can conclude that for all further future legal
extensions, x will not belong to Ak which seems to fully settle the problem
of where to place the particular triple (x,m, k).

The just described strategy will fail however, for reasons having to do
with the already mentioned self-referentiality of the the set-up. Indeed, one
can easily produce Σ1

3-predicates ϕm and ϕk such that case b will apply for
all reals x, and such that whenever we decide to code (x,m, k) into ~S1, in the
resulting generic extension ϕk(x) will become true. And vice versa, whenever
we decide to code (x,m, k) into ~S2, ϕm(x) will hold in the resulting generic
extension. Thus, for these particular m, k, we are in case b throughout the
iteration, and find a legal Q for every real x we encounter, which forces
Q x ∈ Ak(x). But the forcings Q, when applied, always add pathological
and unwanted situations, namely Q x ∈ Ak(x), yet x is coded into ~S1.
And as we have to place all the reals, we will produce these problems cofinally
often throughout the whole iteration which ruins our attempts to proof the
theorem.

Our definition of the iteration circumvents these problems via noting
that the possibility to actually use the forcing Q is sufficient to rule out a
pathological situation, by the closure of legal forcings under products. Thus
the mere existence of such a legal Q is sufficient to not run into any problems
when coding (x,m, k) into ~S1. We emphasize that this line of reasoning takes
advantage of the specific coding method we decided to use and justifies the
construction of our ground model W .

20

3.5 Discussion of the resulting W[G]

We letG be a generic filter for the ω1-length iteration which we just described
using mixed support. First we note that the iteration is proper, hence the
iteration preserves ℵ1. Consequently there will be no new reals added at
stage ω1, so ωω ∩W [G] =

⋃
α<ω1

ωω ∩W [Gα], in particular CH is true in
W [G].

A second useful observation is that for every pair of stages α < β < ω1,
the quotient-forcing which we use to pass from Pα to Pβ is a legal forcing as
seen from the intermediate model W [Pα].

Our goal is now to define a real R0 and, given a pair of disjoint Σ1
3-

definable sets Am, Ak, a ∆1
3(R0)-definable separating set, i.e. a set such that

Am ⊂ D1
m,k and Ak ⊂ D2

m,k and such that D2
m,k = Dc

m,k. We want our
set D1

m,k(R0) to consist of the codes written into ~S1 beyond α0 which itself
contain a code for the pair (m, k) and its converse D2

m,k to consist of all the
codes on the ~S2-side which contain a code for (m, k) and whose coding areas
are almost disjoint from the subset of ω1 coded by the real R0. What should
the real R0 be? It is clear from the definition of the iteration P, that there
are stages in the iteration where case a applies. There, we just blindly use
legal forcings. In particular, nothing prevents these legal forcings to code up
(x,m, k) into, say ~S1 while ϕk(x) is true, thus adding a problem.

Note however that such degenerate situations can only happen once for
every pair (Am, Ak). As we only have countably many such pairs and as
our iteration has length ω1 and as we visit every triple (x,m, k) uncountably
often with our bookkeeping function, there will be a stage β0 < ω1 such that
from β0 on all the codes we have written into ~S1 and ~S2 are intended ones,
i.e. the codes really define a separating set Dm,k for Am and Ak.

Thus, in order to define R0, we first let β0 < ω1 be the last stage in the
iteration P, where case a is applied. Then, working in W [Gβ0], we let R0

code the collection of all indices of all the trees from ~S1 and ~S2, which were
used for coding in W [Gβ0]. Note here that this collection is characterized by
the countable set {rβ : β < β0} where rβ is the real which is added with
almost disjoint coding at stage β and which witnesses (∗∗∗) for (xβ,mβ, kβ)
and each γ ∈ hβ (where hβ just denotes the coding area given by the real
rβ) holds. This countable set of reals can itself be coded by a real, and this
real is R0.

We define:

x ∈ D1
m,k(R0)⇔∃r ∈ 2ωL[r] |= “∃M(M witnesses that (∗) holds for (x,m, k), ~S1

and every γ in its coding area h ⊂ ω1”.

Further L[r,R0] |= “h is almost disjoint
from the set of indices coded by R0”)

21

and

x ∈ D2
m,k(R0)⇔∃r ∈ 2ωL[r] |= “∃M(M witnesses that (∗) holds for (x,m, k), ~S2

and every γ in its coding area h ⊂ ω1”.

Further L[r,R0] |= “h is almost disjoint
from the set of indices coded by R0”)

We shall show now that these sets work as intended.

Lemma 3.11. In W [G] for every pair m 6= k ∈ ω, D1
m,k(R0) and D2

m,k(R0)
union up to all the reals.

Proof. Immediate from the definitions.

Lemma 3.12. In W [G] for every pair (m, k), if the Σ1
3-sets Am and Ak

are disjoint then D1
m,k(R0) separates Am from Ak, i.e. Am ⊂ D1

m,k(R0) and
Ak ∩D1

m,k(R0) = ∅. Likewise D2
m,k separates Ak from Am. Consequentially,

for every m, k such that Am ∩Ak = ∅, D1
m,k(R0) ∩D2

m,k(R0) = ∅.

Proof. We will only proof the first assertion, the second one is proved exactly
as the first one with the roles of m, k switched. Assume that Am and Ak are
disjoint and let x ∈W [G] ∩ 2ω be arbitrary, such that x ∈ Am is coded into
~S1 and its coding area is almost disjoint from the set of ordinals coded by
R0. There is a least stage α with β0 < α < ω1 such that F (α) = (ẋ,m, k)
where ẋ is a name for x. According to the definition of the iteration and
the assumption that Am ∩ Ak = ∅, we can rule out case a. Thus case
b remains, and hence the first or the third subcase did apply at stage α.
Suppose, without loss of generality, that we were in the first subcase of case
b. Assume for a contradiction that in W [G], x ∈ Ak, then there would be
a stage α′ of the iteration, α′ > α > β0 such that W [Gα′] |= x ∈ Ak and
the part of the iteration P between stage α and α′, denoted with Pαα′ , is a
legal forcing, and which forces x ∈ Ak. But, as at stage α, the first subcase
of b applied, there is a legal forcing Q, such that Q x ∈ Am, hence, at α,
there is a legal forcing which forces x ∈ Am ∩Ak, namely Pαα′ ×Q, which is
a contradiction.

Lemma 3.13. In W [G], for every m, k ∈ ω, D1
m,k and D2

m,k are Σ1
3(R0)-

definable. Thus W [G] satisfies that every pair of disjoint Σ1
3-sets can be

separated by a ∆1
3(R0)-set.

Proof. We claim that for m, k ∈ ω × ω arbitrary, D1
m,k and D2

m,k have the
following definitions in W [G]:

22

x ∈ D1
m,k ⇔∃r∀M(r,R0 ∈M ∧ ωM1 = (ωL1)M ∧M transitive →

M |= L[r] |= “∃N(N |= ZF− ∧ |N | = ℵM1 ∧N is transitive ∧
N believes (∗) for (x, y,m) and ~S1 and every γ ∈ h”

and L[r,R0] |= “the coding area h of (x,m, k) is almost disjoint
from the set of indices coded by R0”)).

and

x ∈ D2
m,k ⇔∃r∀M(r,R0 ∈M ∧ ωM1 = (ωL1)M ∧M transitive →

M |= L[r] |= “∃N(N |= ZF− ∧ |N | = ℵM1 ∧N is transitive ∧
N believes (∗) for (x, y,m) and ~S2 and every γ ∈ h”

and L[r,R0] |= “the coding area h of (x,m, k) is almost disjoint
from the set of indices coded by R0”)).

Counting quantifiers yields that both formulas are of the form ∃∀(Σ1
2 →

∆1
2) and hence Σ1

3.
We will only show the result for D1

m,k. To show the direction from left to
right, note that if x ∈ D1

m,k, then there was a stage α > β0 in our iteration
such that we coded x into the ~S1-sequence. In particular we added a real rα
for which property (∗∗∗) is true, hence rα witnesses that the right hand side
is true in W [G].

For the other direction assume that the right hand side is true. This in
particular means that the assertion is true for transitive models containing
r of arbitrary size. Indeed if there would be a transitive M which contains
r and whose size is ≥ ℵ1, then there would be a countable M0 ≺ M which
contains r. The transitive collapse of M0 would form counterexample to the
assertion of the right hand side, which is a contradiction to our assumption.

But if the right hand side is true for models of arbitrary size, by reflection
it must be true for W [G] itself, hus x ∈ D1

m,k, and we are done.

4 Boldface Separation

4.1 Preliminary Considerations

We turn our attention to boldface separation. Goal of this section is to prove
the first main theorem.

Theorem 4.1. There is an ω1-preserving, generic extension of L in which
every pair of disjoint Σ1

3-sets Am and Ak can be separated by a ∆1
3-set.

23

It uses the proof of our auxiliary theorem as the base case of an inductive
construction. The main idea to keep control is to replace the notion of legal
forcing with a dynamic variant which keeps changing along the iteration.

To motivate the following we first consider a more fine-tuned approach to
the definition of the iteration of the proof of the last theorem. Let us assume
that (m, k) is the first pair such that case b in the definition of the iteration
applies. Recall that in the discussion of case b, we showed that, given a pair
(Am, Ak) of Σ1

3-sets for which there does not exist a legal forcing Q such
that Q ∃z(ϕm(z)∧ϕk(z)) becomes true, we can assign for an arbitrary real
x always a side ~S1 or ~S2 such that in all future legal extensions, there will
never occur a pathological situation, i.e. from that stage on we never run
into the problem of having coded the triple (x,m, k) into, say, ~S1, yet ϕk(x)
becomes true in some future extension of our iteration (or vice versa). Note
here that the arguments in the discussion of case b were uniform for all reals
x which appear in a legal extension. So it is reasonable to define for the pair
(m, k) a stronger notion of legality, called 1-legal with respect to (0,m, k)
(the 0 indicates the base case of an inductive construction we define later)
as follows:

Let F : γ → H(ω2)
4 be a bookkeeping function and let E := {(0,m, k)}.

We let P be a mixed support iteration of length γ. Then we say that (P :
β < γ}) is 1-legal with respect to E and F if

• P is a legal forcing relative to F .

• Whenever β < γ is a stage such that F (β) = (ẋ,m, k, i), where ẋ is
a Pβ-name of a real, ξ is an ordinal and i ∈ {1, 2} we split into three
subcases:

(i) First we assume that in W [Gβ], there is a legal forcing Q such
that Q x(= ẋGβ) ∈ Am.
Then, the β-th forcing of P, P(β) must be Code((x,m, k), 1).

(ii) Assume that (i) is wrong but the dual situation is true for Ak.
That is, there is a legal forcing Q such that Q x(= ẋGβ) ∈ Ak.
Then, the β-th forcing of P, P(β) must be Code((x,m, k), 2).

(iii) In the third case we assume that neither (i) nor (ii) is true. In
that situation we force with either coding x into the Am or the
Ak side, whatever the bookkeeping tells us.

If the iteration (P : β < γ) obeys the above rules, then we say that it
is 1-legal with respect to E and bookkeeping function F .

From earlier considerations it is clear that if we drop the notion of legal
from now on and replace it with 1-legal relative to E = {(0,m, k)} in our
iteration, we can ensure that, at least for the pair (m, k) no new pathological
situations will arise anymore. This process can be iterated. Assume that we

24

run into a new pair (m′, k′) where the modified case b applies, i.e. there is
no 1-legal forcing which forces ∃z(ϕm′(z)∧ϕk′(z)), we can introduce the new
notion of 2-legal with respect to {(0,m, k), (1,m′, k′)}. If chosen the right
way, this new notion will hand us a condition that guarantees that no new
pathological situations arises for the two pairs (ϕm, ϕk) and (ϕk′ , ϕm′).

So our strategy for producing a model where the Σ1
3-separation property

is as follows: we list all possible reals x, parameters y and pairs of Σ1
3-formulas

(ϕm(·, y), ϕk(·, y)), while simultaneously define stronger and stronger ver-
sions of legality, which take care of placing the reals we encounter along the
iteration in a non-pathological way.

4.2 α-legal forcings

This section shall give a precise recursive definition of the process sketched
above.

The notions of 0 and 1-legality will form the base cases of an inductive
definition. Let α ≥ 1 be an ordinal and assume we defined already the notion
of α-legality. Then we can inductively define the notion of α+ 1-legality as
follows.

Suppose that γ < ω1, F is a bookkeeping function,

F : γ → H(ω2)
5

and
P = (Pβ : β < γ)

is a legal forcing relative to F (in fact relative to some bookkeeping F ′

determined by F in a unique way - the difference here is not relevant).
Suppose that

E = {(δ, ẏδ,mδ, kδ) : δ ≤ α}
wheremδ, kδ ∈ ω and every ẏδ is a P-name of a real and for every two ordinals
β, γ < α, P (ẏβ,mβ, kβ) 6= (ẏγ ,mγ , kγ). Suppose that for every δ ≤ α,
(Pβ : β < γ) is δ-legal with respect to E � δ = {(η, ẏη,mη, kη) ∈ E : η < δ}
and F . Finally assume that ẏα+1 is a P-name for a real and mα+1, kα+1 ∈ ω
such that P ∀δ ≤ α((ẏδ,mδ, kδ) 6= (ẏα+1,mα+1, kα+1)). Then we say that
(Pβ : β < γ) is α + 1-legal with respect to E ∪ {α + 1, ẏα+1,mα+1, kα+1)}
and F if it obeys the following rules.

1. Whenever β < γ is such that there is a Pβ-name ẋ of a real and an
integer i ∈ {1, 2} such that

F (β) = (ẋ, ẏα+1,mα+1, kα+1, i)

and ẏα+1 is in fact a Pβ-name, and for Gβ a Pβ-generic overW , W [Gβ]
thinks that

∃Q(Q is α-legal with respect to E ∧
Q x ∈ Am(yα+1)),

25

where x = ẋG, and yα = ẏGα+1. Then continuing to argue in W [Gβ], if
Q1 = Q̇Gβ

1 we let

P(β) = Code((x, y,m, k), 1).

Note that we confuse here the quadruple (x, y,m, k) with one real w
which codes this quadruple.

2. Whenever β < γ is such that there is a Pβ-name ẋ of a real and an
integer i ∈ {1, 2} such that

F (β) = (ẋ, ẏα+1,mα+1, kα+1, i)

and for Gβ which is Pβ-generic over W , W [Gβ] thinks that

∀Q1(Q1 is α-legal with respect to E
→ ¬(Q1 x ∈ Am(ẏα+1)))

but there is a forcing Q2 such that W [Gβ] thinks that

Q2 is α-legal with respect to E and
Q2 x ∈ Ak(ẏα+1)

Then continuing to argue in W [Gβ], we force with

P(β) := Code((x, y,m, k), 2).

Note that we confuse here again the quadruple (x, y,m, k) with one
real w which codes this quadruple.

3. If neither 1 nor 2 is true, then either

P(β) = Code((x, y,m, k), 2)

or
P(β) = Code((x, y,m, k), 1)

depending on whether i ∈ {1, 2} in F (β) was 1 or 2.

4. If F (β) = (ẋ, ẏ,m, k, i) and for our Pβ-generic filter G, W [G] |= ∀δ ≤
α+ 1((δ, ẏG,m, k) /∈ EG), then, working over W [Gβ] let

P(β) = Code((x, y,m, k), i)

depending on whether i ∈ {1, 2} in F (β) was 1 or 2.

This ends the definition for the successor step α→ α+ 1. For limit ordinals
α, we say that a legal forcing P is α legal with respect to E and F if for
every η < α, (Pβ : β < γ) is η-legal with respect to E � η and some F ′.

We add a couple of remarks concerning the last definition.

26

• By definition, if δ2 < δ1 and P1 is δ1-legal with respect to E =
{(β, ẏβ,mβ, kβ) : β ≤ δ1} and some F1, then P1 is also δ2-legal with
respect to E � δ2 = {(β, ẏβ,mβ, kβ) : β ≤ δ2} and an altered book-
keeping function F ′.

• The notion of α-legal can be defined in a uniform way over any legal
extension W ′ of W .

• We will often just say that some iteration P is α-legal, by which we
mean that there is a set E and a bookkeeping F such that P is α-legal
with respect to E and F .

Lemma 4.2. Let α ≥ 1, assume that W ′ is some α-legal generic extension
of W , and that P1 = (P1

β : β < δ) and P2 = (P2
β : β < δ) are two α-legal

forcings over W ′ with respect to a common set E = {δ, ẏδ,mδ, kδ : δ < α}
and bookkeeping functions F1 and F2 respectively. Then there is a bookkeeping
function F such that P1 × P2 is α-legal over W ′ with respect to E and F .

Proof. We define F � δ1 to be F1. For values δ1 +β > δ1 we let F (δ1 +β) be
such that its value on the first four coordinates equal the first four coordinates
of F2(β), i.e. F (δ1 + β) = (ẋ, ẏ,m, k, i) for some i ∈ {1, 2} where F2(β) =
(ẋ, ẏ,m, k, i′). We claim now that we can define the remaining value of
F (β), in such a way that the lemma is true. This is shown by induction on
β < δ2. Let (P2)β be the iteration of P2 up to stage β < δ2. Assume, that
P1 × (P2)β is in fact an α-legal forcing relative to E and F . Then we have
that F (δ1 + β) � 5 = F2(β) � 5 = (ẋ, ẏ,m, k), and we claim that at that
stage,

Claim. If we should apply case 1,2 or 3, when considering the forcing P1×P2

as an α-legal forcing relative to E over the modelW ′, we must apply the same
case when considering P2 as an α-legal forcing over the model W ′ relative to
E.

Once the claim is shown, the lemma can be proven as follows by induction
on β < δ2: we work in the model W ′[P1][(P2)β], consider F (δ1 + β) � 5 =
F2(β) � 5, and ask which of the four cases has to be applied. By the claim, it
will be the same case, as when considering P2 over W ′ as an α-legal forcing
relative to E and F2. In particular the forcing P2(β) we define at stage β
will be a choice obeying the rules of α-legality, even when working over the
model W ′[P1][(P2)β]. This shows that P1 × P2 is an α-legal forcing relative
to E and some F over W ′.

The proof of the claim is via induction on α. If α = 1 and both P1 and
P2 are 1-legal with respect to E which must be of the form {0, ẏ,m, k}, then
we shall show that there is a bookkeeping F such that (P2)β : β < δ2}) is
still 1-legal with respect to E, even when considered in the universe W ′[P1].
We assume first that at stage δ1 + β of P1 × P2 case 1 in the definition of

27

1-legal applies, when working in the model W ′[P1][(P2)β] relative to E and
F . Thus

F (β) � 5 = (ẋ, ẏ,m, k)

and (0, ẏ,m, k) ∈ E and for any G1 × Gβ which is P1 × (P2)β-generic over
W ′, if ẋGβ = x and ẏGβ = y, the universe W ′[G1 ×Gβ] thinks that

∃Q(Q is 0-legal with respect to E and some F ∧
Q x ∈ Am(y)).

Thus, if we work over W ′[Gβ] instead it will think

∃(P1 ×Q)(P1 ×Q is 0-legal ∧
P1 ×Q x ∈ Am(y)).

Thus, at stage β, we are in case 1 as well, when considering P2 as an 1-legal
forcing over W ′ relative to E.

If, at stage β, case 2 applies, when considering P1×P2 as a 1-legal forcing
with respect to E over W ′, then we argue first that case 1 is impossible
when considering P2 as a 1-legal forcing over W ′. Indeed, assume for a
contradiction that case 1 must be applied, then, by assumption, P2(β) will
force that x ∈ Am(y). Yet, by Shoenfield absoluteness, P2(β) would witness
that we are in case 1 at stage β when considering P1 × P2 as 1-legal with
respect to E over W ′, which is a contradiction.

Thus we can not be in case 1 and we shall show that we are indeed in
case 2, i.e. there is a 0-legal forcing Q, such that Q x ∈ Ak(y), but such a
Q exists, namely P2(β),

Finally, if at stage β, case 3 applies when considering P2 as a 1-legal
forcing with respect to E over W ′[P1], we claim that we must be in case 3 as
well, when considering P2 over just W ′. If not, then we would be in case 1
or 2 at β. Assume without loss of generality that we were in case 1, then, as
by assumption P2 is 1-legal over W ′, P2(β) will force x ∈ Am(y). But this
is a contradiction, so we must be in case 3 as well. This finishes the proof of
the claim for α = 1.

We shall argue now that the Claim is true for α+1-legal forcings provided
we know that it is true for α-legal forcings. Again we shall show the claim
via induction on β. So assume that P1× (P2)β is α+ 1-legal with respect to
E = E � α ∪ {(α, ẏ,mα, kα)} and an F whose domain is δ1 + β. We look at

F (δ1 + β) � 5 = F2(β) � 5 = (ẋ, ẏ,mα, kα)

We concentrate on the case where β is such that case 2 applies when con-
sidering P1 × (P2)β over W ′. The rest follows similarly. Our goal is to show
that case 2 must apply when considering the β-th stage of the forcing using
F2 and E over W ′[(P2)β] as well.

28

Assume first for a contradiction, that, when working over W ′[(P2)β], at
stage β, case 1 applies. Then, for any (P2)β-generic filter Gβ over W ′,

W ′[Gβ] |= ∃Q(Q is α-legal with respect to E � α and some F ′ and
Q x ∈ Am(y))

Now, as P2 is α-legal, we know that P2(β) is such that P2(β) x ∈ Am(y).
Thus, using the upwards-absoluteness of Σ1

3-formulas, at stage β of the
α + 1-legal forcing determined by F and E, there is an α-legal forcing Q
with respect to E � α which forces x ∈ Am(y), namely P2(β). But this is
a contradiction, as we assumed that when considering P1 × (P2)β over W ′

at stage β, case 1 does not apply, hence such an α-legal forcing should not
exist.

So we know that case 1 is not true. We shall show now that case 2 must
apply at stage β when considering P2 over the universe W ′. By assumption
we know that

W ′[P1][(P2)β] |=∃Q2(Q2 is α-legal with respect to E � α and
Q2 x ∈ Ak(y)

As P1 is α+ 1-legal with respect to E and F1, it is also α-legal with respect
to E � α and some altered F ′1, thus, as a consequence from the induction
hypothesis, we obtain that

W ′[(P2)β] |= P1 ×Q2 is α-legal and P1 ×Q2 x ∈ Ak(y).

But then, P1 × Q2 witnesses that we are in case 2 as well when at stage β
of P2 over W ′. This ends the proof of the claim and so we have shown the
lemma.

4.3 Proof of the first Main Theorem

We are finally in the position to prove that the Σ1
3-separation property can

be forced over W . The iteration we are about to define inductively will be
a legal iteration, whose tails are α-legal and α-increases along the iteration.
We start with fixing a bookkeeping function

F : ω1 → H(ω1)
4

which visits every element cofinally often. The role of F is to list all the
quadruples of the form (ẋ, ẏ,m, k), where ẋ, ẏ are names of reals in the
forcing we already defined, andm and k are natural numbers which represent
Σ1
3-formulas with two free variables, cofinally often. Assume that we are at

stage β < ω1 of our iteration. By induction we will have constructed already
the following list of objects.

29

• An ordinal αβ ≤ β and a set Eαβ which is of the form {η, ẏη,mη, kη :
η < αβ}, where ẏη is a Pβ-name of a real, mη, kη are natural numbers.
As a consequence, for every bookkeeping function F ′, we do have a
notion of η-legality relative to E and F ′ over W [Gβ].

• We assume by induction that for every η < αβ , if βη < β is the η-th
stage in Pβ , where we add a new member to Eαβ , then W [Gβη] thinks
that the Pβηβ is η-legal with respect to Eαβ � η.

• If (η, ẏη,mη, kη) ∈ Eαβ , then we set again βη to be the η-th stage in
Pβ such that a new member to Eαβ is added. In the model W [Gβη],
we can form the set of reals Rη which were added so far by the use of a
coding forcing in the iteration up to stage βη, and which witness (∗∗∗)
holds for some (x, y,m, k);

Note that Rη is a countable set of reals and can therefore be identified
with a real itself, which we will do. The real Rη indicates the set of
places we must avoid when expecting correct codes, at least for the
codes which contain ẏη,mη and kη.

Assume that F (β) = (ẋ, ẏ,m, k), assume that ẋ, ẏ are Pβ-names for re-
als, and m, k ∈ ω correspond to the Σ1

3-formulas ϕm(v0, v1) and ϕk(v0, v1).
Assume that Gβ is a Pβ-generic filter over W . Let ẋGβ = x and ẏ

Gβ
1 =

y1, ẏ
Gα
2 = y2. We turn to the forcing P(β) we want to define at stage β in

our iteration. Again we distinguish several cases.

(A) Assume that W [Gβ] thinks that there is an αβ-legal forcing Q relative
to Eαβ and some F ′ such that

Q ∃z(z ∈ Am(y) ∩Ak(y)).

Then we pick the <-least such forcing, where < is some previously
fixed wellorder. We denote this forcing with Q1 and use

P(β) := Q1.

We do not change Rβ at such a stage.

(B) Assume that (i) is not true.

(i) Assume however that there is an αβ-legal forcing Q in W [Gβ]
with respect to Eαβ and some F ′ such that

Q x ∈ Am(y).

Then we set
P(β) := Code((x, y,m, k), 1).

30

In that situation, we enlarge theE-set as follows. We let (αβ, ẏ,m, k) =:
(αβ, ẏαβ ,mαβ , kαβ) and

Eαβ+1 := Eαβ ∪ {(αβ, ẏ,m, k)}.

Further, if we let rη be the real which is added by Code((x, y,m, k), 1)
at stage η of the iteration which witnesses (∗∗∗) of some quadru-
ple (xη, yη,mη, kη). Then we collect all the countably many such
reals we have added so far in our iteration up to stage β and put
them into one set R and let

Rαβ+1 := R.

(ii) Assume that (i) is wrong, but there is an αβ-legal forcing Q with
respect to Eαβ and some F ′ in W [Gβ] such that

Q x ∈ Ak(y).

Then we set
P(β) := Code((x, y,m, k), 2).

In that situation, we enlarge the E-set as follows. We let the new
E value (αβ, ẏαβ ,mαβ , kαβ) be (αβ, ẏ,m, k) and

Eαβ+1 := Eαβ ∪ {(αβ, ẏ,m, k)}.

Further, if we let rη be the real which is added by Code((x, y,m, k), 1)
at stage η of the iteration which witnesses (∗∗∗) of some quadru-
ple (xη, yη,mη, kη). Then we collect all the countably many such
reals we have added so far in our iteration up to stage β and put
them into one set R and let

Rαβ+1 := R.

(iii) If neither (i) nor (ii) is true, then there is no αβ-legal forcing Q
with respect to Eαβ which forces x ∈ Am(y) or x ∈ Ak(y), and
we set

P(β) := Code((x, y,m, k), 1).

Further, if we let rη be the real which is added by Code((x, y,m, k), 1)
at stage η of the iteration which witnesses (∗∗∗) of some quadru-
ple (xη, yη,mη, kη). Then we collect all the countably many such
reals we have added so far in our iteration up to stage β and put
them into one set R and let

Rαβ+1 := R.

Otherwise we force with the trivial forcing.

At limit stages β, we let Pβ be the inverse limit of the Pη’s, η < β, and set
Eαβ =

⋃
η<β Eαη . This ends the definition of Pω1 .

31

4.4 Discussion of the resulting universe

We let Gω1 be a Pω1-generic filter over W . As W [Gω1] is a proper extension
of W , ω1 is preserved. Moreover CH remains true. A second observation is
that for every stage β of our iteration and every η > β, the intermediate
forcing P[β,η), defined as the factor forcing of Pβ and Pη, is always an αβ-
legal forcing relative to Eαβ and some bookkeeping. This is clear as by the
definition of the iteration, we force at every stage β with a αβ-legal forcing
relative to Eαβ and αβ-legal becomes a stronger notion as we increase αβ .

We shall define the separating sets now. For a pair of disjoint Σ1
3(y) sets

Am(y) and Ak(y) we consider the least stage β such that there is a Pβ-name
ż such that żGβ = z and (z, y,m, k) are considered by F at stage β. Let Rβ
be the set of all reals which were added by the coding forcing up to stage β
and which witness (∗∗∗) for some (x, y,m, k). Then for any real x ∈W [Gω1]:

x ∈ D1
y,m,k(Rβ)⇔ ∃r /∈ Rβ(L[r] |= (x, y,m, k) can be read off from a code

written on an ω1-many ω-blocks of elements of
~S1).

and

x ∈ D2
y,m,k(Rβ)⇔ ∃r /∈ Rβ(L[r] |= (x, y,m, k) can be read off from a code

written on an ω1-many ω-blocks of elements of
~S2).

It is clear from the definition of the iteration that for any real parameter y
and any m, k ∈ ω, D1

y,m,k ∪D2
y,m,k = 2ω. The next lemma establishes that

the sets are indeed separating.

Lemma 4.3. In W [Gω1], let y be a real and let m, k ∈ ω be such that
Am(y)∩Ak(y) = ∅. Then there is an real R such that the sets D1

y,m,k(R) and
D2
y,m,k(R) partition the reals.

Proof. Let β be the least stage such that there is a real x such that F (β) �
4 = (ẋ, ẏ,m, k) with ẋGβ = x, ẏGβ = y. Let R be Rβ and Rβ be as defined
above. Then, as Am(y) and Ak(y) are disjoint in W [Gω1], by the rules of
the iteration, case B must apply at β. Assume now for a contradiction, that
D1
y,m,k(R) and D2

y,m,k(R) do have non-empty intersection in W [Gω1]. Let
z ∈ D1

y,m,k(R) ∩D2
y,m,k(R) and let β′ > β be the first stage of the iteration

which sees that z is in the intersection. Then, by the rules of the iteration
and without loss of generality, we must have used case B(i) at β, and case
B(ii) at stage β′. But this would imply, that at stage β, there is an αβ-legal
forcing with respect to Eαβ , which forces x ∈ Am(y) ∩ Ak(y), namely the
intermediate forcing (Pββ′). This is a contradiction.

32

Lemma 4.4. In W [Gω1], for every pair m, k and every parameter y ∈ 2ω

such that Am(y) ∩Ak(y) = ∅ there is a real R such that

Am(y) ⊂ D1
y,m,k(R) ∧Ak(y) ⊂ D2

y,m,k(R)

Proof. The proof is by contradiction. Assume that there is a real x such that
x ∈ Am(y)∩D2

y,m,k(R) for every R. We consider the smallest ordinal β < ω1

such that F (β) � 4 considers a quintuple of the form (x, y,m, k) and let
R = Rβ . As Am(y) and Ak(y) are disjoint we know that at stage β we were
in case B. As x is coded into ~S2 after stage β and by the last Lemma, Case
B(i) is impossible at β. Hence, without loss of generality we may assume
that case B(ii) applies at β. As a consequence, there is a forcing Q2 which
is αβ-legal with respect to Eαβ which forces Q2 x ∈ Ak(y). Note that in
that case we collect all the reals which witness (∗∗∗) for some quadruple to
form the set Rβ .

As x ∈ Am(y) ∩ D2
y,m,k(R), we let β′ > β be the first stage such that

W [Gβ′] |= x ∈ Am(y). By Lemma 4.2, W [Gβ] thinks that Q2 × Pββ′ is
αβ-legal with respect to Eαβ , yet Q2 × Pββ′ x ∈ Am(y) ∩Ak(y). This is a
contradiction.

The next lemma will finish the proof of our theorem:

Lemma 4.5. In W [Gω1], if y ∈ 2ω is an arbitrary parameter, R a real and
m, k natural numbers, then the sets D1

y,m,k(R) and D2
y,m,k(R) are Σ1

3(R)-
definable.

Proof. The proof is almost identical to the proof of Lemma 3.13, the only
thing added is the real R as parameter.

5 Forcing the lightface Σ1
3-separation property

The techniques developed in the previous sections can be used to force a
model where the (lightface) Σ1

3-separation property is true. In what follows,
we heavily use ideas and notation from earlier sections, so the upcoming
proof can not be read independently.

Theorem 5.1. Starting with L as the ground model, one can produce a set-
generic extension L[G] which satisfies CH and in which the Σ1

3-separation
property holds.

Proof. For the the proof to come, we will redefine the notion of legal forcings.

Definition 5.2. A mixed support iteration is called (0-)legal if it is defined
as in Definition 4.2, with the only difference that we code (reals that code)
quadruples of the form (x, 0,m, k) and (x, 1,m, k), where m, k ∈ ω and x is
(the name of) a real into ~S.

33

Similar to before, we take 0-legal forcings as the base set of forcings and
define gradually smaller families of forcings, which we call n-legal forcings
with respect to a set E and a bookkeeping function F . Assume that E is a
finite list of length n of pairwise distinct pairs of natural numbers (ml, kl),
l ≤ n, and that F is a bookkeeping function. Assume that for every l ≤ n
we do have a notion of l-legality with respect to E � l, let (mn+1, kn+1) be a
new pair of natural numbers, distinct from the previous ones. Then we say
that P is n + 1-legal with respect to E ∪ {(mn+1, kn+1)} and F if for every
l ≤ n, P is l-legal with respect to E � l and F and it obeys the following
rules:

1. P never codes a quadruple of the form (x, 1,mn+1, kn+1) into ~S.

2. Whenever β < γ, where γ is the length of the iteration P, is such that
there is a Pβ-name ẋ of a real and an integer i ∈ {1, 2} such that

F (β) = (ẋ,mn+1, kn+1, i)

and for G which is Pβ-generic over W , W [G] thinks that

∃Q(Q is n-legal with respect to E ∧
Q x ∈ Amn+1),

where x = ẋG, and yα = ẏGα+1. Then continuing to argue in W [G], we
let

P(β) = Code((x, 0,mn+1, kn+1), 1).

3. Whenever β < γ is such that there is a Pβ-name ẋ of a real and an
integer i ∈ {1, 2} such that

F (β) = (ẋ,mn+1, kn+1, i)

and for Gβ which is Pβ-generic over W , W [Gβ] thinks that

∀Q1(Q1 is n-legal with respect to E
→ ¬(Q1 x ∈ Amn+1))

but there is a forcing Q2 such that W [Gβ] thinks that

Q2 is n-legal with respect to E and
Q2 x ∈ Akn+1

Then continuing to argue in W [Gβ], we force with

P(β) := Code((x, 0,mn+1, kn+1), 2).

34

4. If neither 1 nor 2 is true, then either

P(β) = Code((x, 0,mn+1, kn+1), 2)

or
P(β) = Code((x, 0,mn+1, kn+1), 1)

depending on whether i ∈ {1, 2} in F (β) was 1 or 2. Otherwise P uses
the trivial forcing at that stage.

5. If F (β) = (ẋ,m, k, i) and for every Pβ-generic filter G, W [G] |= ∀l ≤
n+ 1((ml, kl) 6= (m, k)), then let

P(β) = Code((x, 0,m, k), i)

depending on whether i ∈ {1, 2} in F (β) was 1 or 2.

This ends the definition for the successor step n→ n+ 1.
With this new notion of n-legality, we start the proof of the theorem.

The ground model over which we form an iteration is the universe W again,
which was defined earlier. Over W we will perform first an ω-length, finitely
supported iteration (Pn)n∈ω of legal posets, and then a second legal iteration
of length ω1. The codes of the form (x, 0,m, k) shall eventually define the
separating sets for ϕm and ϕk; codes of the form (x, 1,m, k) shall correspond
to countable sets of reals (i.e. reals themselves) which indicate the correctness
of certain codes of the form (x, 0,m, k) which avoid the coding areas coded
by these reals.

We let {(ϕmn , ϕkn) : n ∈ ω} be an enumeration of all pairs of Σ1
3-

formulas. Assume that (ϕm0 , ϕk0) is such that there is no legal forcing Q such
thatW [Q] |= ∃z(ϕm0(z)∧ϕk0(z)). Repeating the arguments from before, we
set E0 := {m0, k0)} and define the notion of 1-legal with respect to E0. As
will become clear in a second, every step of the iteration (Pn : n ∈ ω) will
either use a legal forcing or define a new and gradually stronger notion of
legality. We let ln ∈ ω denote the degree of legality we have already defined
at stage n ∈ ω of our iteration and define l0 to be 0 (where 0-legal should
just be legal) and l1 to be 1 for the base case of our induction; likewise P0 is
set to be the trivial forcing.

The forcing Pω is the countably supported iteration of (Pn : n ∈ ω),
which we will define inductively. Assume we are at stage n ≥ 1 ∈ ω of
the iteration and we have defined already the following list of objects and
notions:

1. Pn−1 and the generic filter Gn−1.

2. A natural number ln ≤ n and a notion of ln-legal relative to Eln =
{(m′0, k′0), ..., (m′ln−1, k

′
ln−1)} ⊂ {(m0, k0), ..., (mn−1, kn−1)}, which is a

strengthening of 1-legal relative to E0.

35

3. A finite set of reals {R0 < ... < Rn−(ln−1)}, where each real Ri codes
a countable set of reals. The choice of the indices will become clear
later.

Consider now the n+ 1-th pair (ϕmn , ϕkn) and split into cases.

(a) There is an ln-legal forcing Q such that

W [Gn−1] |= Q ∃z(ϕmn(z) ∧ ϕkn(z)),

then we must use the forcing Q. We collect all the reals we have added
so far generically which witness (∗∗∗) for a triple (x,m, k) and call
the set Rn−ln . In a second step, we use the usual method to code the
quadruple (Rn−ln , 1,m

′
ln−1

, k′ln−1
) into ~S1.

(b) In the second case there is no ln-legal forcing Q relative to Eln which
forces ϕmn and ϕkn to have non-empty intersection. In that case we
force with the trivial forcing and define the notion ln+1-legal. We first
let (m′ln , k

′
ln

) = (mn, kn) and Eln+1 := Eln ∪ {(mn, kn)}, and define
ln+1-legal relative to Eln+1 just as above. We do not define a new
Rn−ln .

We let Pω be the inverse limit of the forcings Pn and consider the universe
W [Pω]. We shall and will assume from now on that in Pω, case (b) is applied
infinitely many times.

Lemma 5.3. For every n ∈ ω, the tail of the iteration (Pm : m ≥ n) is at
least an ln − 1-legal iteration relative to Eln as seen from W [Gn].

Proof. This can easily be seen if one stares at the definition of the iteration.
At stage n we either follow case (a) which is an ln − 1-legal forcing, as we
use the ln-legal Q and additionally code (Rn−ln , 1,m

′
ln−1

, k′ln−1
) which results

in an ln − 1-legal forcing. Or we apply case (b), thus define ln + 1-legality
and every further factor of the iteration must be ln-legal. As mixed support
iterations of ln − 1-legal forcings yield an ln − 1-legal forcing, this ends the
proof.

The arguments which are about to follow will depend in detail heavily
on the actual form of the iteration Pω which in turn depends on how the
enumeration of the Σ1

3-formulas behaves. The theorem will of course be true,
no matter how Pω does look like. To facilitate the arguments and notation,
however, we assume without loss of generality from now on that the sequence
(ϕmn , ϕkn) is so chosen that in the definition of Pω the cases (a) and (b) are
alternating. Thus whenever n is even then (ϕmn , ϕkn) is such that case (b)
has to be applied and whenever n is odd then for (ϕmn , ϕkn) case (a) is the

36

one which one should apply. Via changing the order of (ϕmn , ϕkn), this can
always be achieved. Consequentially, at even stages 2n of the iteration, we
define the new notion of n + 1-legal, while forcing with the trivial forcing;
on odd stages 2n+ 1, we use the n+ 1-legal forcing to force that ϕm2n+1 and
ϕk2n+1 have non-empty intersection and then form the real R2n+1−n = Rn+1

and then code the quadruple (Rn+1, 1,m2n, k2n) into ~S1.
A consequence of the last lemma (and our assumption on the form of Pω)

is that for every even natural number 2n, there is a final stage in Pω where
we create new codes of the form (R, 1,mn, kn). Indeed, by the definition
of ln+1-legal, no codes of the form (R, 1,mn, kn) are added by ln+1-legal
forcings and we have that

Rn := {R : (R, 1,m2n, k2n) is coded into ~S1}.

To introduce a useful notion, we say that a real x, which is coded into ~S1 or
~S2, has coding area almost disjoint from the real R, if R codes an ω1-sized
subset of ω and the ω-blocks, where x is coded are almost disjoint from the
set of ordinals coded by R, in that their intersection is countable.

Lemma 5.4. In W [Pω] for every n ∈ ω\0, there is only one real R, namely
Rn which has a code of the form (Rn, 1,m2n, k2n) written into ω1-many ω-
blocks of elements of ~S1 almost disjoint from Rn−1.

Proof. This is just a straightforward consequence of the definition of the
iteration and of our assumption on the form of Pω. For n = 1, note that R0

is the unique ordinal for which (R, 1,m0, k0) is coded into ~S1. Then the next
forcing P(2) is trivial while 2-legal is defined and the forcing P(3) first forces
ϕm3 and ϕk3 to intersect without creating any code of the form (R, 1,m0, k0)
or (R, 1,m2, k2), forms R1 and writes (R1, 1,m2, k2) into ~S1 with coding area
almost disjoint from R0. As all later factors of the iteration are 2-legal, there
will be no new codes of the form (R, 1,m2, k2), hence R1 is the unique real for
which (R1, 1,m2, k2) is written into ~S1 withwith coding area almost disjoint
from R0.

The argument for arbitrary n works exactly the same way with the ob-
vious replacements of letters.

Lemma 5.5. In W [Pω], every real Rn is Σ1
3-definable.

Proof. This is by induction on n. For n = 0, R0 is the unique real for which

37

(R, 1,m0, k0) is coded into ~S1. This can be written in a Σ1
3-way:

x = R0 ⇔ ∃r∀M(|M | = ℵ0 ∧M is transitive ∧ r ∈M ∧ ωM1 = (ωL1)M →
M sees with the help of the coded information in r that
x is the unique real such that (x, 1,m0, k0) is coded in

a block of ~S1).

Now assume that there is a Σ1
3-formula which uniquely defines Rn, then,

by the last lemma, Rn+1 is the unique real which has a code of the form
(R, 1,m2(n+1), k2(n+1)) written into ℵ1-many ω-blocks of elements of ~S1 al-
most disjoint from the set of ordinals coded by Rn. Let ψ be the Σ1

3-formula
which defines Rn, then

x = αn+1 ⇔ψ(Rn) and

∃r∀M(|M | = ℵ0 ∧M is transitive ∧ r ∈M ∧ ωM1 = (ωL1)M →
M sees with the help of the coded information in r that
x is the unique real such that (x, 1,m2(n+1), k2(n+1))

is coded in ℵ1-many blocks of ~S1

almost disjoint from the ordinals coded by Rn).

The ordinals Rn indicate the set of places we need to exclude in order
ro obtain correct codes of the form (x, 0,m2n, k2n) which are written into
~S. Indeed the iteration Pω, after the stage where we coded the quadruple
(Rn, 1,m2n, k2n) into ~S1 will be 2n − 1-legal, just by the definition of the
iteration, which means that the tail of Pω will never produce a pathological
situation.

Finally we can form our desired universe of the Σ1
3-separation property.

We let Eω = {(m2n, k2n) : n ∈ ω} and force with W [Pω] as our ground
model. We use a countably supported iteration of length ω1 where we force
every quadruple of the form (x, 0,m2n, k2n), x ∈ 2ω, into either ~S1 or ~S2

with coding area almost disjoint from Rn, according to whether case 2, 3
or 4 is true in the definition of n-legal. Note that, by assumption, all pairs
(ϕmn , ϕkn), n odd, do have a non-empty intersection. Let W1 denote the
universe we obtain this way.

As a consequence we can define in W1 the desired separating sets as
follows. For a pair (ϕm2n , ϕk2n) we let ψn be the Σ1

3-formula which defines

38

αn. Now for any real x we let

x ∈ Dm2n,k2n ⇔ψ(Rn) and

∃r∀M(|M | = ℵ0 ∧M is transitive ∧ r ∈M ∧ ωM1 = (ωL1)M

→M sees with the help of the coded information in r that

(x, 0,m2n, k2n) is coded into ℵ1-many blocks of ~S1

almost disjoint from the ordinals coded by Rn).

and

x /∈ Dm2n,k2n ⇔ψ(Rn) and

∃r∀M(|M | = ℵ0 ∧M is transitive ∧ r ∈M ∧ ωM1 = (ωL1)M

→M sees with the help of the coded information in r

that (x, 0,m2n, k2n) is coded into ℵ1-many blocks of ~S2

almost disjoint from the ordinals coded by Rn).

Both formulas are Σ1
3, hence the Σ1

3-separation property holds in W1.

6 Possible further applications and open problems

The method which was used to prove the consistency of Σ1
3-separation can

be applied to the generalized Baire space as well as we will sketch briefly.
Let BS(ω1) be defined as ωω1

1 equipped with the usual product topology, i.e.
basic open sets are of the form Oσ := {f ⊃ σ : f ∈ ωω1

1 , σ ∈ ωω1 }. The
projective hierarchy of BS(ω1) is formed just as in the classical setting via
projections and complements. The Σ1

1-sets are projections of closed sets, the
Π1

1-sets are the complements of the Σ1
1-sets and so on.

The corresponding separation problem in BS(ω1) is the following: does
there exist a set generic extension of L where Σ1

1-sets can be separated with
∆1

1-sets? Our above proof can be applied here as well. All we have to do is
to lengthen our sequence of stationary sets we will use to code.

We start with L as our ground model, fix our definable sequence of pair-
wise almost disjoint, L-stationary subsets of ω1, (Rα : α < ω2). We again
split ~R into ~R1 and ~R2, add ω2-many Suslin trees ~S generically and use ~R
to code up ~S just as we did it in the construction of the universe W , but
leave out the almost disjoint coding forcings as we quantify over H(ω2) any-
way. Next we list the Σ1

1-formulas ϕn and start an ω2-length iteration where
we add branches of members of the definable (Sα : α < ω2) whenever our
bookkeeping function F hands us a triple (x,m, k), just as in the situation of
the usual Baire space. As there we distinguish the several cases and restrict
ourselves to legal forcings, where legal is the straightforward adjustment of

39

legal in the ω-case. The separating sets Dm,k are defined using ℵ1-sized,
transitive models as which witness the wanted patterns on ~S1 and ~S2.

The sequence of the fixed W -Suslin trees (Sα : α < ω1) is Σ1(ω1)-
definable, thus the codes we write into them are Σ1(ω1)-definable as well.
We do not have to add almost disjoint coding forcings, as we quantify over
subsets of ω1 in this setting anyway. All the factors will have the ccc, thus an
iteration of length ω2 is sufficient to argue just as above that in the resulting
generic extension L[G], every pair of Σ1

1-sets is separated by the according
Dm,k.

The just sketched method is not limited to the case ω1. Indeed, if κ is
a successor cardinal,in L then we can lift the argument to κ as well. The
proof will rely on a different kind of preservation result for iterated forcing
constructions, as we can not use Shelah’s theory of iterations of S-proper
forcings anymore. Also, the choice of the definable sequence of L-stationary
subsets of κ has to be altered slightly, as we can not shoot clubs in a nice
way through arbitrary stationary subsets of κ. How to solve some of the just
posed problems is worked out in [4].

What remains an interesting open problem is the following:

Question 1. Can one force the Σ1
1-separation property for BS(κ) where κ

is inaccessible? What if κ is weakly compact?

Another possible further direction is, as mentioned already in the in-
troduction, to replace the ground model L with inner models with large
cardinals. We expect that a modification of the ideas of this article can be
lifted in that context. In particular we expect that, given any natural number
n ≥ 1, over the canonical inner model with n-many Woodin cardinals Mn

one can force a model for which the Σ1
n+3-separation property is true. Note

here, that this would produce universes where the Σ1
2n-separation property is

true for the first time. These considerations rely on large cardinals however
and it is interesting whether one can get by without them.

Question 2. For n ≥ 4, can one force the Σ1
n-separation property over L?

Last, note that the technique presented in this article seems to only work
locally for one fixed Σ1

n-pointclass. It would be very interesting to produce
a model where we force a global behaviour of the Σ1

n-separation property.

Question 3. For n,m ∈ ω, is it possible to force the Σ1
n and the Σ1

m-
separation property simultaneously? If E ⊂ ω, is it possible to force a uni-
verse in which the Σ1

n-property is true for every n ∈ E?

Last, it is tempting to analyse how much consequences of ∆1
2-determinacy

can be forced to hold simultaneously. A first test question in that direction
would be

Question 4. Is it possible to force over L the existence of a universe in which
the Σ1

3-separation property holds and every Σ1
3-set has the Baire property?

40

References

[1] U. Abraham Proper Forcing, Handbook of Set Theory Vol.1. Springer

[2] R. David A very absolute Π1
2-real singleton. Annals of Mathematical Logic

23, pp. 101-120, 1982.

[3] V. Fischer and S.D. Friedman Cardinal characteristics and projective
wellorders. Annals of Pure and Applied Logic 161, pp. 916-922, 2010.

[4] S.D. Friedman, L. Wu and L. Zdomskyy ∆1-Definability of the Nonsta-
tionary Ideal at Successor Cardinals Fundamenta Mathematica 229 (3),
pp. 231-254, 2015.

[5] S. D. Friedman and D. Schrittesser Projective Measure without Projective
Baire. Memoirs of the AMS 1298, 2020.

[6] M. Goldstern Tools for your Forcing Construction. In: Haim Judah, edi-
tor, Set Theory of the Reals, Israel Mathematical Conference Proceedings,
pp. 305-360, 1992.

[7] S. Hoffelner NSω1 saturated and ∆1-definable. Accepted at The Journal
of Symbolic Logic.

[8] T. Jech Set Theory. Third Millenium Edition. Springer 2006.

[9] V. Kanovei and V. Lyubetsky Models of set theory in which separation
theorem fails, Arxiv.

[10] V. Kanovei and V. Lyubetsky On Harrington’s model in which Sepa-
ration holds but Reduction fails at the 3rd projective level, and on some
related models of Sami, Arxiv.

[11] A. Kechris Classical Descriptive Set Theory. Springer 1995.

[12] A.S. Kechris, D.A. Martin, J.R. Steel (eds.), Appendix: Victoria Delfino
problems II, in: Cabal Seminar 81–85, Lecture Notes in Math. vol. 1333,
Springer, Berlin, 1988, pp. 221–224.

[13] A. Lévy Definability in Axiomatic Set Theory. In Logic, methodol-
ogy and philosophy of science. Proceedings of the 1964 International
Congress, Y. Bar-Hillel, ed., North-Holland, Amsterdam, 1965, pp.127-
151.

[14] A.D.R. Mathias Surrealist Landscape with Firgures. Periodica Mathe-
matica Hungarica Vol. I0 (2-3), (1979), pp. 109–175

[15] T. Miyamoto ω1-Suslin trees under countable support iterations. Funda-
menta Mathematicae, vol. 143 (1993), pp. 257–261.

41

[16] Y. Moschovakis Descriptive Set Theory. Mathematical Surveys and
Monographs 155, AMS.

[17] S. Müller, R. D. Schindler and W. H. Woodin Mice with finitely many
Woodin cardinals from optimal determinacy hypotheses, Journal of Math-
ematical Logic, vol. 20 (2020).

[18] I. Neeman Optimal Proofs of Determinacy, The Bulletin of Symbolic
Logic, Sep. 1995, Vol. 1, No. 3 (Sep., 1995), pp. 327-339.

[19] J. Steel The Core Model Iterability Problem, Lecture Notes in Logic,
Springer, Berlin, 1996.

42

