
ar
X

iv
:2

31
1.

00
40

9v
1 

 [
qu

an
t-

ph
] 

 1
 N

ov
 2

02
3
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ABSTRACT. We investigate quantum walks which play an important role in the modelling of many phenom-

ena. The detailed and thorough description is given to the discrete quantum walks on a line, where the total

quantum state consists of quantum states of the walker and the coin. In addition to the standard walker prob-

ability distribution, we introduce the coin probability distribution which gives more complete quantum walk

description and novel visualization in terms of the so called polyanders (analogs of trianders in DNA visual-

ization). The methods of final states computation and the Fourier transform are presented for the Hadamard

quantum walk.
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1. INTRODUCTION

Quantum walks are the quantum counterpart of the classical random walks playing important

role in the modelling of many phenomena, for instance information spreding in complex networks

NOH AND RIEGER [2004], optimal search strategies LV ET AL. [2002], genetic sequence location

VAN DEN ENGH ET AL. [1992], and chemical reactions GILLESPIE [1977]. The term “quantum walks”

was introduced in AHARONOV ET AL. [1993], but the idea to incorporate quantum effects to stochastic

calculus appeared in ICHE AND NOZIERES [1978], that is the coherence effects in evolution of Brownian

quantum particle were first considered in SCHWINGER [1961]. Then the quantum analogies of classical

random walks in discrete time and space were investigated in GODOY AND FUJITA [1992], the quantum

cellular automata were introduced in GRÖSSING AND ZEILINGER [1988] which appeared to be equiv-

alent to the construction of AHARONOV ET AL. [1993], which can be considered as one particle sector

of the former, for a review, see ARRIGHI [2019] and more general VENEGAS-ANDRACA [2012]. The

connections between correlated classical random walks and quantum walks were given in KONNO [2009]

using matrix methods.

There are two models of quantum walks:

1) Discrete quantum walks consists of two systems, called a walker and a coin, and the evolution

unitary operator acts on them in discrete time steps.

2) Continuous quantum walks consists of one quantum system called walker which “walks” without

time restrictions, which is described by the evolution operator (Hamiltonian) and the Schrödinger

equation CHILDS ET AL. [2002].

The general topology in both cases can be described by discrete graphs.

2. DISCRETE QUANTUM WALKS

In the case of discrete quantum walks on a line the total quantum state consists of quantum states of the

walker and the coin, that is the total Hilbert state Htot becomes the direct product

Htot “ Hcoin b Hwalk. (2.1)

The “position” of the walker is described by the vector from the computational basis of the walker

Hilbert space |ψwalky P Hwalk which is infinite-dimensional and countable, such that the walker state

|ψwalky is the quantum superposition

|ψwalky “
ÿ

ℓPZ

wℓ |ℓyw ,
ÿ

ℓPZ

w2

ℓ “ 1, wℓ P C. (2.2)

In distinction of the classical coin which can be in two states, the quantum s-state coin can be not only

in s canonical basis states |0yc , |1yc , . . . , |s ´ 1yc, but also in their quantum superposition

|ψcoiny “
s´1
ÿ

j“0

cj |jyc ,
s´1
ÿ

j“0

c2j “ 1, cj P C. (2.3)

Usually, to be closer to the classical case, one puts s “ 2. The total state of the quantum walk is given

by

|Ψtoty “ |ψcoiny b |ψwalky , (2.4)

and the initial total state, if to take |ψwalkyinitial “ |0yw, becomes

|Ψtotyinitial “ |ψcoinyinitial b |0yw . (2.5)
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DISCRETE QUANTUM WALKS

In general, the total state can be written as

|Ψtoty “
ÿ

ℓPZ

pϕ0,ℓ |0yc b |ℓyw ` ϕ1,ℓ |1yc b |ℓywq , (2.6)

ÿ

ℓPZ

`

|ϕ0,ℓ|2 ` |ϕ1,ℓ|2
˘

“ 1 ϕ0,ℓ, ϕ1,ℓ P C. (2.7)

It follows from (2.2)–(2.3) that

ϕj,ℓ “ cjwℓ, ℓ P Z, j “ 0, 1, (2.8)

and so the normalization condition (2.7) reduces one parameter from the set of ones describing the total

state (2.6).

By analogy with the classical random walk, we need one operator to move the walker on the line

and one operator to play the same role as the coin toss. As opposite to the classic case, where such

an operator is represented by a stochastic matrix, in the case of the quantum walk evolution there is no

room for randomness before measurement and it is represented by an unitary matrix which acts as an

internal rotation in the internal state space. The goal of the coin operator is to render the coin state in

a superposition, while the randomness is introduced by making a measurement on the system after both

evolution operators have been applied to the total quantum system for many times.

Thus, the evolution of a quantum walk is driven by the special composite action of two unitary opera-

tors: 1) the first one, shift operator S acting in combined total position-coin space Htot; 2) the other one

is the coin operator C acting in the coin space Hcoin. In this way the total evolution is described by the

unitary operator U defined by the main formula of the coined quantum walk concept

U “ S ˝ pC b Iwq , (2.9)

S : Hcoin b Hwalk Ñ Hcoin b Hwalk, C : Hcoin Ñ Hcoin, U : Htot Ñ Htot, (2.10)

where Iw P Hwalk is the unity of the walker space Hwalk.

If we consider the two-state coin s “ 2 (2.6), then the operator S should act on the total quantum state

(2.4) by shifts which are dependent from the coin state

S˝ p|0yc b |ℓywq “ |0yc b |ℓ ` 1yw , (2.11)

S˝ p|1yc b |ℓywq “ |1yc b |ℓ ´ 1yw . (2.12)

This can be written in the unified form

S˝ p|jyc b |ℓywq “ |jyc b
ˇ

ˇ

ˇ
ℓ ` p´1qj

E

w
, (2.13)

that is we have the shift operator depennds on the coin state S “ Sj . Therefore, in the computational basis

S can be presentes using two projections in Hc as (the outer product representation)

S “ |0yc x0|c b
ÿ

ℓPZ

|ℓ ` 1yw xℓ|w ` |1yc x1|c b
ÿ

ℓPZ

|ℓ ´ 1yw xℓ|w , (2.14)

which satisfies the needed shifting properties in the walker space (2.11)–(2.12).

The coin operator C is an arbitrary element of the unitary group U psq, and for the two-state coin s “ 2,

and it can be represented by the 4 real parameter 2 ˆ 2 complex matrix Ĉ of the form

Ĉ “ Ĉα,β,γ,θ “
ˆ

a b

c d

˙

“ eiγ
ˆ

eiα cos θ eiβ sin θ

´e´iβ
sin θ e´iα

cos θ

˙

, a, b, c, d P C, α, β, γ, θ P R. (2.15)
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DISCRETE QUANTUM WALKS

In the most cases, for quantum walks with two-state coin the Hadamard operator is widely used

CH “ 1?
2

p|0yc x0|c ` |0yc x1|c ` |1yc x0|c ´ |1yc x1|cq , (2.16)

or in the matrix representation (2.15)

ĈH “ Ĉα“π
2
,β“π

2
,γ“π

2
,θ“π

4
“ 1?

2

ˆ

1 1

1 ´1

˙

. (2.17)

The evolution of the total state (2.4) during the descrete time (“ t) quantum walk after t steps |Ψtot ptqy
is given by the application of the unitary operator (2.9) t times in the following way

|Ψtot ptqy “ Ut |Ψtot p0qy , (2.18)

where |Ψtot p0qy “ |Ψtotyinitial (2.5).

Example 2.1. Using (2.9) and (2.16) we can get the first 3 steps for the Hadamard quantum walk with the

two-state coin as

|Ψtot p1qy “ 1?
2

|0yc b |1yw ` 1?
2

|1yc b |´1yw , (2.19)

|Ψtot p2qy “ ´1

2
|1yc b |´2yw ` 1

2
p|0yc ` |1ycq b |0yw ` 1

2
|0yc b |2yw (2.20)

“ 1

2
|0yc b p|0yw ` |2ywq ` 1

2
|1yc b p|0yw ´ |´2ywq , (2.21)

|Ψtot p3qy “ 1

2
?
2

|1yc b |´3yw ´ 1

2
?
2

|0yc b |´1yw ` 1

2
?
2

p2 |0yc ` |1ycq b |1yw ` 1

2
?
2

|0yc b |3yw
(2.22)

“ 1

2
?
2

|0yc b p´ |´1yw ` 2 |1yw ` |3ywq ` 1

2
?
2

|1yc b p|1yw ` |´3ywq . (2.23)

If the final state at the time t is known Ψtot ptq, the standard way to describe the quantum walk is the

partial measurement of the walker state probabilities (see, e.g. PORTUGAL [2013]).

However, now we have the tensor product of two spaces (2.1), therefore to have the complete description

of the quantum walk we propose to consider the partial measurement of the (s-) coin state probabilities as

well.

Let the total state at the time t (2.18) has the general form (see (2.6)–(2.8))

|Ψtot ptqy “
ÿ

ℓPZ

s´1
ÿ

j“0

ϕj,ℓ ptq |jyc b |ℓyw , (2.24)

ÿ

ℓPZ

|ϕj,ℓ ptq|2 “ 1 ϕj,ℓ P C. (2.25)

We denote the “doubly partial” probability of the state |jyc b |ℓyw at the time t by

pj,ℓ ptq “ |ϕj,ℓ ptq|2 ,
ÿ

ℓPZ

s´1
ÿ

j“0

pj,ℓ ptq “ 1. (2.26)

Now we propose to characterize the quantum walk by two partial probability distributions:
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DISCRETE QUANTUM WALKS

1) The walker probability distribution

pwalk
ℓ ptq “

s´1
ÿ

j“0

|ϕj,ℓ ptq|2 , (2.27)

ÿ

ℓPZ

pwalk
ℓ ptq “ 1. (2.28)

2) The coin probability distribution

pcoinj ptq “
ÿ

ℓPZ

|ϕj,ℓ ptq|2 , (2.29)

s´1
ÿ

j“0

pj ptq “ 1. (2.30)

In the standard approach PORTUGAL [2013], only the first (walker) distribution (2.27) is usually consid-

ered: the time is fixed by t “ t0, and the graph
 

ℓ, pwalk
ℓ pt0q

(

is plotted. Nevertheless, the coin probability

distribution (2.29) gives additional and information about the quantum walk. To observe the difference

between (2.27) and (2.29) concretely, we continue the Example 2.1 in very details.

Example 2.2 (Example 2.1 continued). Here we compute the walker and coin probabilities (2.27) and

(2.29) for three steps t “ 1, 2, 3 of the Hadamard walk Ψtot ptq in (2.19)–(2.23).The formulas (2.19), (2.20)

and (2.22) are convenient to use for the walker probabilities, and the formulas (2.19), (2.21) and (2.23) can

be used for the coin probabilities. We derive the walker probabilities pwalk
ℓ ptq from (2.19)

pwalk
ℓ“1

pt “ 1q “ pwalk
ℓ“|1yw

pt “ 1q “
ˆ

1?
2

˙2

“ 1

2
, (2.31)

pwalk
ℓ“´1

pt “ 1q “ pwalk
ℓ“|´1yw

pt “ 1q “
ˆ

1?
2

˙2

“ 1

2
, (2.32)

and from (2.20) we obtain the symmetric distribution

pwalk
ℓ“´2

pt “ 2q “ pwalk
ℓ“|´2yw

pt “ 2q “
ˆ

1

2

˙

2

“ 1

4
, (2.33)

pwalk
ℓ“0

pt “ 2q “ pwalk
ℓ“|0yw

pt “ 2q “
ˆ

1

2

˙

2

`
ˆ

1

2

˙

2

“ 1

2
, (2.34)

pwalk
ℓ“2

pt “ 2q “ pwalk
ℓ“|2yw

pt “ 2q “
ˆ

1

2

˙

2

“ 1

4
. (2.35)
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The probability distribution pwalk
ℓ ptq for the third step t “ 3 is nonsymmetric (2.22)

pwalk
ℓ“´3

pt “ 3q “ pwalk
ℓ“|´3yw

pt “ 3q “
ˆ

1

2
?
2

˙2

“ 1

8
, (2.36)

pwalk
ℓ“´1

pt “ 3q “ pwalk
ℓ“|´1yw

pt “ 3q “
ˆ

´ 1

2
?
2

˙2

“ 1

8
, (2.37)

pwalk
ℓ“1

pt “ 3q “ pwalk
ℓ“|1yw

pt “ 3q “
ˆ

2
1

2
?
2

˙2

`
ˆ

1

2
?
2

˙2

“ 5

8
, (2.38)

pwalk
ℓ“3

pt “ 3q “ pwalk
ℓ“|3yw

pt “ 3q “
ˆ

1

2
?
2

˙2

“ 1

8
, (2.39)

as well as for further steps (times) t ą 3.

For the coin probabilities pcoinℓ ptq we have from (2.19)

pcoinj“0
pt “ 1q “ pcoinj“|0yc

pt “ 1q “
ˆ

1?
2

˙2

“ 1

2
, (2.40)

pcoinj“1
pt “ 1q “ pcoinj“|1yc

pt “ 1q “
ˆ

1?
2

˙2

“ 1

2
, (2.41)

and from (2.21) we have for the second step t “ 2 the symmetric distribution

pcoinj“0
pt “ 2q “ pcoinj“|0yc

pt “ 2q “
˜

ˆ

1

2

˙2

`
ˆ

1

2

˙2
¸

“ 1

2
, (2.42)

pcoinj“1
pt “ 2q “ pcoinj“|1yc

pt “ 2q “
˜

ˆ

1

2

˙

2

`
ˆ

´1

2

˙

2
¸

“ 1

2
, (2.43)

The probability distribution pcoinj ptq for the third step t “ 3 is also nonsymmetric as pwalk
ℓ pt “ 3q, so

from (2.23) we get

pcoinj“0
pt “ 3q “ pcoinj“|0yc

pt “ 3q “
˜

ˆ

´ 1

2
?
2

˙2

`
ˆ

2
1

2
?
2

˙2

`
ˆ

1

2
?
2

˙2
¸

“ 3

4
, (2.44)

pcoinj“1
pt “ 3q “ pcoinj“|1yc

pt “ 3q “
˜

ˆ

1

2
?
2

˙2

`
ˆ

2
1

2
?
2

˙2
¸

“ 1

4
, (2.45)

and in the similar way for further steps (discrete times) t ą 3.

As it should be, both the above walker and coin probability distributions are correctly normalized

satisfying (2.28) and (2.30) at each discrete time t.

3. POLYANDER VISUALIZATION OF QUANTUM WALKS

The coin probability distribution pcoinj ptq introducted in (2.29), from the first glance, can be also charac-

terized at the fixed time t “ t0 by the graph
 

j, pcoinj pt0q
(

, as the walker probability distribution pwalk
ℓ pt0q.

However, because the coin has a specific “physical” sense, we propose here another way of the quantum

walk description, which has an origin from genome landscapes AZBEL’ [1973, 1995], LOBRY [1996],

one-dimensional DNA walks CEBRAT AND DUDEK [1998] and trianders DUPLIJ AND DUPLIJ [2005].
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Innovation 3.1. We can consider the time evolution of the probability for the concrete quantum state,

when we provide the corresponding measurements in the coin or walker subspaces. That is, we fix the

states ℓ “ ℓ0 or j “ j0 and introduce the following time evolution graphs
 

t, pwalk
ℓ“ℓ0

ptq
(

or
 

t, pcoinj“j0
ptq

(

.

Definition 3.2. The polyander visualization of a quantum walk is its description by the time evolution

graphs
 

t, pwalk
ℓ ptq

(

or
 

t, pcoinj ptq
(

. Each line of the graph describing the probability evolution of the

fixed quantum state ℓ “ ℓ0 for |ℓ0yw or j “ j0 for |jyc is called a leg of the polyander.

It is obvious, that the walker polyander has finitely increasing number of legs and corresponding quan-

tum states, while the s-side coin polyander has exactly s legs.

For the Example 2.1 we obtain

Example 3.3 (Example 2.1 continued). The walker polyander pwalk
ℓ ptq in the time range 1 ď t ď 3 has 7

legs (quantum states) ´3 ď ℓ ď 3, which have the following probability evolutions

|ℓy-legztime t 1 2 3

|´3yw 0 0
1

8

|´2yw 0
1

4
0

|´1yw 1

2
0

1

8

|0yw 0
1

2
0

|1yw 1

2
0

5

8

|2yw 0
1

4
0

|3yw 0 0
1

8

(3.1)

The coin polyander pcoinj ptq in the time range 1 ď t ď 3 has 2 legs (quantum states), j “ 0, 1, which

have the following probability evolutions

|jy-legztime t 1 2 3

|0yc 1

2

1

2

3

4

|1yc 1

2

1

2

1

4

(3.2)

Each leg can be presented as a horizontal strip of the width 1 on which the points corresponding to the

probabilities 0 ď p ptq ď 1 at times t “ 1, 2, 3 . . . are indicated. Then the probability behaviour of each

quantum state can be visually seen and mutually compared in the same time points.

For the coin polyader it is important to consider the probability differences, because of the following

Definition 3.4. The total quantum state is called trivial at the time t “ ttriv , if all the s-side coin states

have equal probabilities pcoinj pttrivq “ 1

s
, j “ 0, 1, . . . , s ´ 1, s ě 2.

Definition 3.5. The quantum walk is called trivial, if the s-side coin states are trivial at all times.

In the case of the standard coin s “ 2, the triviality means that the measurements of both sides give

the same probability at the t “ ttriv . Therefore, to describe triviality in detail, we should introduce the

differences and search for nonzero ones.

Definition 3.6. The bias s-side coin polyander has ps ´ 1q legs which are defined by

∆pcoinj ptq “ pcoinj ptq ´ pcoinj`1
ptq , j “ 0, . . . , s ´ 2. (3.3)

Example 3.7 (Example 2.1 continued). The 2-side coin bias polyander in the time range 1 ď t ď 3 has

one leg which has the following probability evolution ∆pcoin
0

ptq “ ∆pcoinj“|0yc
ptq ´ ∆pcoinj“|1yc

ptq (see (3.2))

jztime t 1 2 3

0 0 0
1

2

(3.4)
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which can be nontrivial after the time t “ 3 only.

In the higher times the walker and coin polyanders, as well as the bias coin polyander will have more

complated behavior, which in any case needs the manifest form of the total quantum state (2.18). In

Example 3.3 and Example 3.7, we considered for clarity only the time range 1 ď t ď 3 and the 2-side

coin to show in details, how to compute probability polyanders for finite times. The “physical sense” of

the bias polyander is in the following: its nonzero values show nontriviality evolution along the quantum

walk.

Thus, polyanders allow us to study further the “fine structure” and thorough characterization and visual

presentation of quantum walks from different vieponts.

4. METHODS OF FINAL STATES COMPUTATION

The main goal of studying the quantum walks is obtaining the analytical expression for the final quan-

tum state (2.18) in discrete finite times t P Z, and then calculating the dynamical and statistical properties

of various probability distributions and characteristics.

The main computational methods to find the total quantum state (2.18) are

1) The Schrödinger approach. Starting from an arbitrary state of the quantum walk with a cer-

tain walker position, to provide the discrete time Fourier transform AMBAINIS ET AL. [2001] and

obtain the closed form of total amplitudes.

2) The combinatorial approach. The amplitude at any discrete time is derived as a sum of ampli-

tudes of all paths starting from the initial state and ending up in the final state. This can be treated

as reminiscent of the standard path integral technique.

In CARTERET ET AL. [2005] it was shown that both Schrödinger and combinatorial approaches are

equivalent. Among less known methods we can mention the alternative description of quantum walks

based on the scattering theory FELDMAN AND HILLERY [2007] and the analytic formulation of probabil-

ity densities and moments FUSS ET AL. [2007].

4.1. Fourier transform and analytic solutions. In general, the usage of the Fourier transform is the

standard way of simplification of computations by turning equations to the algebraic ones. In its applica-

tion to quantum works and analysing the evolution (2.18) there two peculiarities:

1) The Fourier transform is applied to one subspace from the product (2.4), that is the walker one

Hwalk.

2) Sometimes it is more simple to turn from transforming functions to transform the computational

basis of the walker subspace.

Following 2) we transform the computational basis of the walker space Hwalk as

||kyyw “
ÿ

ℓPZ

eikℓ |ℓyw , ℓ P Z, |ℓyw , ||kyyw P Hwalk, (4.1)

where the Fourier transformed vectors ||kyyw are denoted by the double brackets and depend on the con-

tinuous real “wave number” k P R, ´π ď k ď π. The inverse transformation is

|ℓyw “ 1

2π

ż π

´π

dke´ikℓ ||kyyw . (4.2)

Let us introduce the Fourier transformation of the amplitudes ϕj,ℓ ptq at the time t from the decomposition

(2.24) in the standard way by

Φj,k ptq “
ÿ

ℓPZ

e´ikℓϕj,ℓ ptq , ´π ď k ď π. (4.3)

– 8 –
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The inverse Fourier transform becomes

ϕj,ℓ ptq “ 1

2π

ż π

´π

dkeikℓΦj,k ptq . (4.4)

Then, instead of the computational basis |jyc b |ℓyw in (2.24), using (4.1) and (4.4) and cancelling

exponents, we can present the total state in the Fourier basis |jyc b ||kyyw as follows

|Ψtot ptqy “ 1

2π

s´1
ÿ

j“0

ż π

´π

Φj,k ptq |jyc b ||kyyw . (4.5)

The action of the shift operator S on the Fourier basis can be derived from (2.13) and using (4.1) as

follows

S˝ p|jyc b ||kyywq “
ÿ

ℓPZ

eikℓS˝ p|jyc b |ℓywq “
ÿ

ℓPZ

eikℓS˝ p|jyc b |ℓywq

“
ÿ

ℓPZ

eikℓ
´

|jyc b
ˇ

ˇ

ˇ
ℓ ` p´1qj

E

w

¯

“
ÿ

ℓ1PZ

eikpℓ1´p´1qjq p|jyc b |ℓ1ywq

“ e´ikp´1qj
ÿ

ℓ1PZ

eikℓ
1 p|jyc b |ℓ1ywq “ e´ikp´1qj |jyc b ||kyyw , (4.6)

where we used the substitution ℓ1 “ ℓ ` p´1qj and the translation symmetry of the infinite sum.

In the case of the two-side coin j “ 0, 1 and the Hadamard quantum walk (2.16)–(2.17), the action of

operators can be expressed in the matrix form.

So we apply the total evolution operator U (2.9) in the matrix form to the Fourier basis |jyc b ||kyyw
using (2.17) to get

Û p|j1yc b ||kyywq “ Ŝ

˜˜

1
ÿ

j“0

Ĉjj1 |jyc

¸

b ||kyyw

¸

“
˜

1
ÿ

j“0

e´ikp´1qjĈjj1 |jyc

¸

b ||kyyw “
1
ÿ

j“0

C̄jj1 pkq |jyc b ||kyyw , (4.7)

where

C̄ pkq “
ˆ

e´ik 0

0 eik

˙

Ĉ “ 1?
2

ˆ

e´ik e´ik

eik ´eik
˙

. (4.8)

It follows from (4.7) that diagonalization of C̄ pkq leads to the spectral decomposition of the total

operator Û. Indeed, if λ pkq is the eigenvalue of the matrix C̄ pkq, then it is also the eigenvalue of Û, as it

is seen from (4.7). The corresponding λ pkq eigenvector we denote by
ˇ

ˇ

ˇ

ˇvλpkq

DD

c
, such that

Û ˝
`ˇ

ˇ

ˇ

ˇvλpkq

DD

c
b ||kyyw

˘

“
`

C̄ pkq ˝
ˇ

ˇ

ˇ

ˇvλpkq

DD

c

˘

b ||kyyw “ λ pkq
ˇ

ˇ

ˇ

ˇvλpkq

DD

c
b ||kyyw . (4.9)

The matrix C̄ pkq (4.8) has two eigenvalues

λ1 pkq “ e´iαpkq, λ2 pkq “ ´eiαpkq, (4.10)

α pkq “ arcsin

ˆ

1?
2
sin k

˙

, ´π

2
ď α pkq ď π

2
, (4.11)
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and two corresponding normalized eigenvectors

ˇ

ˇ

ˇ

ˇvλ1,2pkq

DD

c
“ 1

?
r1,2

ˆ

e´ik

˘
?
2e´iαpkq ´ e´ik

˙

, (4.12)

r1,2 “ 2

´

1 ` cos
2
k ¯ cos k

?
1 ` cos2 k

¯

. (4.13)

Thus, in the total evolution operator can be written in terms of eigenvalues and eigenvectors of C̄ pkq
(4.8)

Û “ 1

2π

ż π

´π

dk
“`

e´iαpkq
ˇ

ˇ

ˇ

ˇvλ1pkq

DD

c

@@

vλ1pkq

ˇ

ˇ

ˇ

ˇ

c
´ eiαpkq

ˇ

ˇ

ˇ

ˇvλ2pkq

DD

c

@@

vλ2pkq

ˇ

ˇ

ˇ

ˇ

c

˘

b ||kyyw xxk||w
‰

. (4.14)

Using orthogonality the basis eigenvectors, the power of the evolution operator can be presented as

Ût “ 1

2π

ż π

´π

dk
“`

e´iαpkqt
ˇ

ˇ

ˇ

ˇvλ1pkq

DD

c

@@

vλ1pkq

ˇ

ˇ

ˇ

ˇ

c
` p´1qt eiαpkqt

ˇ

ˇ

ˇ

ˇvλ2pkq

DD

c

@@

vλ2pkq

ˇ

ˇ

ˇ

ˇ

c

˘

b ||kyyw xxk||w
‰

.

(4.15)

Now we can use the main quantum evolution forlmula (2.18) to obtain the total quantum state at any

time from an initial quantum state (2.5). For instance, if |Ψtotyinitial “ |0yc b |0yw, then using (4.5) and

(4.12), we derive the Fourier transformed amplitudes

Φj“0,k ptq “ 1

2
?
1 ` cos2 k

”´?
1 ` cos2 k ` cos k

¯

e´iαpkqt `
´?

1 ` cos2 k ´ cos k

¯

eipπ`αpkqqt
ı

,

Φj“1,k ptq “ eik

2
?
1 ` cos2 k

`

e´iαpkqt ´ eipπ`αpkqqt
˘

. (4.16)

Then applying the reverse Fourier transform (4.4) and taking into account symmetries of integrand, we

get the amplitudes in the computational basis at the arbitrary time t as

ϕj“0,ℓ ptq “

$

’

’

&

’

’

%

1

2π

π
ż

´π

dkeipkℓ´αpkqtq

ˆ

cos k?
1 ` cos2 k

` 1

˙

, t` ℓ “ even,

0, t` ℓ “ odd,

(4.17)

ϕj“1,ℓ ptq “

$

’

’

&

’

’

%

1

2π

π
ż

´π

dkeipkℓ´αpkqt`kq 1?
1 ` cos2 k

, t ` ℓ “ even,

0, t ` ℓ “ odd.

(4.18)

Finally, using the partial probability formulas (2.27) and (2.29) one can plot the time evolution graphs
 

t, pwalk
ℓ“ℓ0

ptq
(

and
 

t, pcoinj“j0
ptq

(

, that is to provide the polyander visualization (see Section 3).

5. GENERALIZATIONS OF DESCRETE-TIME QUANTUM WALKS

There are plenty of various generalizations of the above constructions. Nevertheless, the main proce-

dures remain the nearly same.

Coin operator: The most general form of the two-sided (s “ 2) coin operator C is given by the

complex matrix (2.15) from the unitary group U p2q. That is other than the Hadamard matrix

(2.17) can be considered, for instance the Fourier coin PORTUGAL [2013].

Higher dimensions: The main quantum walk equation (2.9) can be extended to higher dimen-

sion the s-sided coin, when Hcoin is 2s-dimensional Hilbert space and Hwalk is the Hilbert

– 10 –



space corresponding to the direct product

s
hkkkkkkikkkkkkj

Z b . . .b Z. The common choice for s-sided coin is

the Grover operator described by the corresponding 2s-dimensional matrix ĈGrover proposed in

MOORE AND RUSSELL [2002].

Anyonic quantum walks: To include the braiding interaction one includes the additional Hilbert

space (fusion space) Hfusion where the generators of the braid group act. Then the total space

becomes Htot “ Hcoin b Hfusion b Hwalk, and the time evolution contains the additional braid

operator in some represenation LEHMAN ET AL. [2011].
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