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Timed languages [Alur & Dill’94]

Infinite sequences

abaacb . . .

(Infinite) timed words

(a, t0), (b, t1)(a, t2) . . .

The sequence {ti}i=0,1,... is strictly increasing and unbounded (nonZeno).

0,5 0,7 1 1,3 1,7
a a aa a

Languages of timed words
There are two a’s that appear at interval 1.

No two a’s appear at interval 1.
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Timed automata

Clock and guards

(x > 2), (x ≤ 3), (x > 2) ∧ (x ≤ 3)

We will use only one clock x.

Timed automata
A = 〈Q, q0,Σ, δ,F〉

F ⊆ Q is the set of final states.

δ : Q×Σ×Guards ·→ P(Q×{nop, reset})

Example (two a’s at distance 1)

s t

Ț

a,true
X:=0

a,
 x

=1

a,true

a,
tr

ue

(s,.5) (t,0) (t,.3) (t,.6) ( ,1)(s,0)
0,5 0,7 1 1,3 1,7
a a aa a
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Timed automata: properties

Properties
Emptiness is decidable. (region construction)

Universality is undecidable. (Π1
1-hard)

Not closed under complement. (No to a′s at distance 1.)

Deterministic version not closed under disjunction.

Current state
No good class of regular timed languages.

Development of logics independent from automata (MTL, TLTL).
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Alternating timed automata

Alternating timed automata (ATA)

A = 〈Q, q0,Σ, δ,F〉
F ⊆ Q is the set of final states.

δ : Q × Σ×Guards ·→ B+(Q × {nop, reset})

Example (No two a’s at distance 1)
An alternating automaton for L:

s, a, tt 7→ (s, nop) ∧ (t, reset)
t, a, x 6= 1 7→ (t, nop) t, a, x = 1 7→ (⊥, nop)

All states but ⊥ are accepting.
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Properties

Closure properties
ATA are effectively closed under boolean operations.

Expressibility
The class of languages recognized by 1-clock ATA is incomparable with the class of
languages recognized by timed automata (with many clocks).

Decidability
The emptiness problem over finite words for 1-clock ATA is decidable.

Undecidability
The emptiness problem over infinite words for 1-clock ATA is undecidable.
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The problem with infinite words

Theorem (Lasota & W., Ouaknine & Worell)
The emptiness problem for ATA with Buchi acceptance conditions is undecidable.

Proof sketch
We encode the problem of existence of an accepting computation of a 2-counter
machine. We can assume that after reaching an accepting state the machine
restarts in the initial conf.

Each configuration is put in one unit interval.

q 1....1 2....2 q’ 1....1 2....22

We can easily simulate "gainy" machines: counters can increase without our
control.
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Gainy machines

Infinite computations problem for "gainy" machines
Does a given 5 counter "gainy" machine has a run where an accepting state appears
infinitely often.

Theorem (Ouaknine & Worell)
The above problem is undecidable.

Theorem (Mayr)
It is undecidable whether there is an uniform bound on the size of all reachable
configurations of a 4-counter lossy machine.

q 1....1 2....2 q’ 1....1 2....22

Coding infinite computations of "gainy" counter machines
We need do say that qacc appears infinitely often.
We express it as GFqacc (at every moment there is qacc in the future)
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Acceptance conditions

An infinite run

q1q2q3q2q3 . . .

Parity condition: Ω : Q → N
Strong condition: a run is accepting if

min{Ω(q) : q appears infinitely often in the run} is even

Weak condition: a sequence is accepting if

min{Ω(q) : q appears at least once in the run} is even
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Hierarchies of acceptance conditions

(0,1) (1,2)

(0,0) (1,1)

(0,2) (1,3)

w(0,1) w(1,2)

w(0,0) w(1,1)

w(0,2) w(1,3)

Index hierarchies
Interesting ranges: (0, i), (1, i) for i = 0, 1, . . . .
Strong condition with range (0, 1) corresponds to a Büchi condition, and (1, 2) to a
coBüchi condition.

With a range (0, i + 1) we can accept more than with (0, i) and the sets of
languages accepted by (0, i) and (1, i + 1) are incomparable.

Expressing GFqacc: alternation + range w(1, 2).
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Hierarchies of acceptance conditions (2)

(0,1) (1,2)

(0,0) (1,1)

(0,2) (1,3)

w(0,1) w(1,2)

w(0,0) w(1,1)

w(0,2) w(1,3)

The emptiness problem for universal timed automata
Decidable for level (1, 1) (finite words).

Undecidable for level w(1, 2).

Question
What about levels (0, 0) and w(0, 1)?
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Results

Theorem (Parys & W.)
The emptiness problem, over nonZeno words, is decidable for ATA with index w(0, 1)
(hence for (0, 0) too).

Theorem (Parys & W.)
The emptiness problem is undecidable for ATA with index w(1, 2) even when only tests
for the interval interval [0, 1) are used.

Corollary
In this setting relaxing punctuality (à la MITL) does not pay.
Equality constraints are not need to force complicated behaviours.
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History

Abdulla & Jonson TACAS’98 (PN’s with one clock).

Ouaknine & Worrell LICS’04 (Universality for one clock is decidable).

Lasota & W. FOSSACS’05 (ATA, emptiness is nonelementary, undecidability over
infinite words).

Ouaknine & Worrell LICS’05 (decidability for MTL over finite words).

Ouaknine & Worell FOSSACS’06 (undecidability of MTL over infinite words).

Ouaknine & Worell TACAS’06 (decidability of restricted ATA without acceptance
conditions over infinite words).

Bouyer & Markey & Ouaknine & Worrell LICS07, ICALP08 (decidable extensions
of MTL).
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The case of finite words
Powerset construction: transition system T .

Macro state: {(q1, t1), . . . , (qn , tn)}
Transition relation

Nonemptiness ≡ reachability
Final macro state: all the states accepting.

Non-emptiness ≡ reachability of a final state in T .

Well quasi-order
In every infinite sequence c1, c2, . . . there exist indexes i < j with (ci , cj) in the
relation.

If a final state is reachable from {(q1, t1), . . . , (qn , tn)} and the it is reachable from
every its subset {(qi1 , ti1 ), . . . , (qik , tik )}.
Problem: This relation is not a well quasi-order.

Pawel Parys and Igor Walukiewicz (LaBRI) IFIP’09 14 / 22



Where is the challenge

The case of finite words
Construct appropriate WQO and do reachability tree.

Detecting existence of an infinite computation
We need to take care of nonZeno.

The reachability tree argument does not work.

We calculate the set of configurations from which every computation is finite.
(This set is upwards closed in some WQO).

Effectiveness is very specific to our model. For example for lossy channel systems
it is undecidable if from every channel contents all computations terminate.
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Applications to logics
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MTL

MTL
p | ¬p | α ∨ β | α ∧ β | αUIβ |αŨIβ

I is an interval, eg., (0, 1), [5,∞].

Pointwise semantics

αUIβ βα α α

Fragments
Bounded MTL (BMTL): All intervals bounded.

Metric Interval TL (MITL): no singleton intervals.
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Translating MTL to automata (I)
Theorem (Parys & W.)
Emptiness over nonZeno words is decidable for ATA with index w(0, 1).

Remark
A Buchi automaton is w(0, 1) if there is no transition going from accepting state to non
accepting state.

αUβ

∨
−

β ∧

α

αŨβ

∨
+

α ∧

β

∨
−

∨
−

∧
+

α ∧ β

β

Positive MTL
Positive formulas: p | ¬p | α ∨ β | α ∧ β |αŨIβ | αUJβ J bounded.

PMTL: α ∨ β | α ∧ β |αUIβ | αŨJψ ψ positive, or J bounded.
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Translating MTL to automata (II)

Theorem (Parys & W.)
Emptiness over nonZeno words is decidable for ATA with index w(0, 1).

Remark
A Buchi automaton is w(0, 1) if there is no transition going from accepting state to non
accepting state.

Theorem (Parys & W.)
Emptiness over nonZeno words is decidable for ATA with index w(0, 1).

Corollary
The satisfiability problem for Positive-MITL over nonZeno words is decidable.
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Flat vs positive

Positive MTL
Positive formulas: p | ¬p | α ∨ β | α ∧ β |αŨIβ | αUJβ J bounded.

PMTL: α ∨ β | α ∧ β |αUIβ | αŨJψ ψ positive, or J bounded.

Flat-MTL
In αUIβ either α ∈ MITL or I bounded.

In αŨIβ either β ∈ MITL or I bounded.

Remarks
In positive-MTL the restriction is only one sided. One can express eventuality
properties. (In flat only invariance of MITL properties).

We cannot admit MITL in the positive fragment, as any infinitely-often property will
lead to undecidability (in automata, not clear if in logic).
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TPTL

TPTL (with one clock)
p | ϕ ∧ ψ | ϕ ∨ ψ | ϕUψ | ϕŨ ψ | x ∼ c | x.ϕ

Semantics in a sequence w = (a0, t0)(a1, t1), . . .
w, i, v � p if ai = p
w, i, v � x ∼ c if ti − v ∼ c
w, i, v � x.ϕ if w, i, ti � ϕ
w, i, v � ϕUψ if ∃j>iw, j, v � ψ and ∀k∈(i,j)w, k, v � ϕ
w, i, v � ϕŨψ if ∀j>iw, j, v � ψ or ∃k∈(i,j)w, k, v � ϕ

Theorem (Bouyer & Chevalier & Markey)
The formula x.(F(b ∧ F(c ∧ x ≤ 2))) is not expressible in MTL.

Remark
One can define positive TPTL the same way as positive MTL. The resulting logic can
be encoded into w(1, 2) ATA.
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Conclusions

1 We have established the decidability frontier, with respect to the index, for ATA
over infinite words.

2 Restricting to non-singular intervals does not make the problem easier.
3 The decidability result gives a new decidable fragment of MTL (Positive MTL).
4 In a similar way we can also obtain a decidable fragment of TPTL with one clock.

So what is the class of languages accepted by ATA?

Reduce the use of resets to get more decidability?
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