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From flowgraphs to equations

A syntactic transformation.

X1 = a · X1 · X2 + b

X2 = c · X2 · X3 + d · X2 · X1 + e

X3 = f · X1 · X3 + g

But how should the equations be interpreted mathematically?

− What kind of objects are a, . . . , g ?

− What kind of operations are sum and product ?

It depends. Different interpretations lead to different semantics
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Input/output relational semantics

Interpret a, . . . , g as assignments or guards over a set of program
variables V with set of valuations Val .

R(Xi) = (v , v ′) ∈ Val × Val such that Xi started at v , may terminate at v ′.



Language semantics

Interpret the atomic actions as letters of an alphabet A.

L(Xi) = words w ∈ A∗ such that Xi can execute w and terminate.



Language semantics

Interpret the atomic actions as letters of an alphabet A.

L(Xi) = words w ∈ A∗ such that Xi can execute w and terminate.

( L(X1), L(X2), L(X3) ) is the least solution of the equations under the
following interpretation:

• Universe: 2A∗ (languages over A).

• a, . . . , g are the singleton languages {a}, . . . , {g}.

• sum is union of languages, product is concatenation:

L1 · L2 = {w1w2 | w1 ∈ L1 ∧ w2 ∈ l2}



Probabilistic termination semantics

Interpret a, . . . , g as probabilities.

T(Xi) = probability that Xi terminates.



Probabilistic termination semantics

Interpret a, . . . , g as probabilities.

T(Xi) = probability that Xi terminates.

( T(X1), T(X2), T(X3) ) is the least solution of the equations under the
following interpretation:

• Universe: R+

• a, . . . , g are the probabilities of taking the transitions

• sum and product are addition and multiplication of reals



ω-continuous semirings

Underlying mathematical structure: ω-continuous semirings

Algebra (C,+, ·,0,1)

– (C,+,0) is a commutative monoid – · distributes over +

– (C, ·,1) is a monoid – 0 · a = a · 0 = 0

– av a + b is a partial order – v-chains have limits

System of (w.l.o.g. quadratic) equations X = f(X) where

• X = (X1, . . . , Xn) vector of variables,

• f(X) = (f1(X), . . . , fn(X)) vector of terms over C ∪ {X1, . . . , Xn}.

Notice: the fi are polynomials



Kleenean program analysis

Theorem [Kleene]: The least solution µf is the supremum of {ki}i≥0 ,
where

k0 = f(0)

ki+1 = f(ki)

Basic algorithm for computing µf : compute k0, k1, k2, . . . until either
ki = ki+1 or the approximation is considered adequate.



Kleenean program analysis is slow

Set interpretations: Kleene iteration never terminates if µf is an infinite set.

• X = a · X + b µf = a∗b

• Kleene approximants are finite sets: ki = (ε + a + . . . + ai)b

Probabilistic interpretation: convergence can be very slow [EY STACS05].

• X =
1

2
X2 +

1

2
µf = 1 = 0.99999 . . .

• “Logarithmic convergence”: k iterations to get log k bits of accuracy.

kn ≤ 1−
1

n + 1
k2000 = 0.9990



Kleene Iteration for X = f(X) (univariate case)
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Newton’s Method for X = f(X) (univariate case)
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Evaluation of Newton’s method

Newton’s Method is usually very efficient

• often exponential convergence

. . . but not robust:

• may not converge, converge only locally (in some neighborhood of the
least fixed-point), or converge very slowly.



A puzzling mismatch

Program analysis:

• General domain: arbitrary ω-continuous semirings

• Kleene Iteration is robust and generally applicable

• . . . but converges slowly.

Numerical mathematics:

• Particular domain: the real field

• Newton’s Method converges fast

• . . . but is not robust



Our main result

• Newton’s Method can be defined for arbitrary ω-continuous

semirings, and becomes as robust as Kleene’s method.



Mathematical formulation of Newton’s Method

Let ν be some approximation of µf . (We start with ν = f(0).)

• Compute the function Tν(X) describing the tangent to f(X) at ν

• Solve X = Tν(X) (instead of X = f(X)), and take the solution as the
new approximation

Elementary analysis: Tν(X) = Df ν(X) + f(ν)− ν

where Df x0(X) is the differential of f at x0

So: ν0 = 0

νi+1 = νi + ∆i where ∆i solution of X = Df νi(X) + f(νi)− νi



Generalizing Newton’s method

Key point: generalize X = Df ν(X) + f(ν)− ν

In an arbitrary ω-continuous semiring

• neither the differential Df ν(X), nor

• the difference f(ν)− ν

are defined.



Differentials in semirings

Standard solution: take the algebraic definition

Df ν(X) =



0 if f(X) = c

X if f(X) = X

Dgν(X) + Dhν(X) if f(X) = g(X) + h(X)

Dgν(X) · h(ν) + g(ν) · Dhν(X) if f(X) = g(X) · h(X)∑
i∈I

Df ν(X) if f(X) =
∑
i∈I

fi(X).



The difference f(νi)− νi

Solution: Replace f(νi)− νi by any δi such that f(νi) = νi + δi

νi+1 = νi + ∆i where ∆i solution of X = Df νi(X) + δi

But does δi always exist? Proposition: Yes.

But νi+i depends on your choice of δi ! Theorem: No, it doesn’t.

Can’t you give a closed form for νi+1 ? Proposition: Yes.

The least solution of X = Df νi(X) + δi is Df ∗νi
(δi):=

∞∑
j=0

Df j
νi(δi)

and so: νi+1 = νi + Df ∗νi
(δi)
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Theorem [EKL DLT07]: Let X = f(X) be an equation over an arbitrary
ω-continuous semiring. The sequence

ν0 = f(0)

νi+1 = νi + Df ∗νi
(δi)

where δi satisfies f(νi) = νi + δi exists, is unique and satisfies

ki v νi v µf

for every i ≥ 0.



Multivariate case

Systems of equations:

• νi , ∆i , δi become vectors (elements of Sn)

• The differential becomes a function Sn → Sn

Geometric intuition: Df νi(X1, . . . , Xn) is the hyperplane tangent to f at
the (n-dimensional) point νi



Derivation trees I

An equation X = f(X) induces a context-free grammar G : X → f(X)

Examples: X = 0.7X2 + 0.3 induces X → 0.7 X X | 0.3

X = 0.2XY + 0.8

Y = 0.7XY + 0.3

induces X → 0.2 X Y | 0.8

Y → 0.7 X Y | 0.3

(Actually one grammar for each variable, differing only in the axiom.)



Derivation trees II

Assign to a derivation tree t its yield Y(t):

Y(t) = (ordered) product of t ’s leaves

Assign to a set T of derivation trees its yield Y(T)

Y(T) =
∑
t∈T

Y(t)

Example: X → 0.7 X X | 0.3



Derivation trees III

Proposition: Let D be the set of all derivation trees of G. Then

µf = Y(D)

µf D
yield

X = f(X) X → f(X)



Approximants as yields: Kleene

Proposition: The i-th Kleene approximant ki is the yield of all derivation
trees of depth at most i .

ki Trees of depth ≤ i

X = f(X) X → f(X)

yield



Approximants as yields: Newton

Main Theorem: The i-th Newton approximant νi is the yield of all
derivation trees of dimension at most i .

Trees of dimension ≤ i

X = f(X) X → f(X)

yield
νi



Understanding dimension I

A derivation tree has dimension k if at least one of its derivations

X ⇒ w1 ⇒ w2 . . . ⇒ wn ⇒ w

satisfies that all of w1, . . . , wn contain at most k occurrences of
non-terminals (and at least one of them contains k occurrences).

X

X X

X

a

X

b b

b a

X ⇒ aXX ⇒ abX ⇒ abaXX ⇒
ababX ⇒ abaaa



Understanding dimension II

A derivation tree has dimension 0 if it has one node.

A derivation tree has dimension k > 0 if it consists of a spine with subtrees
of dimension at most k − 1 (and at least one subtree of dimension k − 1).



Understanding dimension II

A derivation tree has dimension 0 if it has one node.

A derivation tree has dimension k > 0 if it consists of a spine with subtrees
of dimension at most k − 1 (and at least one subtree of dimension k − 1).

k−1

k−1

k−1

k−1

k−1

k−1

k−1k−1



The proof

Theorem [EKL DLT07]: Let X = f(X) be an equation over an arbitrary
ω-continuous semiring. The Newton sequence {νi}i≥0 is unique and
satisfies ki v νi v µf for every i ≥ 0.

Proof:

Uniqueness: follows from tree characterization.

ki v νi : trees of depth i have dimension at most i .

νi v µf : the yield of all trees of dimension at most i is

smaller than or equal to the yield of all trees.
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Idempotent semirings: derivation tree analysis

Idempotent semiring: a + a = a

Technique for computing µf algebraically:

(1) Identify a set T of derivation trees such that Y(T) can be

computed algebraically.

(2) Show that Y(t) v Y(T) holds for every derivation tree t .

µf = Y(D) (proposition above)

=
∑
t∈D

Y(t) (definition of yield)

⊆
∑
t∈D

Y(T) (Y(t) ⊆ Y(T))

= Y(T) (idempotence)
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Commutative idempotent semirings

Theorem [Hopkins-Kozen LICS ’99]: The least fixed
point of a system X = f(X) of n equations over an
ω-continuous idempotent and commutative semiring
is reached by the sequence

ν0 = f(0)

νi+1 = J(νi)
∗ · f(νi)

after at most O(3n) iterations.

Theorem [EKL STACS’07]: This is exactly Newton’s sequence.

The fixed point is reached after at most n iterations, i.e. µf = νn.
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Proof with derivation tree analysis

Lemma: Let X = f(X) be a system of n equations over an ω-continuous
idempotent and commutative semiring.
For every derivation tree t there is another tree t ′ of dimension at most n
such that Y(t) = Y(t ′).

Theorem: µf = νn.

Proof: Let Tn be the set of trees of dimension n. Then Y(Tn) = νn v µf .

µf =
∑
t∈D

Y(t) =
∑
t∈D

Y(t ′) (definition of yield, Y(t) = Y(t ′))

=
∑
t∈Tn

Y(t ′) (t ′ ∈ Tn, idempotence)

v Y(Tn) = νn



An example

The Newton sequence terminates for all idempotent and commutative
analyses, the Kleene sequence does not.

X = a · X · X + b

f ′(X) = a · X + a · X = a · X

For one equation: µf = ν1 = f ′(ν0)
∗ · ν0

We obtain: ν0 = b

ν1 = (ab)∗b



Other results proved by derivation tree analysis

Star-distributive commutative semirings: (a + b)∗ = a∗ + b∗.

µf = Df ∗f n(0)(f(0)) · f(0)

(improving the complexity of an algorithm for computing throughput of
context free grammars due to Caucal et al.)

Lossy semirings: a v 1 for every a 6= 0.

µf = Df ∗f n(0)(f(0)) · f(0)

(algebraic version of a result by Courcelle)



Having fun: Secondary structure of RNA

(image by Bassi, Costa, Michel; www.cgm.cnrs-gif.fr/michel/)



An stochastic context-free grammar

[Knudsen, Hein 99]: Model the distribution of secondary structures as the
derivation trees of the following stochastic context-free grammar:

L 0.869−−−−−→ CL L 0.131−−−−−→ C

S 0.788−−−−−→ pSp S 0.212−−−−−→ CL

C 0.895−−−−−→ s C 0.105−−−−−→ pSp

Graphical interpretation:

ss s s s ss

p−p

s

s

s s

s

s

s

sss

s s s

ss

s
s

ss

p−pp−p

p−p

sssppsssspsssssspssppsssspssssspss



Visualizing the index of a derivation

Dimension = depth of the red tree + 1
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Visualizing the index of a derivation

Dimension = depth of the red tree + 1



Grammar leads to two equation systems:

L = C · L + C

S = p · S · p + C · L

C = s + p · S · p

ν0(L) = der. of dim. ≤ 1

ν1(L) = der. of dim. ≤ 2

ν2(L) = der. of dim. ≤ 3

ν3(L) = der. of dim. ≤ 4

ν4(L) = der. of dim. ≤ 5

ν5(L) = der. of dim. ≤ 6

L̂ = 0.869 · Ĉ · L̂ + 0.131 · Ĉ

Ŝ = 0.788 · Ŝ + 0.212 · Ĉ · L̂

Ĉ = 0.895 + 0.105 · Ŝ

ν̂0(L) = 0.5585

ν̂1(L) = 0.8050

ν̂2(L) = 0.9250

ν̂3(L) = 0.9789

ν̂4(L) = 0.9972

ν̂5(L) = 0.9999



Conclusions

Newton did it all


