Solving fixed-point equations on ω-continuous semirings

Javier Esparza

Technische Universität München

Joint work with

Stefan Kiefer and Michael Luttenberger

From programs to flowgraphs

From flowgraphs to equations

A syntactic transformation.

$$
\begin{aligned}
& x_{1}=a \cdot x_{1} \cdot x_{2}+b \\
& x_{2}=c \cdot x_{2} \cdot x_{3}+d \cdot x_{2} \cdot x_{1}+e \\
& x_{3}=f \cdot x_{1} \cdot x_{3}+g
\end{aligned}
$$

But how should the equations be interpreted mathematically?

- What kind of objects are a, \ldots, g ?
- What kind of operations are sum and product?

From flowgraphs to equations

A syntactic transformation.

$$
\begin{aligned}
& x_{1}=a \cdot x_{1} \cdot x_{2}+b \\
& x_{2}=c \cdot x_{2} \cdot x_{3}+d \cdot x_{2} \cdot x_{1}+e \\
& x_{3}=f \cdot x_{1} \cdot x_{3}+g
\end{aligned}
$$

But how should the equations be interpreted mathematically?

- What kind of objects are a, \ldots, g ?
- What kind of operations are sum and product?

It depends. Different interpretations lead to different semantics.

Input/output relational semantics

Interpret a, \ldots, g as assignments or guards over a set of program variables V with set of valuations Val.
$R\left(X_{i}\right)=\left(v, v^{\prime}\right) \in$ Val \times Val such that X_{i} started at v, may terminate at v^{\prime}.

Language semantics

Interpret the atomic actions as letters of an alphabet A.
$L\left(X_{i}\right)=$ words $w \in A^{*}$ such that X_{i} can execute w and terminate.

Language semantics

Interpret the atomic actions as letters of an alphabet A.
$L\left(X_{i}\right)=$ words $w \in A^{*}$ such that X_{i} can execute w and terminate.
($L\left(X_{1}\right), L\left(X_{2}\right), L\left(X_{3}\right)$) is the least solution of the equations under the following interpretation:

- Universe: $2^{A^{*}}$ (languages over A).
- a, \ldots, g are the singleton languages $\{a\}, \ldots,\{g\}$.
- sum is union of languages, product is concatenation:

$$
L_{1} \cdot L_{2}=\left\{w_{1} w_{2} \mid w_{1} \in L_{1} \wedge w_{2} \in I_{2}\right\}
$$

Probabilistic termination semantics

Interpret a, \ldots, g as probabilities.
$T\left(X_{i}\right)=$ probability that X_{i} terminates.

Probabilistic termination semantics

Interpret a, \ldots, g as probabilities.
$T\left(X_{i}\right)=$ probability that X_{i} terminates.
($T\left(X_{1}\right), T\left(X_{2}\right), T\left(X_{3}\right)$) is the least solution of the equations under the following interpretation:

- Universe: \mathbb{R}^{+}
- a, \ldots, g are the probabilities of taking the transitions
- sum and product are addition and multiplication of reals

ω-continuous semirings

Underlying mathematical structure: ω-continuous semirings

Algebra $(C,+, \cdot, 0,1)$
$-(C,+, 0)$ is a commutative monoid $\quad-$ distributes over +

- $(C, \cdot, 1)$ is a monoid
$-0 \cdot a=a \cdot 0=0$
$-a \sqsubseteq a+b$ is a partial order
- \sqsubseteq-chains have limits

System of (w.l.o.g. quadratic) equations $X=f(X)$ where

- $X=\left(X_{1}, \ldots, X_{n}\right)$ vector of variables,
- $f(X)=\left(f_{1}(X), \ldots, f_{n}(X)\right)$ vector of terms over $C \cup\left\{X_{1}, \ldots, X_{n}\right\}$.

Notice: the f_{i} are polynomials

Kleenean program analysis

Theorem [Kleene]: The least solution μf is the supremum of $\left\{k_{i}\right\}_{i \geq 0}$, where

$$
\begin{aligned}
k_{0} & =f(0) \\
k_{i+1} & =f\left(k_{i}\right)
\end{aligned}
$$

Basic algorithm for computing μf : compute $k_{0}, k_{1}, k_{2}, \ldots$ until either $k_{i}=k_{i+1}$ or the approximation is considered adequate.

Kleenean program analysis is slow

Set interpretations: Kleene iteration never terminates if μf is an infinite set.

- $X=a \cdot X+b \quad \mu f=a^{*} b$
- Kleene approximants are finite sets: $k_{i}=\left(\epsilon+a+\ldots+a^{i}\right) b$

Probabilistic interpretation: convergence can be very slow [EY STACS05].

- $X=\frac{1}{2} X^{2}+\frac{1}{2} \quad \mu f=1=0.99999 \ldots$
- "Logarithmic convergence": k iterations to get $\log k$ bits of accuracy.

$$
k_{n} \leq 1-\frac{1}{n+1} \quad k_{2000}=0.9990
$$

Kleene Iteration for $X=f(X)$ (univariate case)

Newton's Method for $X=f(X)$ (univariate case)

Newton's Method for $X=f(X)$ (univariate case)

Newton's Method for $X=f(X)$ (univariate case)

Newton's Method for $X=f(X)$ (univariate case)

Newton's Method for $X=f(X)$ (univariate case)

Newton's Method for $X=f(X)$ (univariate case)

Evaluation of Newton's method

Newton's Method is usually very efficient

- often exponential convergence
... but not robust:
- may not converge, converge only locally (in some neighborhood of the least fixed-point), or converge very slowly.

A puzzling mismatch

Program analysis:

- General domain: arbitrary ω-continuous semirings
- Kleene Iteration is robust and generally applicable
- ...but converges slowly.

Numerical mathematics:

- Particular domain: the real field
- Newton's Method converges fast
- ... but is not robust

Our main result

- Newton's Method can be defined for arbitrary ω-continuous semirings, and becomes as robust as Kleene's method.

Mathematical formulation of Newton's Method

Let ν be some approximation of μf. (We start with $\nu=f(0)$.)

- Compute the function $T_{\nu}(X)$ describing the tangent to $f(X)$ at ν
- Solve $X=T_{\nu}(X)$ (instead of $X=f(X)$), and take the solution as the new approximation

Elementary analysis: $\quad T_{\nu}(X)=D f_{\nu}(X)+f(\nu)-\nu$ where $D f_{x_{0}}(X)$ is the differential of f at x_{0}
So: $\quad \nu_{0}=0$
$\nu_{i+1}=\nu_{i}+\Delta_{i}$ where Δ_{i} solution of $X=D f_{\nu_{i}}(X)+f\left(\nu_{i}\right)-\nu_{i}$

Generalizing Newton's method

Key point: generalize $\quad X=D f_{\nu}(X)+f(\nu)-\nu$

In an arbitrary ω-continuous semiring

- neither the differential $D f_{\nu}(X)$, nor
- the difference $f(\nu)-\nu$
are defined.

Differentials in semirings

Standard solution: take the algebraic definition

$$
D f_{\nu}(X)=\left\{\begin{aligned}
0 & & \text { if } f(X)=c \\
X & & \text { if } f(X)=X \\
D g_{\nu}(X)+D h_{\nu}(X) & & \text { if } f(X)=g(X)+h(X) \\
D g_{\nu}(X) \cdot h(\nu)+g(\nu) \cdot D h_{\nu}(X) & & \text { if } f(X)=g(X) \cdot h(X) \\
\sum_{i \in I} D f_{\nu}(X) & & \text { if } f(X)=\sum_{i \in I} f_{i}(X)
\end{aligned}\right.
$$

The difference $f\left(\nu_{i}\right)-\nu_{i}$

Solution: Replace $f\left(\nu_{i}\right)-\nu_{i}$ by any δ_{i} such that $f\left(\nu_{i}\right)=\nu_{i}+\delta_{i}$

$$
\nu_{i+1}=\nu_{i}+\Delta_{i} \text { where } \Delta_{i} \text { solution of } \quad X=D f_{\nu_{i}}(X)+\delta_{i}
$$

The difference $f\left(\nu_{i}\right)-\nu_{i}$

Solution: Replace $f\left(\nu_{i}\right)-\nu_{i}$ by any δ_{i} such that $f\left(\nu_{i}\right)=\nu_{i}+\delta_{i}$

$$
\nu_{i+1}=\nu_{i}+\Delta_{i} \text { where } \Delta_{i} \text { solution of } \quad X=D f_{\nu_{i}}(X)+\delta_{i}
$$

But does δ_{i} always exist?

The difference $f\left(\nu_{i}\right)-\nu_{i}$

Solution: Replace $f\left(\nu_{i}\right)-\nu_{i}$ by any δ_{i} such that $f\left(\nu_{i}\right)=\nu_{i}+\delta_{i}$

$$
\nu_{i+1}=\nu_{i}+\Delta_{i} \text { where } \Delta_{i} \text { solution of } X=D f_{\nu_{i}}(X)+\delta_{i}
$$

But does δ_{i} always exist? Proposition: Yes.

The difference $f\left(\nu_{i}\right)-\nu_{i}$

Solution: Replace $f\left(\nu_{i}\right)-\nu_{i}$ by any δ_{i} such that $f\left(\nu_{i}\right)=\nu_{i}+\delta_{i}$

$$
\nu_{i+1}=\nu_{i}+\Delta_{i} \text { where } \Delta_{i} \text { solution of } X=D f_{\nu_{i}}(X)+\delta_{i}
$$

But does δ_{i} always exist? Proposition: Yes.
But ν_{i+i} depends on your choice of δ_{i} !

The difference $f\left(\nu_{i}\right)-\nu_{i}$

Solution: Replace $f\left(\nu_{i}\right)-\nu_{i}$ by any δ_{i} such that $f\left(\nu_{i}\right)=\nu_{i}+\delta_{i}$

$$
\nu_{i+1}=\nu_{i}+\Delta_{i} \text { where } \Delta_{i} \text { solution of } X=D f_{\nu_{i}}(X)+\delta_{i}
$$

But does δ_{i} always exist? Proposition: Yes.
But ν_{i+i} depends on your choice of δ_{i} ! Theorem: No, it doesn't.

The difference $f\left(\nu_{i}\right)-\nu_{i}$

Solution: Replace $f\left(\nu_{i}\right)-\nu_{i}$ by any δ_{i} such that $f\left(\nu_{i}\right)=\nu_{i}+\delta_{i}$

$$
\nu_{i+1}=\nu_{i}+\Delta_{i} \text { where } \Delta_{i} \text { solution of } \quad X=D f_{\nu_{i}}(X)+\delta_{i}
$$

But does δ_{i} always exist? Proposition: Yes.
But ν_{i+i} depends on your choice of δ_{i} ! Theorem: No, it doesn't.
Can't you give a closed form for ν_{i+1} ?

The difference $f\left(\nu_{i}\right)-\nu_{i}$

Solution: Replace $f\left(\nu_{i}\right)-\nu_{i}$ by any δ_{i} such that $f\left(\nu_{i}\right)=\nu_{i}+\delta_{i}$

$$
\nu_{i+1}=\nu_{i}+\Delta_{i} \text { where } \Delta_{i} \text { solution of } \quad X=D f_{\nu_{i}}(X)+\delta_{i}
$$

But does δ_{i} always exist? Proposition: Yes.
But ν_{i+i} depends on your choice of δ_{i} ! Theorem: No, it doesn't.
Can't you give a closed form for ν_{i+1} ? Proposition: Yes.

The difference $f\left(\nu_{i}\right)-\nu_{i}$

Solution: Replace $f\left(\nu_{i}\right)-\nu_{i}$ by any δ_{i} such that $f\left(\nu_{i}\right)=\nu_{i}+\delta_{i}$

$$
\nu_{i+1}=\nu_{i}+\Delta_{i} \text { where } \Delta_{i} \text { solution of } \quad X=D f_{\nu_{i}}(X)+\delta_{i}
$$

But does δ_{i} always exist? Proposition: Yes.
But ν_{i+i} depends on your choice of δ_{i} ! Theorem: No, it doesn't.
Can't you give a closed form for ν_{i+1} ? Proposition: Yes.
The least solution of $X=D f_{\nu_{i}}(X)+\delta_{i}$ is $D f_{\nu_{i}}^{*}\left(\delta_{i}\right):=\sum_{j=0}^{\infty} D f_{\nu_{i}}^{j}\left(\delta_{i}\right)$ and so: $\nu_{i+1}=\nu_{i}+D f_{\nu_{i}}^{*}\left(\delta_{i}\right)$

Theorem [EKL DLT07]: Let $X=f(X)$ be an equation over an arbitrary ω-continuous semiring. The sequence

$$
\begin{aligned}
\nu_{0} & =f(0) \\
\nu_{i+1} & =\nu_{i}+D f_{\nu_{i}}^{*}\left(\delta_{i}\right)
\end{aligned}
$$

where δ_{i} satisfies $f\left(\nu_{i}\right)=\nu_{i}+\delta_{i}$ exists, is unique and satisfies

$$
k_{i} \sqsubseteq \nu_{i} \sqsubseteq \mu f
$$

for every $i \geq 0$.

Multivariate case

Systems of equations:

- $\nu_{i}, \Delta_{i}, \delta_{i}$ become vectors (elements of S^{n})
- The differential becomes a function $S^{n} \rightarrow S^{n}$

Geometric intuition: $\operatorname{Df}_{\nu_{i}}\left(X_{1}, \ldots, X_{n}\right)$ is the hyperplane tangent to f at the (n-dimensional) point ν_{i}

Derivation trees I

An equation $X=f(X)$ induces a context-free grammar $G: X \rightarrow f(X)$

Examples: $\quad X=0.7 X^{2}+0.3$ induces $\quad X \rightarrow 0.7 X X \mid 0.3$

$$
\begin{array}{lll}
X=0.2 X Y+0.8 & \text { induces } & X \rightarrow 0.2 X Y \mid 0.8 \\
Y=0.7 X Y+0.3 & & Y \rightarrow 0.7 X Y \mid 0.3
\end{array}
$$

(Actually one grammar for each variable, differing only in the axiom.)

Derivation trees II

Assign to a derivation tree t its yield $Y(t)$:

$$
Y(t)=\text { (ordered) product of } t \text { 's leaves }
$$

Assign to a set T of derivation trees its yield $Y(T)$

$$
Y(T)=\sum_{t \in T} Y(t)
$$

Example: $X \rightarrow 0.7 \times X \mid 0.3$

Derivation trees III

Proposition: Let D be the set of all derivation trees of G. Then

$$
\mu f=Y(D)
$$

Approximants as yields: Kleene

Proposition: The i-th Kleene approximant k_{i} is the yield of all derivation trees of depth at most i.

$$
X=f(X) \longrightarrow X \rightarrow f(X)
$$

Approximants as yields: Newton

Main Theorem: The i-th Newton approximant ν_{i} is the yield of all derivation trees of dimension at most i.

Understanding dimension I

A derivation tree has dimension k if at least one of its derivations

$$
X \Rightarrow w_{1} \Rightarrow w_{2} \ldots \Rightarrow w_{n} \Rightarrow w
$$

satisfies that all of w_{1}, \ldots, w_{n} contain at most k occurrences of non-terminals (and at least one of them contains k occurrences).

$X \Rightarrow a X X \Rightarrow a b X \Rightarrow a b a X X \Rightarrow$ $a b a b X \Rightarrow$ abaaa

Understanding dimension II

A derivation tree has dimension 0 if it has one node.

Understanding dimension II

A derivation tree has dimension 0 if it has one node.

A derivation tree has dimension $k>0$ if it consists of a spine with subtrees of dimension at most $k-1$ (and at least one subtree of dimension $k-1$).

The proof

Theorem [EKL DLT07]: Let $X=f(X)$ be an equation over an arbitrary ω-continuous semiring. The Newton sequence $\left\{\nu_{i}\right\}_{i \geq 0}$ is unique and satisfies $k_{i} \sqsubseteq \nu_{i} \sqsubseteq \mu f$ for every $i \geq 0$.

The proof

Theorem [EKL DLT07]: Let $X=f(X)$ be an equation over an arbitrary ω-continuous semiring. The Newton sequence $\left\{\nu_{i}\right\}_{i \geq 0}$ is unique and satisfies $k_{i} \sqsubseteq \nu_{i} \sqsubseteq \mu f$ for every $i \geq 0$.

Proof:
Uniqueness: follows from tree characterization.

The proof

Theorem [EKL DLT07]: Let $X=f(X)$ be an equation over an arbitrary ω-continuous semiring. The Newton sequence $\left\{\nu_{i}\right\}_{i \geq 0}$ is unique and satisfies $k_{i} \sqsubseteq \nu_{i} \sqsubseteq \mu f$ for every $i \geq 0$.

Proof:
Uniqueness: follows from tree characterization.
$k_{i} \sqsubseteq \nu_{i}$: trees of depth i have dimension at most i.

The proof

Theorem [EKL DLT07]: Let $X=f(X)$ be an equation over an arbitrary ω-continuous semiring. The Newton sequence $\left\{\nu_{i}\right\}_{i \geq 0}$ is unique and satisfies $k_{i} \sqsubseteq \nu_{i} \sqsubseteq \mu f$ for every $i \geq 0$.

Proof:
Uniqueness: follows from tree characterization.
$k_{i} \sqsubseteq \nu_{i}$: trees of depth i have dimension at most i.
$\nu_{i} \sqsubseteq \mu f$: the yield of all trees of dimension at most i is smaller than or equal to the yield of all trees.

Idempotent semirings: derivation tree analysis

Idempotent semiring: $a+a=a$
Technique for computing μf algebraically:
(1) Identify a set T of derivation trees such that $Y(T)$ can be computed algebraically.
(2) Show that $Y(t) \sqsubseteq Y(T)$ holds for every derivation tree t.

Idempotent semirings: derivation tree analysis

Idempotent semiring: $a+a=a$
Technique for computing μf algebraically:
(1) Identify a set T of derivation trees such that $Y(T)$ can be computed algebraically.
(2) Show that $Y(t) \sqsubseteq Y(T)$ holds for every derivation tree t.

$$
\begin{aligned}
\mu f & =Y(D) & & \text { (proposition above) } \\
& =\sum_{t \in D} Y(t) & & \text { (definition of yield) } \\
& \subseteq \sum_{t \in D} Y(T) & & (Y(t) \subseteq Y(T)) \\
& =Y(T) & & \text { (idempotence) }
\end{aligned}
$$

Commutative idempotent semirings

Theorem [Hopkins-Kozen LICS '99]: The least fixed point of a system $X=f(X)$ of n equations over an ω-continuous idempotent and commutative semiring is reached by the sequence

$$
\begin{aligned}
\nu_{0} & =f(0) \\
\nu_{i+1} & =J\left(\nu_{i}\right)^{*} \cdot f\left(\nu_{i}\right)
\end{aligned}
$$

after at most $O\left(3^{n}\right)$ iterations.

Commutative idempotent semirings

Theorem [Hopkins-Kozen LICS '99]: The least fixed point of a system $X=f(X)$ of n equations over an ω-continuous idempotent and commutative semiring is reached by the sequence

$$
\begin{aligned}
\nu_{0} & =f(0) \\
\nu_{i+1} & =J\left(\nu_{i}\right)^{*} \cdot f\left(\nu_{i}\right)
\end{aligned}
$$

after at most $O\left(3^{n}\right)$ iterations.

Commutative idempotent semirings

Theorem [Hopkins-Kozen LICS '99]: The least fixed point of a system $X=f(X)$ of n equations over an ω-continuous idempotent and commutative semiring is reached by the sequence

$$
\begin{aligned}
\nu_{0} & =f(0) \\
\nu_{i+1} & =J\left(\nu_{i}\right)^{*} \cdot f\left(\nu_{i}\right)
\end{aligned}
$$

after at most $O\left(3^{n}\right)$ iterations.

Theorem [EKL STACS'07]: This is exactly Newton's sequence.

Commutative idempotent semirings

Theorem [Hopkins-Kozen LICS '99]: The least fixed point of a system $X=f(X)$ of n equations over an ω-continuous idempotent and commutative semiring is reached by the sequence

$$
\begin{aligned}
\nu_{0} & =f(0) \\
\nu_{i+1} & =J\left(\nu_{i}\right)^{*} \cdot f\left(\nu_{i}\right)
\end{aligned}
$$

after at most $O\left(3^{n}\right)$ iterations.

Theorem [EKL STACS'07]: This is exactly Newton's sequence.
The fixed point is reached after at most n iterations, i.e. $\mu f=\nu_{n}$.

Proof with derivation tree analysis

Lemma: Let $X=f(X)$ be a system of n equations over an ω-continuous idempotent and commutative semiring.
For every derivation tree t there is another tree t^{\prime} of dimension at most n such that $Y(t)=Y\left(t^{\prime}\right)$.

Theorem: $\mu f=\nu_{n}$.
Proof: Let T_{n} be the set of trees of dimension n. Then $Y\left(T_{n}\right)=\nu_{n} \sqsubseteq \mu f$.

$$
\begin{aligned}
\mu f=\sum_{t \in D} Y(t) & \left.=\sum_{t \in D} Y\left(t^{\prime}\right) \quad \text { (definition of yield, } Y(t)=Y\left(t^{\prime}\right)\right) \\
& =\sum_{t \in T_{n}} Y\left(t^{\prime}\right) \quad\left(t^{\prime} \in T_{n}, \text { idempotence }\right) \\
& \sqsubseteq Y\left(T_{n}\right)=\nu_{n}
\end{aligned}
$$

An example

The Newton sequence terminates for all idempotent and commutative analyses, the Kleene sequence does not.

$$
\begin{aligned}
X & =a \cdot X \cdot X+b \\
f^{\prime}(X) & =a \cdot X+a \cdot X=a \cdot X
\end{aligned}
$$

For one equation: $\quad \mu f=\nu_{1}=f^{\prime}\left(\nu_{0}\right)^{*} \cdot \nu_{0}$

We obtain: $\quad \nu_{0}=b$

$$
\nu_{1}=(a b)^{*} b
$$

Other results proved by derivation tree analysis

Star-distributive commutative semirings: $(a+b)^{*}=a^{*}+b^{*}$.

$$
\mu f=D f_{f^{n}(0)}^{*}(f(0)) \cdot f(0)
$$

(improving the complexity of an algorithm for computing throughput of context free grammars due to Caucal et al.)

Lossy semirings: $a \sqsubseteq 1$ for every $a \neq 0$.

$$
\mu f=D f_{f^{n}(0)}^{*}(f(0)) \cdot f(0)
$$

(algebraic version of a result by Courcelle)

Having fun: Secondary structure of RNA

(image by Bassi, Costa, Michel; www.cgm.cnrs-gif.fr/michel/)

An stochastic context-free grammar

[Knudsen, Hein 99]: Model the distribution of secondary structures as the derivation trees of the following stochastic context-free grammar:

$$
\begin{array}{ll}
L \xrightarrow{0.869} C L & L \xrightarrow{0.131} C \\
S \xrightarrow{0.788} p S p & S \xrightarrow{0.212} C L \\
C \xrightarrow{0.895} s & C \xrightarrow{0.105} p S p
\end{array}
$$

Graphical interpretation:

Visualizing the index of a derivation

Visualizing the index of a derivation

Visualizing the index of a derivation

Dimension $=$ depth of the red tree +1

Grammar leads to two equation systems:

$$
\begin{array}{ll}
L=C \cdot L+C & \hat{L}=0.869 \cdot \hat{C} \cdot \hat{L}+0.131 \cdot \hat{C} \\
S=p \cdot S \cdot p+C \cdot L & \hat{S}=0.788 \cdot \hat{S}+0.212 \cdot \hat{C} \cdot \hat{L} \\
C=s+p \cdot S \cdot p & \hat{C}=0.895+0.105 \cdot \hat{S}
\end{array}
$$

$$
\begin{array}{ll}
\nu_{0}(L)=\text { der. of dim. } \leq 1 & \widehat{\nu}_{0}(L)=0.5585 \\
\nu_{1}(L)=\text { der. of dim. } \leq 2 & \widehat{\nu}_{1}(L)=0.8050 \\
\nu_{2}(L)=\text { der. of dim. } \leq 3 & \widehat{\nu}_{2}(L)=0.9250 \\
\nu_{3}(L)=\text { der. of dim. } \leq 4 & \widehat{\nu}_{3}(L)=0.9789 \\
\nu_{4}(L)=\text { der. of dim. } \leq 5 & \widehat{\nu}_{4}(L)=0.9972 \\
\nu_{5}(L)=\text { der. of dim. } \leq 6 & \widehat{\nu}_{5}(L)=0.9999
\end{array}
$$

Conclusions

Newton did it all

