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From programs to flowgraphs

proc Xi proc X




From flowgraphs to equations

A syntactic transformation.

X1, = a-X{-Xo+0b
Xo = C°X2-X3—-d-X2-X1—|—e
X3 = - X1-X3+g

But how should the equations be interpreted mathematically?

— What kind of objects are a, ..., g ?
— What kind of operations are sum and product ?



From flowgraphs to equations

A syntactic transformation.

X1, = a-X{-Xo+0b
Xo = C°X2-X3—-d-X2-X1—|—e
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But how should the equations be interpreted mathematically?

— What kind of objects are a, ..., g ?
— What kind of operations are sum and product ?

It depends. Different interpretations lead to different semantics.



Input/output relational semantics

Interpret a, . .., g as assignments or guards over a set of program
variables V with set of valuations Val.

R(X;) = (v, V") € Val x Val such that X; started at v, may terminate at v’.



Language semantics

Interpret the atomic actions as letters of an alphabet A.

L(X;) = words w € A* such that X; can execute w and terminate.



Language semantics

Interpret the atomic actions as letters of an alphabet A.
L(X;) = words w € A* such that X; can execute w and terminate.

( L(X7),L(X5),L(X3) ) isthe least solution of the equations under the
following interpretation:

e Universe: 24" (languages over A).
e a,...,9 are the singleton languages {a},...,{g}.

e sum is union of languages, product is concatenation:

L1 -Lo=4{wiwr | wg € L1 AWy € |}



Probabilistic termination semantics

Interpret a, . . ., g as probabilities.

T'(X;) = probability that X; terminates.



Probabilistic termination semantics

Interpret a, . . ., g as probabilities.
T'(X;) = probability that X; terminates.

(T(X71), T(X5), T(X3) ) isthe least solution of the equations under the
following interpretation:

e Universe: RT
e a,...,Q are the probabilities of taking the transitions

e sum and product are addition and multiplication of reals



w-continuous semirings

Underlying mathematical structure: w-continuous semirings

Algebra (C,+,-,0,1)

— (C, +,0) is a commutative monoid — - distributes over
- (C,-,1) is a monoid —0-a=a-0=0
—al a+ bis a partial order — [C-chains have limits

System of (w.l.o.g. quadratic) equations X = f(X) where

e X = (Xq,...,Xn) vector of variables,
o f(X)=((X),..., (X)) vector of terms over CU {X1,...,Xn}.

Notice: the f; are polynomials



Kleenean program analysis

Theorem [Kleene]: The least solution uf is the supremum of {k,-},-zo ,
where

S
|

f(0)
Kip1 = f(k)

Basic algorithm for computing uf: compute kg, k1, Ko, ... until either
K;i = K41 or the approximation is considered adequate.



Kleenean program analysis is slow

Set interpretations: Kleene iteration never terminates if f is an infinite set.

e X=a-X+b uf=ab

e Kleene approximants are finite sets: ki = (e +a+ ...+ a)b

Probabilistic interpretation: convergence can be very slow [EY STACSO05].

1 1
. x:§x2+5 puf =1 =0.99999...
e “Logarithmic convergence”. k iterations to get log k bits of accuracy.

1
n-—+1

kn <1 -— K>000 = 0.9990



Kleene lteration for X = f(X) (univariate case)
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Newton’s Method for X = f(X) (univariate case)
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Newton’s Method for X = f(X) (univariate case)




Evaluation of Newton’s method

Newton’s Method is usually very efficient

e often exponential convergence

... but not robust:

e may not converge, converge only locally (in some neighborhood of the
least fixed-point), or converge very slowly.



A puzzling mismatch

Program analysis:
e General domain: arbitrary w-continuous semirings
e Kleene lteration is robust and generally applicable

e ...but converges slowly.

Numerical mathematics:
e Particular domain: the real field
e Newton’s Method converges fast

e ...butis not robust



Our main result

e Newton’s Method can be defined for arbitrary w-continuous

semirings, and becomes as robust as Kleene's method.



Mathematical formulation of Newton’s Method

Let v be some approximation of uf. (We start with v = f(0).)

e Compute the function T, (X) describing the tangent to f(X) at v

e Solve X = T,(X) (instead of X = (X)), and take the solution as the
new approximation

Elementary analysis: T,(X) = Df,(X) + f(v) — v
where Dfx,(X) is the differential of f at xg
So: 1vg = O
vi + A; where A; solutionof X = Df,.(X) + f(v;) — v,

Vi+1



Generalizing Newton’s method

Key point: generalize X = Df,(X) + f(v) — v

In an arbitrary w-continuous semiring
e neither the differential Df,(X), nor

e the difference f(v) — v

are defined.



Differentials in semirings

Standard solution: take the algebraic definition

Df,(X) = <

Dg, (X)

0
X

Dhy (X)

Dg, (X) - h(v) + g(v) - Dhy(X)
> _Dfu(X)

iel

if f(X) = ¢
if f(X) = X
if f(X) = g(X)

h(X)

if f(X) = g(X) - h(X)
(X)) = fi(X).



The difference f(v;) — v;

Solution: Replace f(v;) —v; by any §; suchthat f(v;) = v; + §;

vip1 = vi+ A where A; solutionof X = Df,.(X) + J;
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The difference f(v;) — v;

Solution: Replace f(v;) —v; by any §; suchthat f(v;) = v; + §;

vip1 = vi+ A where A; solutionof X = Df,.(X) + J;

But does §; always exist? Proposition: Yes.
But v;4; depends on your choice of ¢;! Theorem: No, it doesn't.

Can't you give a closed form for v; 1 ? Proposition: Yes.



The difference f(v;) — v;

Solution: Replace f(v;) —v; by any §; suchthat f(v;) = v; + §;

vip1 = vi+ A where A; solutionof X = Df,.(X) + J;

But does §; always exist? Proposition: Yes.
But v;4; depends on your choice of ¢;! Theorem: No, it doesn't.
Can't you give a closed form for v; 1 ? Proposition: Yes.
oo
The least solution of X = Df,,(X) +¢; is Df}.(6;):=>» DF,(5))

j=0
and so: vy = v;+ Df}.(6;)



Theorem [EKL DLTO7]: Let X = f(X) be an equation over an arbitrary
w-continuous semiring. The sequence

vg = f(0)
viy1 = vj+ Df}(6))
where §; satisfies f(v;) = v; 4+ §; exists, is unique and satisfies
ki C v C pf

for every i > 0.



Multivariate case

Systems of equations:
e v;, A, §; become vectors (elements of S”)

e The differential becomes a function S — S”
Geometric intuition: Dfy.(X1, ..., Xn) is the hyperplane tangent to f at
the (n-dimensional) point v



Derivation trees |

An equation X = f(X) induces a context-free grammar G : X — f(X)

Examples: X =0.7X2 4+ 0.3 induces

X =02XY + 0.8 induces
Y =0.7XY +0.3

X — 0.7XX

X — 02XY
Y - 0.7XY

0.3

0.8
0.3

(Actually one grammar for each variable, differing only in the axiom.)



Derivation trees ||

Assign to a derivation tree t itsyield Y (t):

Y(t) = (ordered) product of t's leaves

Assigntoaset T of derivationtreesitsyield Y(T)

Y(T)=>) Y(t)

Example: X — 0.7 X X | 0.3



Derivation trees |l

Proposition: Let D be the set of all derivation trees of G. Then

uf = Y(D)

P

pf = D




Approximants as yields: Kleene

Proposition: The i-th Kleene approximant k; is the yield of all derivation
trees of depth at most /.

o

K —- Trees of depth < i




Approximants as yields: Newton

Main Theorem: The /-th Newton approximant v; is the yield of all
derivation trees of dimension at most /.

X = f(X) - X — f(X)

e

V; Trees of dimension < |




Understanding dimension |

A derivation tree has dimension k if at least one of its derivations

X=>WwWi=W...= W= W

satisfies that all of wq, ..., wn contain at most k occurrences of
non-terminals (and at least one of them contains k occurrences).

AN,

X = aXX = abX = abaXX =
/ ‘\ ababX = abaaa
X X
|

b b

b a



Understanding dimension |l

A derivation tree has dimension O if it has one node.



Understanding dimension |l

A derivation tree has dimension O if it has one node.

A derivation tree has dimension k > O if it consists of a spine with subtrees
of dimension at most kK — 1 (and at least one subtree of dimension k — 1).
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The proof

Theorem [EKL DLTO7]: Let X = f(X) be an equation over an arbitrary
w-continuous semiring. The Newton sequence {v;};~ is unique and
satisfies k; C v; C uf forevery i > 0.

Proof:

Uniqueness: follows from tree characterization.



The proof

Theorem [EKL DLTO7]: Let X = f(X) be an equation over an arbitrary
w-continuous semiring. The Newton sequence {v;};~ is unique and
satisfies k; C v; C uf forevery i > 0.

Proof:

Uniqueness: follows from tree characterization.

K; C v;: trees of depth / have dimension at most /.



The proof

Theorem [EKL DLTO7]: Let X = f(X) be an equation over an arbitrary
w-continuous semiring. The Newton sequence {v;};~ is unique and
satisfies k; C v; C uf forevery i > 0.

Proof:

Uniqueness: follows from tree characterization.

K; C v;: trees of depth / have dimension at most /.

vi C pf: the yield of all trees of dimension at most i is
smaller than or equal to the yield of all trees.



ldempotent semirings: derivation tree analysis

ldempotent semiring: a+ a = a
Technique for computing wf algebraically:

(1) Identify a set T of derivation trees such that Y(T) can be
computed algebraically.
(2) Show that Y(t) C Y(T) holds for every derivation tree t.



ldempotent semirings: derivation tree analysis

ldempotent semiring: a+ a = a
Technique for computing wf algebraically:

(1) Identify a set T of derivation trees such that Y(T) can be
computed algebraically.
(2) Show that Y(t) C Y(T) holds for every derivation tree t.

uf = Y(D) (proposition above)
= » Y(t) (definition of yield)

1M

dY(T) (Y(t) € Y(T))
teD
Y(T) (idempotence)



Commutative idempotent semirings

Theorem [Hopkins-Kozen LICS "99]: The least fixed
point of a system X = f(X) of n equations over an
w-continuous idempotent and commutative semiring
IS reached by the sequence

vg = f(0)
vigpr = J)* - ()
after at most O(3") iterations.
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Commutative idempotent semirings

Theorem [Hopkins-Kozen LICS "99]: The least fixed
point of a system X = f(X) of n equations over an
w-continuous idempotent and commutative semiring
IS reached by the sequence

vg = f(0)
vigpr = J)* - ()
after at most O(3") iterations.

Theorem [EKL STACS’07]: This is exactly Newton’s sequence.

The fixed point is reached after at most n iterations, i.e. uf = vp.



Proof with derivation tree analysis

Lemma: Let X = f(X) be a system of n equations over an w-continuous

idempotent and commutative semiring.
For every derivation tree t there is another tree t’ of dimension at most n

such that Y(t) = Y(t).
Theorem: uf = vp.

Proof: Let T be the set of trees of dimension n. Then Y(Tp) = vp C uf.

pf=>"Y() = > Y(t)  (definition of yield, Y () = Y (1))
teD teD
= » Y(t) (t € Tp, idempotence)

N

Y( Tn) — Un



An example

The Newton sequence terminates for all idempotent and commutative
analyses, the Kleene sequence does not.

X = a-X-X+05>b
ff(X) = a-X+a-X=a-X

For one equation: uf =v1 = ' (vg)* - vg

We obtain: vg = b
vV, = (ab)*b



Other results proved by derivation tree analysis

Star-distributive commutative semirings: (a+ b)* = a* + b*.

uf = i (£(0)) - 1(0)

(improving the complexity of an algorithm for computing throughput of
context free grammars due to Caucal et al.)

Lossy semirings: a C 1 for every a = 0.

uf = Dffn()(F(0)) - £(0)

(algebraic version of a result by Courcelle)



Secondary structure of RNA

Having fun

Pylaiella littoralis LSU/2

=
==

\Q
u

e Fo

[ )
Sann

A

[ ]

n\\sﬁ

GAGCCEUGU

A

mianmminNg

CUUGBCACE,

GI.!A&A&UUAUUHB.UT/
D e —p i

www.cgm.cnrs-gif.fr/michel/)

(image by Bassi, Costa, Michel



An stochastic context-free grammar

[Knudsen, Hein 99]: Model the distribution of secondary structures as the
derivation trees of the following stochastic context-free grammar:

1 0.869 CL [ 0.131 C

s 0788 o, g 0212
pSp

C 0.895 C 0.105

S

Graphical interpretation:

I r— 1| —
SSSPPSSSSPSSSSSSPSSPPSSSSPSSSSSPSS

SSS SSSS 'SS
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Visualizing the index of a derivation
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Visualizing the index of a derivation

Pylaiella littoralis LSU/2
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Grammar leads to two equation systems:

L

vo(L)
v1(L)
vo(L)
v3(L)
va(L)
vs (L)

C-L+C

p-S-p+C-L

s+p-S-p

der.
der.
der.
der.
der.
der.

of dim
of dim

<
<

of dim.

of dim.

of dim.

of dim.

=

W

o

vo(L)
v1(L)
vo(L)
v3(L)
va(L)
vs(L)

0869-C-L+0.131-C
0.788-S+0.212-C-L

—

0.895+40.105- S

0.5585
0.8050
0.9250
0.9789
0.9972
0.9999



Conclusions

Newton did it all




