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Motivations. . .

A number of stochastic process algebras have been proposed in the
last two decades. These are based on:

1 Labeled Transition Systems (LTS)
I for providing compositional semantics of languages
I for describing qualitative properties

2 Continuous Time Markov Chains (CTMC)
I for analysing quantitative properties

Semantics of these calculi have been given by variants of the
Structured Operational Semantics (SOS) approach but:

there is no general framework for modelling the different
formalisms
it is rather difficult to appreciate differences and similarities of
such semantics.
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Stochastic Process Algebras - incomplete list

TIPP (N. Glotz, U. Herzog, M. Rettelbach - 1993)
Stochastic π-calculus (C. Priami - 1995, later with P. Quaglia)
PEPA (J. Hillston - 1996)
EMPA (M. Bernardo, R. Gorrieri - 1998)
IMC (H. Hermanns - 2002)
. . .
STOKLAIM

MarCaSPiS
. . .

More Calculi will come: Besides qualitative aspects of distributed
systems it more and more important that performance and
dependability be addressed to deal with issues related to quality of
service.
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Common ingredients of Stochastic PA

Randomized Actions
It is assumed that action execution takes time
Execution times is described by means of random variables
Random Variables are assumed to be exponentially distributed
Random Variables are fully characterised by their rates.

Properties of Exponential Distributions
If X is exponentially distributed with parameter λ ∈ IR>0:

P{X ≤ d} = 1− e−λ·d , for d ≥ 0
The average duration of X is 1

λ ; the variance of X is 1
λ2

Memory-less: P{X ≤ t + d | X > t} = P{X ≤ d}
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Continuous Time Markov Chains
Continuous Time Markov Chains are a successful mathematical
framework for modeling and analysing performance and dependability
of systems that rely on exponential distribution of states transitions.

CTMCs come with
Well established Analysis Techniques

I Steady State Analysis
I Transient Analysis

Efficient Software Tools:
I Stochastic Timed/Temporal Logics
I Stochastic Model Checking

A CTMC is a pair (S,R)

S: a countable set of states
R : S × S → IR≥0, the rate matrix
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Stochastic process calculi

A CTMC is associated to each process term;
CTMC model the stochastic behaviour of processes.

To get a CTMC from a term, one needs to. . .

compute synchronizations rate
while taking into account transition multiplicity, for determining
correct execution rate

Process Calculi:
α.P + α.P = α.P

rec X . α.X | rec X . α.X = rec X . α.X
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Semantics of stochastic process calculi

We introduce a variant of Rate Transition Systems (RTS), proposed by
Klin and Sassone(FOSSACS 2008), and use them for defining
stochastic behaviour of a few process algebras.

Like most of the previous attempts we take a two step approach: For a
given term, say T , we define an enriched LTS and then use it to
determine the CTMC to be associated to T .

Our variant of RTS associates terms and actions to functions from
terms to rates
The apparent rate approach, originally developed by Hillston for
multi-party synchronisation (à la CSP), is generalized to deal
"appropriately" also with binary synchronisation (à la CCS).
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Semantics of stochastic process calculi

Stochastic semantics of process calculi is defined by means of a
transition relation - that associates to a pair (P, α) - consisting of
process and an action - a total function (P, Q,. . . ) that assigns a
non-negative real number to each process of the calculus. Value 0 is
assigned to unreachable processes.

P
α- P means that, for a generic process Q:
if P(Q) = x (6= 0) then Q is reachable from P via the execution of
α with rate/(weight) x
if P(Q) = 0 then Q is not reachable from P via α

We have that if P
α- P then

⊕P =
∑

Q P(Q) represents the total rate/weight of α in P.
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Rate transition systems

Definition

A rate transition system is a triple (S,A, - ) where:
S is a set of states;
A is a set of transition labels;
→⊆ S × A× [S → IR≥0]

An example of RTS

s3 s1 s2 s4

α
λ1

βλ2

a
λ3λ4

b
λ5

λ6

γ λ7

δ
λ8
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Some Notation for Rate transition systems

RTS will be denoted by R, R1, R′, . . . ,

Elements of [S → IR≥0] are denoted by P,Q,R, . . .

[s1 7→ v1, . . . , sn 7→ vn] denotes the function associating vi to si
and 0 to all the other states.

∅ denotes the constant function 0.

χs stands for [s 7→ 1].

P + Q denotes the function R such that: R(s) = P(s) + Q(s).

P · x
y denotes the function R such that: R(s) = P(s) · x

y if y 6= 0,
and ∅ if y = 0.
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Rate transition systems
Definition

Let R = (S,A,→) be an RTS, then:
R is fully stochastic if and only if for each s ∈ S, α ∈ A, P and Q

we have: s
α- P, s

α- Q =⇒P = Q

R is image finite if and only if for each s ∈ S, α ∈ A and P such
that s

α- P we have: {s′|P(s′) > 0} is finite

A fully stochastic RTS. . .

s1

α

s2

λ2

s3

λ1

. . . leads to a CTMC.

General RTS. . .

s4

s5 s6

α

λ1

α

λ2

. . . leads to a CTM Decision
Process.
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From RTS to CTMC. . .

Reachable Sets of States
For sets S ′ ⊆ S and A′ ⊆ A, the set of derivatives of S ′ through A′,
denoted Der(S ′,A′), is the smallest set such that:
S ′ ⊆ Der(S ′,A′),
if s ∈ Der(S ′,A′) and there exists α ∈ A′ and Q ∈ ΣS such that
s

α- Q then {s′ | Q(s′) > 0} ⊆ Der(S ′,A′)

Mapping (S,A,→) into (Der(S ′,A′),R)

Let R = (S,A,→) be a fully stochatics RTS, for S ′ ⊆ S, the CTMC of
S ′, when one considers only actions A′ ⊆ A is defined as
CTMC[S ′,A′] def

= (Der(S ′,A′),R) where for all s1, s2 ∈ Der(S ′,A′):

R[s1, s2]
def
=
∑
α∈A′

Pα(s2) with s1
α- Pα.
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A translation from an RTS to a CTMC

An RTS:

s3 s1 s2 s4

α
λ1

βλ2

a
λ3λ4

b
λ5

λ6
c

λ7

γ λ7

δ
λ8

The corresponding CTMC:

s1 s2s3 s4

λ3 + λ7

λ4 λ6

λ5λ2

λ1

λ8

λ7
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Another translation

({s1, s2, s3, s4}, {α, β, γ, δ,a,b, c},→)

s3 s1 s2 s4

α
λ1

βλ2

a
λ3λ4

b
λ5

λ6
c

λ7

γ λ7

δ
λ8

CTMC[{s1, s2}, {a,b, c}]

s1 s2

λ3 + λ7

λ4 λ6

λ5
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Strong Markovian Bisimilarity

Definition (Bisimulation)
Given a generic CTMC (S,R)

An equivalence relation E on S is a Markovian bisimulation on S if
and only if for all (s1, s2) ∈ E and for all equivalence classes
C ∈ S/E the following condition holds: R[s1,C] = R[s2,C].

Definition (Bisimilarity)
Given a generic CTMC (S,R)

Two states s1, s2 ∈ S are strongly Markovian bisimilar, written
s1 ∼M s2, if and only if there exists a Markovian bisimulation E on
S with (s1, s2) ∈ E .
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Rate aware bisimulation
Definition (Rate Aware Bisimilarity)
Let R = (S,A,→) be a RTS:

An equivalence relation E ⊆ S × S is a rate aware bisimulation if
and only if, for all (s1, s2) ∈ E , and S ∈ S/E , and for all α and P:

s1
α- P =⇒ ∃Q : s2

α- Q ∧P(S) = Q(S)

Two states s1, s2 ∈ S are rate aware bisimilar (s1 ∼ s2) if there
exists a rate aware bisimulation E such that (s1, s2) ∈ E .

Theorem

Let R = (S,A, - ), for each A′ ⊆ A and for each s1, s2 ∈ S and
(S,R) = CTMC[{s1, s2},A′]: s1 ∼ s2 =⇒ s1 ∼M s2

Notice that rate aware bisimilarity and strong bisimilarity coincide when
one does not take into account actions.
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PEPA: Performance Process Algebra
Systems
PEPA systems are the result of components interaction via activities:

Components reflect the behaviour of relevant parts of the system,
activities capture the actions that the components perform.

Activities
Each PEPA activity consists of a pair (α, λ) where:

α symbolically denotes the performed action;
λ > 0 is the rate of the (negative) exponential distribution.

Syntax
If A is a set of actions, ranged over by α, α′, α1, . . ., then PPEPA is the
set of process terms P,P ′,P1, . . . defined by:

P ::= (α, λ).P | P + P | P ||L P | P/L | A
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PEPA Stochastic semantics. . .

(α, λ).P
α- [P 7→ λ]

(ACT)
α 6= β

(α, λ).P
β- ∅

(∅-ACT)

P
α- P Q

α- Q

P + Q
α- P + Q

(SUM)
P

α- P Q
α- Q α 6∈ L

P ||L Q
α- P ||L χQ + χP ||L Q

(INT)

P
α- P Q

α- Q α ∈ L

P ||L Q
α- P ||L Q · min{⊕P,⊕Q}

⊕P·⊕Q

(COOP)

P
α- P α 6∈ L

P/L
α- P/L

(P-HIDE) α ∈ L

P/L
α- ∅

(∅-HIDE)

P
τ- Pτ ∀α ∈ L.P

α- Pα

P/L
τ- Pτ/L +

P
α∈L Pα/L

(HIDE) P
α- P A 4= P

A
α- P

(CALL)
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PEPA Stochastic semantics. . .

Prefixes and Sums

(α, λ).P
α- [P 7→ λ]

(ACT)
α 6= β

(α, λ).P
β- ∅

(∅-ACT)

P
α- P Q

α- Q

P + Q
α- P + Q

(SUM)

An example derivation

(α, λ1).P1
α- [P1 7→ λ1] (β, λ2).P2

α- ∅

(α, λ1).P1 + (β, λ2).P2
α-

[P1 7→ λ1]

(α, λ3).P3
α- [P3 7→ λ3]

((α, λ1).P1 + (β, λ2).P2) + (α, λ3).P3
α-

[P1 7→ λ1,P3 7→ λ3]
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PEPA Stochastic semantics

Interleaving and Multiparty Synchronization

P
α- P Q

α- Q α 6∈ L

P ||L Q
α- P ||L χQ + χP ||L Q

P
α- P Q

α- Q α ∈ L

P ||L Q
α- P ||L Q · min{⊕P,⊕Q}

⊕P·⊕Q

remember that χP is:

χP(R) =

{
1 if R = P
0 otherwise

P ||L Q denotes the function R such that:

R(R) =

{
P(P) ·Q(Q) if R = P ||L Q
0 otherwise
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A couple results for our PEPA semantics

Theorem

RPEPA is fully stochastic and image finite.

Theorem

For all P,Q ∈ PPEPA and α ∈ A the following holds:

P
α- P ∧P(Q) = λ > 0⇔ P

α,λ-P Q

where -P stands for the transition relation defined by Hillstone in
[Hil96].
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STOCCS: Stochastic CCS

STOCCS is a Markovian extension of CCS where:
output activities are enriched with rates characterizing random
variables with exponential distributions, modeling their duration;
input activities are equipped with weights characterizing the
relative selection probability

Like for PEPA , and for most of the other calculi, the CTMC for
STOCCS specifications are obtained by only considering internal
actions and channel interactions.
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STOCCS: Transitions rates

The rate of a binary complementary synchronization mainly
depends on the one of the triggering activity
The synchronization rate of a and a depends on the rate of a, on
the weight of the selected a and on the total weight of a (i.e. on
the sum of the weights of all a-transitions).

a, ω2a, ω1
a, λ

Two synchronizations can occur
with rates:

λ · ω1

ω1 + ω2
λ · ω2

ω1 + ω2

The overall sum of the
synchronization rates is the same
as the one of the output, i.e. it
does not depend on the number
of available (input) partners.
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STOCCS: Transitions rates

P1P2

P

a, ω2a, ω1

Q1

Q

Q2

a, λ1 a, λ2

P|Q

P1|Q1

P2|Q1 P1|Q2

P2|Q2

τa, λ1 · ω1
ω1+ω2

τa, λ1 · ω2
ω1+ω2

τa, λ2 · ω1
ω1+ω2

τa, λ2 · ω2
ω1+ω2
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STOCCS: Stochastic semantics - 1st attempt

Binary Synchronisation:

P
τa- P P

a- Pi P
a- Po Q

τa- Q Q
a- Qi Q

a- Qo

P|Q τa- P|χQ + χP |Q + Pi |Qo
⊕Pi

+ Po|Qi
⊕Qi

Next states of P|Q after τa, i.e. after a synchronisation over channel a,
are:

1 the next states of P after τa in parallel with Q;
2 the next states of Q after τa in parallel with P;
3 the next states of P after a in parallel with the next states of Q

after a;
4 the next states of P after a in parallel with the next states of Q

after a.
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STOCCS: Stochastic semantics - 1st attempt

Theorem

RStoCCS is fully stochastic and image finite.

Theorem
The proposed semantics coincides with the one proposed by Klin and
Sassone.

Problem
The proposed semantics does not respect a standard and expected
property of the CCS parallel composition.

The | operator is not associative!
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STOCCS: Stochastic semantics, 1st attempt

A counterexample for associativity
For instance:

aλ.P|(aω1 .Q1|aω2 .Q2)
τa-

[P|(Q1|aω2 .Q2) 7→ λ·ω1
ω1+ω2

,P|(aω1 .Q1|Q2) 7→ λ·ω2
ω1+ω2

]

(aλ.P|aω1 .Q1)|aω2 .Q2
τa-

[(P|Q1)|aω2 .Q2 7→ λ, (P|aω1 .Q1)|Q2 7→ λ]

Theorem (From Klin and Sassone - KS08)
STOCCS parallel composition is associative up-to stochastic
bisimilarity if and only if the rate of a synchronisation is determined as
the product of the two rates of the involved actions.
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Computing the rate of a synchronization

P

P ′

τa, λ

aω.Q

Q

a, ω

P|aω.Q

P ′|Q

τa, λ
′

If ω is the total weight of a in P:

λ′ =

λ · ω

ω + ω

This is the key point to guarantee associativity of parallel composition
in CCS-like synchronizations.
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STOCCS: stochastic semantics, 2nd attempt

Binary Synchronisation:

P
τa- Ps P

a- Pi P
a- Po Q

τa- Qs Q
a- Qi Q

a- Qo

P|Q τa-Ps|χQ +χP |Q+
Pi |Qo

⊕Pi
+

Po|Qi

⊕Qi
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Interactions on channel a in P|Q are determined by considering

the synchronisations in P, where synchronization rates are
updated for considering input in Q;
the synchronisations in Q, where synchronization rates are
updated for considering input in P;
interactions between input in P with output in Q;
interactions between input in P with output in Q.
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STOCCS: stochastic semantics

Theorem

In StoCCS parallel composition is associative up to rate aware
bisimilarity, i.e. for each P, Q and R, P|(Q|R) ∼ (P|Q)|R
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Stoπ: Stochastic π-Calculus

Input, Output and Synchronisation:

abλ.P
ab- [P 7→ λ]

(OUT)
a(x)ω.P

ab- [P[b/x ] 7→ ω]
(IN)

P
τa(b)- P P

ab- Pi P
ab- Po

Q
τa(b)- Q Q

ab- Qi Q
ab- Qo

P|Q τab- P|Q·⊕Pi
⊕Pi+⊕Qi

+ P|Q·⊕Qi
⊕Pi+⊕Qi

+ Pi |Qo
⊕Pi+⊕Qi

+ Po|Qi
⊕Pi+⊕Qi

(SYNC)

The other rules are the expected ones.
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Summing Up

We have introduced Rate Transition Systems and have used them
as the basic model for defining stochastic behaviours of
processes.

We have introduced a natural notion of bisimulation over RTS that
agrees with Markovian bisimulation.

We have shown how RTS can be used to provide the stochastic
operational semantics of PEPA and CCS.

We have discussed the generalization of the approach to
π-calculus and (in another paper) MarCaSPiS.
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Future Work

Use RTS to model other formalisms

Use the RTS approach as general framework for modelling other
PA semantics (non-deterministic, truly-concurrent,
probabilitistic,. . . )

Consider alternative semantics synchonisation rates:
I based on phase type distributions
I based on Interactive Markov Chains

Develop tools directly for RTS rather than for CTMC.
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Thank you for your attention!

If interested read our ICALP-C 2009 paper
or

the full version available on the web
(e.g. from Michele Loreti’s home page).

R. De Nicola (DSI@FI) RTS and Stochastic Process Algebras IFIP W.G. 2.2 - 2009 40 / 40


	Motivations
	Rate-based Transition Systems
	Stochastic CSP: PEPA
	Stochastic CCS: StoCCS
	Conclusions and Future Directions

