Reward Testing Equivalences for Processes

Rob van Glabbeek

Data61, CSIRO, Sydney, Australia

University of New South Wales, Sydney, Australia

24 September 2019

Presented at IFIP WG2.2 meeting in Vienna

The corresponding paper is dedicated to Rocco De Nicola, on the occasion of his 65th birthday.

Rocco's work has been a source of inspiration to my own.

The general theory of testing

It assumes

- a set of processes $\mathbb P$,
- $\bullet\,$ a set of tests $\mathbb T,$ which can be applied to processes,
- \bullet a set of outcomes $\mathbb O$ of applying a test to a process, and
- a function Apply : T × P → 𝒫⁺(O), representing the possible results of applying a specific test to a specific process,
- a partial order \leq on \mathbb{O} : some outcomes are better than others.

The general theory of testing

It assumes

- a set of processes $\mathbb P$,
- $\bullet\,$ a set of tests $\mathbb T,$ which can be applied to processes,
- \bullet a set of outcomes $\mathbb O$ of applying a test to a process, and
- a function Apply : T × P → 𝒫⁺(O), representing the possible results of applying a specific test to a specific process,
- a partial order \leq on \mathbb{O} : some outcomes are better than others.

$$O_1 \sqsubseteq_{\mathrm{Ho}} O_2 \text{ if } \forall o_1 \in O_1 \ \exists o_2 \in O_2 \text{ such that } o_1 \leq o_2 \\ O_1 \sqsubseteq_{\mathrm{Sm}} O_2 \text{ if } \forall o_2 \in O_2 \ \exists o_1 \in O_1 \text{ such that } o_1 \leq o_2.$$

The general theory of testing

It assumes

- a set of processes $\mathbb P$,
- $\bullet\,$ a set of tests $\mathbb T,$ which can be applied to processes,
- \bullet a set of outcomes $\mathbb O$ of applying a test to a process, and
- a function Apply : T × P → 𝒫⁺(O), representing the possible results of applying a specific test to a specific process,
- a partial order \leq on \mathbb{O} : some outcomes are better than others.

 $O_1 \sqsubseteq_{\mathrm{Ho}} O_2$ if $\forall o_1 \in O_1 \exists o_2 \in O_2$ such that $o_1 \leq o_2$ $O_1 \sqsubseteq_{\mathrm{Sm}} O_2$ if $\forall o_2 \in O_2 \exists o_1 \in O_1$ such that $o_1 \leq o_2$.

 $P \sqsubseteq_{\max} Q$ iff $Apply(T, P) \sqsubseteq_{\operatorname{Ho}} Apply(T, Q)$ for every test T. $P \sqsubseteq_{\operatorname{must}} Q$ iff $Apply(T, P) \sqsubseteq_{\operatorname{Sm}} Apply(T, Q)$ for every test T. CCS

$\alpha.E \xrightarrow{\alpha} E$	$\frac{E_{j} \stackrel{\alpha}{\longrightarrow} E'_{j}}{\sum_{i \in I} E_{i} \stackrel{\alpha}{\longrightarrow} E'_{j}} (j \in I)$	
$\frac{E \xrightarrow{\alpha} E'}{E F \xrightarrow{\alpha} E' F}$	$\frac{E \xrightarrow{a} E', \ F \xrightarrow{\bar{a}} F'}{E F \xrightarrow{\tau} E' F'}$	$\frac{F \xrightarrow{\alpha} F'}{E F \xrightarrow{\alpha} E F'}$
$\frac{E \stackrel{\alpha}{\longrightarrow} E'}{E \setminus L \stackrel{\alpha}{\longrightarrow} E' \setminus L} (\alpha, \bar{\alpha} \notin L)$	$) \frac{E \xrightarrow{\alpha} E'}{E[f] \xrightarrow{f(\alpha)} E'[f]}$	$\frac{fix(S_X:S) \xrightarrow{\alpha} E}{fix(X:S) \xrightarrow{\alpha} E}$

 $\alpha \text{ ranges over } \mathsf{Act} = \mathscr{A} \uplus \bar{\mathscr{A}} \uplus \{\tau\}.$

 $Act^{\omega} := Act \cup \{\omega\}$. $\omega \notin Act$ is a special action reporting success.

A *test* $T \in \mathbb{T}_{CCS}$ is a CCS process, but with α ranging over Act^{ω} .

 $Act^{\omega} := Act \cup \{\omega\}$. $\omega \notin Act$ is a special action reporting success.

A *test* $T \in \mathbb{T}_{CCS}$ is a CCS process, but with α ranging over Act^{ω} .

So a CCS process is a special kind of CCS test.

 $Act^{\omega} := Act \cup \{\omega\}$. $\omega \notin Act$ is a special action reporting success. A *test* $T \in \mathbb{T}_{CCS}$ is a CCS process, but with α ranging over Act^{ω} . So a CCS process is a special kind of CCS test.

To apply test T to process P one runs them in parallel: T|P.

 $Act^{\omega} := Act \cup \{\omega\}$. $\omega \notin Act$ is a special action reporting success.

A *test* $T \in \mathbb{T}_{CCS}$ is a CCS process, but with α ranging over Act^{ω} .

So a CCS process is a special kind of CCS test.

To apply test T to process P one runs them in parallel: T|P.

A computation $\pi \in \mathbb{T}_{CCS}^*$ is a sequence T_0, T_1, T_2, \ldots of tests, s.t. (i) if T_n is the final element, then $T_n \xrightarrow{\tau}$, and (ii) otherwise $T_n \xrightarrow{\tau} T_{n+1}$.

It is *successful* if it contains a state T with $T \stackrel{\omega}{\longrightarrow}$.

 $Act^{\omega} := Act \cup \{\omega\}$. $\omega \notin Act$ is a special action reporting success.

A *test* $T \in \mathbb{T}_{CCS}$ is a CCS process, but with α ranging over Act^{ω} .

So a CCS process is a special kind of CCS test.

To apply test T to process P one runs them in parallel: T|P.

A computation $\pi \in \mathbb{T}^*_{CCS}$ is a sequence T_0, T_1, T_2, \ldots of tests, s.t. (i) if T_n is the final element, then $T_n \xrightarrow{\tau}$, and (ii) otherwise $T_n \xrightarrow{\tau} T_{n+1}$.

It is *successful* if it contains a state T with $T \stackrel{\omega}{\longrightarrow}$.

Comp(T, P) is the set of computations whose starting from T|P. $Apply(T, P) := \{ \top \mid \exists \text{ successful } \pi \in Comp(T, P) \}$ $\cup \{ \bot \mid \exists \text{ unsuccessful } \pi \in Comp(T, P) \}.$

 $Act^{\omega} := Act \cup \{\omega\}$. $\omega \notin Act$ is a special action reporting success.

A *test* $T \in \mathbb{T}_{CCS}$ is a CCS process, but with α ranging over Act^{ω} . So a CCS process is a special kind of CCS test.

To apply test T to process P one runs them in parallel: T|P.

A computation $\pi \in \mathbb{T}^*_{CCS}$ is a sequence T_0, T_1, T_2, \ldots of tests, s.t. (i) if T_n is the final element, then $T_n \xrightarrow{\tau}$, and (ii) otherwise $T_n \xrightarrow{\tau} T_{n+1}$.

It is *successful* if it contains a state T with $T \stackrel{\omega}{\longrightarrow}$.

Comp(T, P) is the set of computations whose starting from T|P.

$$\mathcal{A}pply(T, P) := \{ \top \mid \exists \text{ successful } \pi \in Comp(T, P) \} \\ \cup \{ \bot \mid \exists \text{ unsuccessful } \pi \in Comp(T, P) \}.$$

Now $P \sqsubseteq_{may} Q$ holds unless $\exists T$ such that T|P has a successful computation but Q has not.

Likewise $P \sqsubseteq_{\text{must}} Q$ holds unless there is a test T such that T|P has only successful computations but Q has not.

Testing does not capture conditional liveness

Processes identified by may and must testing, but with different conditional liveness properties

Testing does not capture conditional liveness

Processes identified by may and must testing, but with different conditional liveness properties

A conditional liveness property says that under certain conditions something good will eventually happen.

A *reward test* is a CCS process, but with α ranging over $Act \times \mathbb{R}$. Such a *valued action* is tagged with a real number, the *reward* for executing this action. A negative reward is a penalty.

A *reward test* is a CCS process, but with α ranging over $Act \times \mathbb{R}$. Such a *valued action* is tagged with a real number, the *reward* for executing this action. A negative reward is a penalty.

$$\frac{P \xrightarrow{a,r} P', \ Q \xrightarrow{\bar{a},r'} Q'}{P|Q \xrightarrow{\tau,r+r'} P'|Q'} \quad \frac{P \xrightarrow{\alpha,r} P'}{P \setminus L \xrightarrow{\alpha,r} P' \setminus L} \quad (\alpha, \bar{\alpha} \notin L) \quad \frac{P \xrightarrow{\alpha,r} P'}{P[f] \xrightarrow{f(\alpha),r} P'[f]}$$

In all other rules of CCS, α is simply replaced by α , r, with $r \in \mathbb{R}$.

A *reward test* is a CCS process, but with α ranging over $Act \times \mathbb{R}$. Such a *valued action* is tagged with a real number, the *reward* for executing this action. A negative reward is a penalty.

$$\frac{P \xrightarrow{a,r} P', \ Q \xrightarrow{\bar{a},r'} Q'}{P|Q \xrightarrow{\tau,r+r'} P'|Q'} \quad \frac{P \xrightarrow{\alpha,r} P'}{P \setminus L \xrightarrow{\alpha,r} P' \setminus L} \quad (\alpha, \bar{\alpha} \notin L) \quad \frac{P \xrightarrow{\alpha,r} P'}{P[f] \xrightarrow{f(\alpha),r} P'[f]}$$

In all other rules of CCS, α is simply replaced by α , r, with $r \in \mathbb{R}$.

A valued action α , 0 is denoted α , so a CCS process is a special CCS reward test: one in which all rewards are 0.

A *reward test* is a CCS process, but with α ranging over $Act \times \mathbb{R}$. Such a *valued action* is tagged with a real number, the *reward* for executing this action. A negative reward is a penalty.

$$\frac{P \xrightarrow{a,r} P', \ Q \xrightarrow{\bar{a},r'} Q'}{P|Q \xrightarrow{\tau,r+r'} P'|Q'} \quad \frac{P \xrightarrow{\alpha,r} P'}{P \setminus L \xrightarrow{\alpha,r} P' \setminus L} \quad (\alpha, \bar{\alpha} \notin L) \quad \frac{P \xrightarrow{\alpha,r} P'}{P[f] \xrightarrow{f(\alpha),r} P'[f]}$$

In all other rules of CCS, α is simply replaced by α , r, with $r \in \mathbb{R}$.

A valued action α , 0 is denoted α , so a CCS process is a special CCS reward test: one in which all rewards are 0.

A reward computation π is a sequence $T_0, r_1, T_1, r_2, T_2, \ldots$, s.t.: (i) if T_n is the final element, then $T_n \xrightarrow{\tau, r'}$, and (ii) otherwise $T_n \xrightarrow{\tau, r_{n+1}} T_{n+1}$.

A *reward test* is a CCS process, but with α ranging over $Act \times \mathbb{R}$. Such a *valued action* is tagged with a real number, the *reward* for executing this action. A negative reward is a penalty.

$$\frac{P \xrightarrow{a,r} P', \ Q \xrightarrow{\bar{a},r'} Q'}{P|Q \xrightarrow{\tau,r+r'} P'|Q'} \quad \frac{P \xrightarrow{\alpha,r} P'}{P \setminus L \xrightarrow{\alpha,r} P' \setminus L} \quad (\alpha, \bar{\alpha} \notin L) \quad \frac{P \xrightarrow{\alpha,r} P'}{P[f] \xrightarrow{f(\alpha),r} P'[f]}$$

In all other rules of CCS, α is simply replaced by α , r, with $r \in \mathbb{R}$.

A valued action α , 0 is denoted α , so a CCS process is a special CCS reward test: one in which all rewards are 0.

A reward computation π is a sequence $T_0, r_1, T_1, r_2, T_2, \dots$, s.t.: (i) if T_n is the final element, then $T_n \xrightarrow{\tau, r_A}$, and (ii) otherwise $T_n \xrightarrow{\tau, r_{n+1}} T_{n+1}$. The reward of π : $\sum_{i=1}^n r_i$ or $\inf_{n \to \infty} \sum_{i=1}^n r_i \in \mathbb{R} \cup \{-\infty, \infty\}$.

Let $Apply(T, P) := \{reward(\pi) \mid \pi \in Comp^{R}(T, P)\}.$

 $P \sqsubseteq_{\text{reward}}^{\text{must}} Q$ holds iff under any reward test, the worst possible reward for Q is better than the worst possible reward for P.

 $P \sqsubseteq_{\text{reward}}^{\text{may}} Q$ holds iff under any reward test, the best possible reward for Q is better than the best possible reward for P.

 $P \sqsubseteq_{\text{reward}}^{\text{must}} Q$ holds iff under any reward test, the worst possible reward for Q is better than the worst possible reward for P.

 $P \sqsubseteq_{\text{reward}}^{\text{may}} Q$ holds iff under any reward test, the best possible reward for Q is better than the best possible reward for P.

Theorem: $P \sqsubseteq_{\text{reward}}^{\text{may}} Q$ iff $Q \sqsubseteq_{\text{reward}}^{\text{must}} P$.

Reward testing captures conditional liveness

Processes identified by may and must testing, but with different conditional liveness properties They are distinguished by reward testing

A conditional liveness property says that under certain conditions something good will eventually happen.

Theorem: Reward testing respects conditional liveness properties.

A spectrum of testing preorders

Congruence properties

 \sqsubseteq_{reward} is a congruence for all operators of CCS except +.

 $\sqsubseteq_{\text{reward}}$ is a congruence for all operators of CCS except +. Let *stable* be the predicate that holds for a process *P* iff $P \xrightarrow{\tau}$. Write $P \sqsubseteq_X^{\tau} Q$ iff $P \sqsubseteq_X Q \land (stable(P) \Rightarrow stable(Q))$.

 $\sqsubseteq_{\text{reward}}^{\tau}$ is a congruence for all operators of CCS.

Axioms

$$\begin{cases} \tau.X + Y \equiv \tau.X + \tau.(X + Y) \\ \alpha.X + \tau.(\alpha.Y + Z) \equiv \tau(\alpha.X + \alpha.Y + Z) \\ \alpha.(\tau.X + \tau.Y) \equiv \alpha.X + \alpha.Y \\ \tau.X + Y \sqsubseteq \tau.(X + Y) \\ \tau.X + Y \sqsubseteq X \\ \tau.\Delta X + Y \equiv \Delta(X + Y) \end{cases} \end{cases}$$

 $\Delta P := \mathbf{fix} (X: X \stackrel{def}{=} \tau . X + P)$ Must testing: $\Delta X = \Delta Y$.

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

 $\equiv_{\rm reward}^{\tau}$ fails to be a congruence $\,$ for recursion in CCS.

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

 $\equiv_{\mathrm{must}}^{\tau}$ and $\equiv_{\mathrm{reward}}^{\tau}$ fail to be congruences for recursion in CCS.

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

 $\equiv_{\text{must}}^{\tau} \text{ and } \equiv_{\text{reward}}^{\tau} \text{ fail to be congruences for recursion in CCS.}$ $\tau.X + Y \equiv_{must}^{\tau} \tau.X + \tau.(X + Y)$

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

 $\equiv_{\text{must}}^{\tau} \text{ and } \equiv_{\text{reward}}^{\tau} \text{ fail to be congruences for recursion in CCS.}$ $<math display="block"> \tau.X + Y \equiv_{\text{must}}^{\tau} \tau.X + \tau.(X + Y)$ $\tau.\mathbf{0} + Y \equiv_{\text{must}}^{\tau} \tau.\mathbf{0} + \tau.Y$

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

$$\tau.X + Y \equiv_{must}^{\tau} \tau.X + \tau.(X + Y)$$

$$\tau.\mathbf{0} + Y \equiv_{must}^{\tau} \tau.\mathbf{0} + \tau.Y$$

$$\mu Y.(\tau.\mathbf{0}+Y) \equiv_{must}^{\tau} \mu Y.(\tau.\mathbf{0}+\tau.Y)$$

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

$$\tau.X + Y \equiv_{must}^{\tau} \tau.X + \tau.(X + Y)$$

$$\tau.\mathbf{0} + Y \equiv_{must}^{\tau} \tau.\mathbf{0} + \tau.Y$$

$$\tau.\mathbf{0} \equiv \mu Y.(\tau.\mathbf{0}+Y) \equiv_{must}^{\tau} \mu Y.(\tau.\mathbf{0}+\tau.Y)$$

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

$$\tau.X + Y \equiv_{must}^{\tau} \tau.X + \tau.(X + Y)$$

$$\tau.\mathbf{0} + Y \equiv_{must}^{\tau} \tau.\mathbf{0} + \tau.Y$$

$$\tau.\mathbf{0} \equiv \mu Y.(\tau.\mathbf{0} + Y) \equiv_{must}^{\tau} \mu Y.(\tau.\mathbf{0} + \tau.Y) \equiv \Delta(\tau.\mathbf{0})$$

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

$$\tau.X + Y \equiv_{must}^{\tau} \tau.X + \tau.(X + Y)$$

$$\tau.0 + Y \equiv_{must}^{\tau} \tau.0 + \tau.Y$$

$$\tau.\mathbf{0} \equiv \mu Y.(\tau.\mathbf{0} + Y) \equiv_{must}^{\tau} \mu Y.(\tau.\mathbf{0} + \tau.Y) \equiv \Delta(\tau.\mathbf{0})$$

$$\uparrow$$
strong bisimilarity

An equivalence \sim is a (full) congruence for recursion if

$$\frac{S_Y \sim T_Y \quad \text{for all } Y \in dom(S)}{\mathbf{fix}(X:S) \sim \mathbf{fix}(X:T)} \qquad \frac{E \sim F}{\mu X.E \sim \mu X.F}$$

 $\equiv_{\rm must}^{\tau} \text{ and } \equiv_{\rm reward}^{\tau} \text{fail to be congruences for recursion in CCS}.$

$$\tau.X + Y \equiv_{must}^{\tau} \tau.X + \tau.(X + Y)$$

$$\tau.\mathbf{0} + Y \equiv_{must}^{\tau} \tau.\mathbf{0} + \tau.Y$$

 $\tau.\mathbf{0} \not\equiv \tau_{must} \ \mu Y.(\tau.\mathbf{0} + Y) \equiv \tau_{must} \ \mu Y.(\tau.\mathbf{0} + \tau.Y) \equiv \Delta(\tau.\mathbf{0})$

Conclusion

I presented a new theory of testing yielding a finer equivalence, that respects conditional liveness properties.