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P ⊑may Q iff Apply(T ,P)⊑Ho Apply(T ,Q) for every test T .
P ⊑must Q iff Apply(T ,P) ⊑Sm Apply(T ,Q) for every test T .
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A test T ∈ TCCS is a CCS process, but with α ranging over Actω.

So a CCS process is a special kind of CCS test.

To apply test T to process P one runs them in parallel: T |P .

A computation π ∈ T∗
CCS is a sequence T0,T1,T2, . . . of tests, s.t.

(i) if Tn is the final element, then Tn
τ−6→, and

(ii) otherwise Tn
τ

−→ Tn+1.

It is successful if it contains a state T with T
ω

−→.

Comp(T ,P) is the set of computations whose starting from T |P .

Apply(T ,P) := {⊤ | ∃ successful π ∈ Comp(T ,P)}
∪ {⊥ | ∃ unsuccessful π ∈ Comp(T ,P)}.

Now P ⊑may Q holds unless ∃T such that T |P has a successful
computation but Q has not.
Likewise P ⊑must Q holds unless there is a test T such that T |P
has only successful computations but Q has not.
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happen.
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ā,r ′−−→ Q ′

P |Q τ,r+r ′−−−→ P ′|Q ′

P
α,r−−→ P ′

P\L α,r−−→ P ′\L
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A valued action α, 0 is denoted α, so a CCS process is a special
CCS reward test: one in which all rewards are 0.

A reward computation π is a sequence T0, r1,T1, r2,T2, . . . , s.t.:
(i) if Tn is the final element, then Tn

τ,r−−6→, and
(ii) otherwise Tn
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ri ∈ R ∪ {−∞,∞}.

Let Apply(T ,P) := {reward(π) | π ∈ CompR(T ,P)}.



Must versus may

P ⊑must
reward Q holds iff under any reward test, the worst possible

reward for Q is better than the worst possible reward for P .

P ⊑may
reward Q holds iff under any reward test, the best possible

reward for Q is better than the best possible reward for P .



Must versus may

P ⊑must
reward Q holds iff under any reward test, the worst possible

reward for Q is better than the worst possible reward for P .

P ⊑may
reward Q holds iff under any reward test, the best possible

reward for Q is better than the best possible reward for P .

Theorem: P ⊑may
reward Q iff Q ⊑must

reward P .



Reward testing captures conditional liveness

•
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They are distinguished by reward testing

A conditional liveness property says that

under certain conditions something good will eventually

happen.

Theorem: Reward testing respects conditional liveness properties.



A spectrum of testing preorders

⊑−1
may = ⊑dual

must = ⊑fp-−reward = ⊑T = ⊑safety

⊑−reward = ⊑∞
T

⊑reward = ⊑NDFD = ⊑lt-properties

⊑must = ⊑+reward = ⊑⊥
FDI = ⊑liveness

⊑fp-reward = ⊑d
FDI = ⊑cond. liveness
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⊑reward is a congruence for all operators of CCS except +.

Let stable be the predicate that holds for a process P iff P
τ−6→.

Write P ⊑τ

X Q iff P ⊑X Q ∧ (stable(P)⇒ stable(Q)).

⊑τ

reward is a congruence for all operators of CCS.



Axioms







τ.X + Y ≡ τ.X + τ.(X + Y )
α.X + τ.(α.Y + Z ) ≡ τ(α.X + α.Y + Z )

α.(τ.X + τ.Y ) ≡ α.X + α.Y






τ.X + Y ⊑ τ.(X + Y )
τ.X + Y ⊑ X

τ.∆X + Y ≡ ∆(X + Y )

∆P := fixLX :X
def
= τ.X + P M

Must testing: ∆X = ∆Y .
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An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

must and ≡τ

reward fail to be congruences for recursion in CCS.

τ.X + Y ≡τ

must τ.X + τ.(X + Y )
τ.0+ Y ≡τ

must τ.0+ τ.Y

τ.0 6≡ τ

must µY .(τ.0+ Y ) ≡τ

must µY .(τ.0+ τ.Y ) ≡ ∆(τ.0)



Conclusion

I presented a new theory of testing yielding a finer equivalence,
that respects conditional liveness properties.


