
Reward Testing Equivalences for Processes

Rob van Glabbeek

Data61, CSIRO, Sydney, Australia

University of New South Wales, Sydney, Australia

24 September 2019

Presented at IFIP WG2.2 meeting in Vienna

The corresponding paper is dedicated to Rocco De Nicola, on the

occasion of his 65th birthday.

Rocco’s work has been a source of inspiration to my own.

The general theory of testing

It assumes
• a set of processes P,
• a set of tests T, which can be applied to processes,
• a set of outcomes O of applying a test to a process, and
• a function Apply : T×P→ P+(O), representing the

possible results of applying a specific test to a specific process,
• a partial order ≤ on O: some outcomes are better than others.

The general theory of testing

It assumes
• a set of processes P,
• a set of tests T, which can be applied to processes,
• a set of outcomes O of applying a test to a process, and
• a function Apply : T×P→ P+(O), representing the

possible results of applying a specific test to a specific process,
• a partial order ≤ on O: some outcomes are better than others.

O1 ⊑Ho O2 if ∀o1 ∈ O1 ∃o2 ∈ O2 such that o1 ≤ o2
O1 ⊑Sm O2 if ∀o2 ∈ O2 ∃o1 ∈ O1 such that o1 ≤ o2.

The general theory of testing

It assumes
• a set of processes P,
• a set of tests T, which can be applied to processes,
• a set of outcomes O of applying a test to a process, and
• a function Apply : T×P→ P+(O), representing the

possible results of applying a specific test to a specific process,
• a partial order ≤ on O: some outcomes are better than others.

O1 ⊑Ho O2 if ∀o1 ∈ O1 ∃o2 ∈ O2 such that o1 ≤ o2
O1 ⊑Sm O2 if ∀o2 ∈ O2 ∃o1 ∈ O1 such that o1 ≤ o2.

P ⊑may Q iff Apply(T ,P)⊑Ho Apply(T ,Q) for every test T .
P ⊑must Q iff Apply(T ,P) ⊑Sm Apply(T ,Q) for every test T .

CCS

α.E
α

−→ E
Ej

α
−→ E ′

j
∑

i∈I Ei
α

−→ E ′
j

(j ∈ I)

E
α

−→ E ′

E |F
α

−→ E ′|F

E
a

−→ E ′, F
ā

−→ F ′

E |F
τ

−→ E ′|F ′

F
α

−→ F ′

E |F
α

−→ E |F ′

E
α

−→ E ′

E\L
α

−→ E ′\L
(α, ᾱ 6∈ L)

E
α

−→ E ′

E [f]
f (α)
−→ E ′[f]

fixLSX :SM
α

−→ E

fixLX :SM
α

−→ E

α ranges over Act = A ⊎ Ā ⊎ {τ}.

May and Must Testing for CCS
Actω := Act ∪ {ω}. ω /∈ Act is a special action reporting success.

A test T ∈ TCCS is a CCS process, but with α ranging over Actω.

May and Must Testing for CCS
Actω := Act ∪ {ω}. ω /∈ Act is a special action reporting success.

A test T ∈ TCCS is a CCS process, but with α ranging over Actω.

So a CCS process is a special kind of CCS test.

May and Must Testing for CCS
Actω := Act ∪ {ω}. ω /∈ Act is a special action reporting success.

A test T ∈ TCCS is a CCS process, but with α ranging over Actω.

So a CCS process is a special kind of CCS test.

To apply test T to process P one runs them in parallel: T |P .

May and Must Testing for CCS
Actω := Act ∪ {ω}. ω /∈ Act is a special action reporting success.

A test T ∈ TCCS is a CCS process, but with α ranging over Actω.

So a CCS process is a special kind of CCS test.

To apply test T to process P one runs them in parallel: T |P .

A computation π ∈ T∗
CCS is a sequence T0,T1,T2, . . . of tests, s.t.

(i) if Tn is the final element, then Tn
τ−6→, and

(ii) otherwise Tn
τ

−→ Tn+1.

It is successful if it contains a state T with T
ω

−→.

May and Must Testing for CCS
Actω := Act ∪ {ω}. ω /∈ Act is a special action reporting success.

A test T ∈ TCCS is a CCS process, but with α ranging over Actω.

So a CCS process is a special kind of CCS test.

To apply test T to process P one runs them in parallel: T |P .

A computation π ∈ T∗
CCS is a sequence T0,T1,T2, . . . of tests, s.t.

(i) if Tn is the final element, then Tn
τ−6→, and

(ii) otherwise Tn
τ

−→ Tn+1.

It is successful if it contains a state T with T
ω

−→.

Comp(T ,P) is the set of computations whose starting from T |P .

Apply(T ,P) := {⊤ | ∃ successful π ∈ Comp(T ,P)}
∪ {⊥ | ∃ unsuccessful π ∈ Comp(T ,P)}.

May and Must Testing for CCS
Actω := Act ∪ {ω}. ω /∈ Act is a special action reporting success.

A test T ∈ TCCS is a CCS process, but with α ranging over Actω.

So a CCS process is a special kind of CCS test.

To apply test T to process P one runs them in parallel: T |P .

A computation π ∈ T∗
CCS is a sequence T0,T1,T2, . . . of tests, s.t.

(i) if Tn is the final element, then Tn
τ−6→, and

(ii) otherwise Tn
τ

−→ Tn+1.

It is successful if it contains a state T with T
ω

−→.

Comp(T ,P) is the set of computations whose starting from T |P .

Apply(T ,P) := {⊤ | ∃ successful π ∈ Comp(T ,P)}
∪ {⊥ | ∃ unsuccessful π ∈ Comp(T ,P)}.

Now P ⊑may Q holds unless ∃T such that T |P has a successful
computation but Q has not.
Likewise P ⊑must Q holds unless there is a test T such that T |P
has only successful computations but Q has not.

Testing does not capture conditional liveness

•

τ

c g
≡may

≡must •

τ

c g
c

Processes identified by may and must testing, but with different

conditional liveness properties

Testing does not capture conditional liveness

•

τ

c g
≡may

≡must •

τ

c g
c

Processes identified by may and must testing, but with different

conditional liveness properties

A conditional liveness property says that

under certain conditions something good will eventually

happen.

Reward Testing
A reward test is a CCS process, but with α ranging over Act ×R.
Such a valued action is tagged with a real number, the reward for
executing this action. A negative reward is a penalty.

Reward Testing
A reward test is a CCS process, but with α ranging over Act ×R.
Such a valued action is tagged with a real number, the reward for
executing this action. A negative reward is a penalty.

P
a,r−→ P ′, Q

ā,r ′−−→ Q ′

P |Q τ,r+r ′−−−→ P ′|Q ′

P
α,r−−→ P ′

P\L α,r−−→ P ′\L
(α, ᾱ 6∈ L)

P
α,r−−→ P ′

P [f] f (α),r−−−→ P ′[f]

In all other rules of CCS, α is simply replaced by α, r , with r ∈ R.

Reward Testing
A reward test is a CCS process, but with α ranging over Act ×R.
Such a valued action is tagged with a real number, the reward for
executing this action. A negative reward is a penalty.

P
a,r−→ P ′, Q

ā,r ′−−→ Q ′

P |Q τ,r+r ′−−−→ P ′|Q ′

P
α,r−−→ P ′

P\L α,r−−→ P ′\L
(α, ᾱ 6∈ L)

P
α,r−−→ P ′

P [f] f (α),r−−−→ P ′[f]

In all other rules of CCS, α is simply replaced by α, r , with r ∈ R.

A valued action α, 0 is denoted α, so a CCS process is a special
CCS reward test: one in which all rewards are 0.

Reward Testing
A reward test is a CCS process, but with α ranging over Act ×R.
Such a valued action is tagged with a real number, the reward for
executing this action. A negative reward is a penalty.

P
a,r−→ P ′, Q

ā,r ′−−→ Q ′

P |Q τ,r+r ′−−−→ P ′|Q ′

P
α,r−−→ P ′

P\L α,r−−→ P ′\L
(α, ᾱ 6∈ L)

P
α,r−−→ P ′

P [f] f (α),r−−−→ P ′[f]

In all other rules of CCS, α is simply replaced by α, r , with r ∈ R.

A valued action α, 0 is denoted α, so a CCS process is a special
CCS reward test: one in which all rewards are 0.

A reward computation π is a sequence T0, r1,T1, r2,T2, . . . , s.t.:
(i) if Tn is the final element, then Tn

τ,r−−6→, and
(ii) otherwise Tn

τ,rn+1−−−→ Tn+1.

Reward Testing
A reward test is a CCS process, but with α ranging over Act ×R.
Such a valued action is tagged with a real number, the reward for
executing this action. A negative reward is a penalty.

P
a,r−→ P ′, Q

ā,r ′−−→ Q ′

P |Q τ,r+r ′−−−→ P ′|Q ′

P
α,r−−→ P ′

P\L α,r−−→ P ′\L
(α, ᾱ 6∈ L)

P
α,r−−→ P ′

P [f] f (α),r−−−→ P ′[f]

In all other rules of CCS, α is simply replaced by α, r , with r ∈ R.

A valued action α, 0 is denoted α, so a CCS process is a special
CCS reward test: one in which all rewards are 0.

A reward computation π is a sequence T0, r1,T1, r2,T2, . . . , s.t.:
(i) if Tn is the final element, then Tn

τ,r−−6→, and
(ii) otherwise Tn

τ,rn+1−−−→ Tn+1.

The reward of π:
∑n

i=1 ri or inf
n→∞

n
∑

i=1

ri ∈ R ∪ {−∞,∞}.

Let Apply(T ,P) := {reward(π) | π ∈ CompR(T ,P)}.

Must versus may

P ⊑must
reward Q holds iff under any reward test, the worst possible

reward for Q is better than the worst possible reward for P .

P ⊑may
reward Q holds iff under any reward test, the best possible

reward for Q is better than the best possible reward for P .

Must versus may

P ⊑must
reward Q holds iff under any reward test, the worst possible

reward for Q is better than the worst possible reward for P .

P ⊑may
reward Q holds iff under any reward test, the best possible

reward for Q is better than the best possible reward for P .

Theorem: P ⊑may
reward Q iff Q ⊑must

reward P .

Reward testing captures conditional liveness

•

τ

c g
≡may

≡must •

τ

c g
c

Processes identified by may and must testing, but with different

conditional liveness properties

They are distinguished by reward testing

A conditional liveness property says that

under certain conditions something good will eventually

happen.

Theorem: Reward testing respects conditional liveness properties.

A spectrum of testing preorders

⊑−1
may = ⊑dual

must = ⊑fp-−reward = ⊑T = ⊑safety

⊑−reward = ⊑∞
T

⊑reward = ⊑NDFD = ⊑lt-properties

⊑must = ⊑+reward = ⊑⊥
FDI = ⊑liveness

⊑fp-reward = ⊑d
FDI = ⊑cond. liveness

Congruence properties

⊑reward is a congruence for all operators of CCS except +.

Congruence properties

⊑reward is a congruence for all operators of CCS except +.

Let stable be the predicate that holds for a process P iff P
τ−6→.

Write P ⊑τ

X Q iff P ⊑X Q ∧ (stable(P)⇒ stable(Q)).

⊑τ

reward is a congruence for all operators of CCS.

Axioms







τ.X + Y ≡ τ.X + τ.(X + Y)
α.X + τ.(α.Y + Z) ≡ τ(α.X + α.Y + Z)

α.(τ.X + τ.Y) ≡ α.X + α.Y






τ.X + Y ⊑ τ.(X + Y)
τ.X + Y ⊑ X

τ.∆X + Y ≡ ∆(X + Y)

∆P := fixLX :X
def
= τ.X + P M

Must testing: ∆X = ∆Y .

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

reward fails to be a congruence for recursion in CCS.

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

must and ≡τ

reward fail to be congruences for recursion in CCS.

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

must and ≡τ

reward fail to be congruences for recursion in CCS.

τ.X + Y ≡τ

must τ.X + τ.(X + Y)

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

must and ≡τ

reward fail to be congruences for recursion in CCS.

τ.X + Y ≡τ

must τ.X + τ.(X + Y)
τ.0+ Y ≡τ

must τ.0+ τ.Y

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

must and ≡τ

reward fail to be congruences for recursion in CCS.

τ.X + Y ≡τ

must τ.X + τ.(X + Y)
τ.0+ Y ≡τ

must τ.0+ τ.Y

µY .(τ.0+ Y) ≡τ

must µY .(τ.0+ τ.Y)

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

must and ≡τ

reward fail to be congruences for recursion in CCS.

τ.X + Y ≡τ

must τ.X + τ.(X + Y)
τ.0+ Y ≡τ

must τ.0+ τ.Y

τ.0 ≡ µY .(τ.0+ Y) ≡τ

must µY .(τ.0+ τ.Y)

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

must and ≡τ

reward fail to be congruences for recursion in CCS.

τ.X + Y ≡τ

must τ.X + τ.(X + Y)
τ.0+ Y ≡τ

must τ.0+ τ.Y

τ.0 ≡ µY .(τ.0+ Y) ≡τ

must µY .(τ.0+ τ.Y) ≡ ∆(τ.0)

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

must and ≡τ

reward fail to be congruences for recursion in CCS.

τ.X + Y ≡τ

must τ.X + τ.(X + Y)
τ.0+ Y ≡τ

must τ.0+ τ.Y

τ.0 ≡ µY .(τ.0+ Y) ≡τ

must µY .(τ.0+ τ.Y) ≡ ∆(τ.0)
↑

strong bisimilarity

Congruence for recursion?

An equivalence ∼ is a (full) congruence for recursion if

SY ∼ TY for all Y ∈ dom(S)

fixLX :SM ∼ fixLX :T M

E ∼ F

µX .E ∼ µX .F

≡τ

must and ≡τ

reward fail to be congruences for recursion in CCS.

τ.X + Y ≡τ

must τ.X + τ.(X + Y)
τ.0+ Y ≡τ

must τ.0+ τ.Y

τ.0 6≡ τ

must µY .(τ.0+ Y) ≡τ

must µY .(τ.0+ τ.Y) ≡ ∆(τ.0)

Conclusion

I presented a new theory of testing yielding a finer equivalence,
that respects conditional liveness properties.

