
String diagrams 
from control to concurrency and beyond

Pawel Sobocinski

Tallinn University of Technology

IFIP WG 2.2 Vienna 24/09/19

Joint work with Filippo Bonchi, Fabio Zanasi and Robin Piedeleu 



Compositionality

• for “nice” homomorphic translation 


• syntactic operations correspond to natural operations on 
the semantic domain


• syntax expressive enough to capture enough of the 
semantic domain


• natural notions of semantic equivalence find an 
axiomatisation in the syntax

Syntax Semantics
homomorphic 

translation



Our approach

• in computer science, the tradition is to start with some 
syntax and study formal semantics as a separate subject


• we think that it is useful to reverse the process


• start with the the algebra of the semantic domain (in 
CS, control, engineering, science, mathematics, …) 


• engineer an appropriate syntax to support that algebra



Behavioural control theory

J. C. Willems, The behavioural approach to open and interconnected systems: modeling by tearing, zooming, and linking, 
IEEE Control Systems Magazine, 2007. 

example, the gas law states how the variables of interest,
temperature, volume, and mass are related. This law does
not, however, state that some of the variables generate the
others. The interconnection of two physical devices means
that certain variables associated with the first device are
set equal to certain variables associated with the second
device. Connecting two pipes of two hydraulic systems
means that the pressure and flow in the first pipe at the
interconnection point are set equal to the pressure and
flow in the second pipe at the interconnection point. After
interconnection, the two hydraulic systems share the pres-
sure and flow variables.

Relations as models of physical phenomena, as well as
variable sharing to express interconnections, do not inher-
ently involve signal flows. Viewing relations between sys-
tem variables in terms of inputs and outputs, while
viewing interconnection as output-to-input assignment,
with signal transmission from one subsystem to another,
usually introduces a signal transmission mechanism that is
not part of the physics of the system or the interconnec-
tion. Signal-flow graphs are appropriate in some special,
although important, situations, for example, in signal pro-
cessing, in feedback control based on sensor outputs and
actuator inputs, and in systems composed of unilateral
devices. A unilateral device is a system that cannot be
backdriven, such as an amplifier or a switch. But, as illus-
trated in this article, signal-flow diagrams are limited as a
framework for dealing with mathematical descriptions of
physical phenomena and with interconnections. 

The notion of a behavior as a model treats all of the sys-
tem variables on an equal footing. After analyzing the
model, and depending on the purpose for which the model
is used, it may be expedient to partition the system variables
in two sets, input variables and output variables. The behav-
ior provides a framework in which this input/output struc-
ture can be deduced. Classical input/output models are
thus incorporated as behavioral models with additional
structure. However, it is sometimes the case that input/out-
put partitioning is impossible, and thus no separation of the
system variables as inputs and outputs is possible. 

A typical modeling task can be viewed as follows. The
aim is to model the dynamic relations among several vari-
ables. We visualize this modeling problem by means of a
black box with terminals (see Figure 1). One can think of
these terminals as the places where these variables “live.”
In principle, the terminals and the black box express only

that the
modeler has de-

clared what the variables
of interest are, in which case the

terminals are merely a visualization. Often,
though, the terminals are real, that is, physically

available, and the aim is to model the variables associated
with physical terminals through which a system can inter-
act with its environment. When dealing with interconnec-
tions, it is natural to assume that these terminals and their
variables are physical and to envision multiple physical
variables collectively and indivisibly associated with a sin-
gle terminal.

To fix ideas about the kind of situations and the nature
of variables associated with terminals, it is helpful to
think of the following examples, illustrated schematically
in Figure 2. 

» Forces and torques acting on the terminals of a
mechanical structure as well as the displacements
and attitudes of these terminals.

FIGURE 1  Modeling by tearing, zooming, and linking. Part (a) shows
a black box with terminals. The aim is to obtain a model of the
behavior of the variables on these external terminals. Part (b) shows
the result of the tearing process: the black box is viewed as a gray
box of interacting subsystems. The modeling process proceeds by
zooming in on the subsystems one by one, as illustrated in (c). The
subsystems are subsequently linked by sharing the variables on
their common terminals, as illustrated by (d). The combination of the
models of the subsystems and the interconnection constraints leads
to a model of the variables on the external terminals. This modeling
process has a hierarchical structure, since a subsystem can in turn
be modeled by tearing, zooming, and linking.

(c)

(b)(a)

Tearing

Linking

Zooming

(d)
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“Thinking of a dynamical system as a 
behavior, and of inter-connection as 

variable sharing, gets the physics 
right.”

• Willems’ thesis: abandon causality and functionality (paraphrasing mine)


• causal thinking is a disease of the brain (Russell, 1912)


• laws of physics are seldom functional 


• functional modelling is seldom compositional 


• Willems’ tearing procedure produces relational, not functional, behaviours



Compositionality 

• What kind of algebra?


• first order logic, regular logic, relational algebra, datalog, allegories, … 


• What kind of relations?


• vanilla, additive, linear, affine, … 

Syntax Semantics = Relations
homomorphic 

translation



Rel×
• For Willems’ intuitions, an appropriate universe seems to be the 

categorical algebra of the symmetric monoidal category Rel×


• objects: sets X, Y, Z, …. 


• arrows: (typed) relations, R: X → Y, S: Y → Z


• composition: relational composition 


R ; S = { (x,z) | ∃y. xRy ∧ ySz}


• monoidal product: R×R’: X×X’ → Y×Y’ 


R × R’ = { ((x,x’),(y,y’)) | xRy ∧ x’R’y’ } 



String diagrams

• diagrammatic syntax for symmetric monoidal categories


• diagrammatic reasoning: the laws of symmetric monoidal 
categories are baked in to the diagrams



Compositionality 

• syntax expressive enough?


• axiomatisations?

String diagrams Relations

monoidal functor



Graphical Linear Algebra
• String diagrams generated by the following syntax

25:2 Filippo Bonchi, Joshua Holland, Robin Piedeleu, Paweł Sobociński, and Fabio Zanasi

seek intrinsic, syntax-independent concurrency primitives. The syntax-dependent nature of the
research contributed to the Balkanisation of the community, and formalism-speci�c approaches.
At the other side of the spectrum, there is Petri’s approach to concurrency. The framework of

Petri nets does seek to determine grounding concepts such as causality, concurrency, process, etc.
in a syntax-independent fashion. The use of a graphical formalism has the additional advantage of
acknowledging the spatial structure of distributed systems, emphasising physical properties such
as connectivity and resource-exchange. What makes Petri nets less appealing from a programming
language perspective is that, di�erently from process algebras, the native form of reasoning is
combinatorial. This has led to an emphasis onmonolithic systems, with comparatively little attention
given to compositionality. Some research has been done to mediate between the two approaches
and establish common conceptual themes, e.g. through event structures [Nielsen et al. 1993].
This paper is an e�ort in the quest for a canonical theory of concurrency. We depart from

syntax-centric approaches in a fundamental way: our syntax is canonical in that it, together with
its equational theory, characterises the underlying mathematical domains in an extremely strong
sense: an isomorphism of categories. We build our way to a complete equational theory for the
syntax, which we refer to as the resource calculus. We establish an analogous completeness result
for its stateful extension. As a demonstration of the expressiveness and applicability of the calculus,
we show how it acts as an assembly language for classical (Place/Transition) Petri nets.

Intriguingly, our syntax is the same that was used [Baez and Erbele 2015; Bonchi et al. 2017c;
Fong et al. 2016] for linear systems, which itself goes back to Shannon [Shannon 1942] and the
class of signal �ow graphs [Mason 1953; Willems 2007]. The di�erence between the computational
interpretations—from control-theoretic to concurrent—boils down to (i) operationally, replacing the
signal domain that in control-theoretic examples is a �eld (e.g. Q or R) with N, since for us signals
represent discrete (and non-negative) resources, and (ii) algebraically, di�erent interaction patterns
between the syntactic primitives. Below we expand on the principled methodology guiding us.

Linear Systems. Our syntax originates from linear systems, i.e. those whose behaviour de�nes
a linear subspace over a �eld. Our departure point is graphical linear algebra (GLA) [Bonchi et al.
2017d; Zanasi 2015], a sound and complete theory of subspaces over a �eld. “Graphical” here points
to the fact that, even though it is a calculus with recursively de�ned syntax, its terms are drawn as
2-dimensional diagrams and composed through parallel and sequential composition.

c , d ::= | | | | | | |

| | | c d |
c

d

(1)

The intended interpretation is that is addition, the constant zero, copy, discard,
while , , and are the same operations right-to-left, is the identity, and is
the symmetry. This intuition is formalised via a recursively de�ned mapping of diagrams to linear
subspaces. The syntax (1) comes with a sound and complete equational theory [Bonchi et al. 2017d].
The mathematical setting for this result is the theory of props, a particular kind of symmetric
monoidal category [Lack 2004], suitable for reasoning algebraically about 2-dimensional syntax.
From a computational viewpoint, all the connectors of GLA are stateless. If one augments the

syntax (1) with a generator x , then stateful processes can be also represented. x behaves
as a register (one-place bu�er): at each stage of the computation, it contains a value k 2 R; on input
r , it realises k as output, and r becomes the newly stored value. For example, the circuit diagram
below, constructed with the syntax (1) and x , computes the Fibonacci rational stream function:

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 25. Publication date: January 2019.

String diagrams LinRelQ
monoidal functor

Sound and fully complete axiomatisation - the theory of IH (Interacting Hopf algebras)
(Bonchi, S., Zanasi, Interacting Hopf Algebras, 2014)



Signal flow graphs
• The IH construction is parametric wrt any PID 


• Starting with R[x] we get linear relations over its field of 
fractions R(x)


• This is yields a sound and complete equational system for 
reasoning about signal flow graphs: models of 
computation that compute solutions of rational functions

F. Bonchi, P. Sobociński and F. Zanasi, "Full Abstraction for Signal Flow Graphs", In Principles of Programming Languages, POPL`15
F. Bonchi, P. Sobociński and F. Zanasi, "The Calculus of Signal Flow Diagrams I: Linear Relations on Streams", Inf Comput

B. Fong, P. Rapisarda and P. Sobociński, "A categorical approach to open and interconnected dynamical systems", LICS `16
F. Bonchi, J. Holland, D. Pavlovic and P. Sobociński, "Refinement for signal flow graphs", CONCUR  `17

https://www.southampton.ac.uk/~ps1a06/papers/popl15.pdf
https://www.southampton.ac.uk/~ps1a06/papers/sfg1.pdf
https://www.southampton.ac.uk/~ps1a06/papers/ltids.pdf
https://www.southampton.ac.uk/~ps1a06/papers/inequality.pdf


The operational view
• The work on signal flow graphs emphasises the 

importance of the operational view 

• For signal flow graphs, the signals come from a field, 
typically R or Q
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Semantics. De�ne the operational meaning of terms recursively by the following structural rules

n�!�
n�!n
n

n
m���!n+m

��!0
��!n

n
n�!n

��!�
n�!n

n
m��!m
n

c
a�!
b

c 0 d
b�!
c

d 0

c ; d a�!
c

c 0 ; d 0

s
a1��!
b1

c 0 d
a2��!
b2

d 0

c � d
a1
a2��!b1
b2

d 0 � d 0

(6)

wherem,n range over the natural numbers N and a,b,c over natural number vectors.

The intuition is that resources (or tokens) travel along wires in bunches of size n 2 N. For each
connector c : (k, l), a transition c a�!

b
c means that we observe resource vector a on the left, where

component ai of a refers to the resources observed on the ith left wire, and—similarly—observe
resources b on the right boundary of c . We write � for the unique vector of length zero. The rules
say that duplicates, discards and sums resources, whereas produces no resources.
The mirror images , carry resources from right to left, with behaviour de�ned as for their
symmetric counterpart. Finally, behaviours combine sequentially, where observations synchronise
along the common boundary, or in parallel, where observations are simply concatenated.
For any term c : (k, l), the rules (6) yield a labelled transition system where each transition has

form c
a�!
b

c . Given that any such transition system has precisely one state, we de�ne the semantics
of c as the following relation, which collects all possible observations admitted by c .

[[c]] := {(a,b) | c a�!
b

c} ✓ Nk ⇥ Nl . (7)

Stateful Extension. Circ is stateless. We introduce a simple stateful extension of the language of
circuit diagrams, which allows for more sophisticated examples. These variations will be used to
capture the familiar model of computation of Petri nets (Section 5).

For this purpose, we de�ne the language Circs of stateful circuits that extends (4) with generator
x : (1, 1) and (6) with:

( x ,m) n�!m ( x ,n) (8)

Intuitively, x is a one-place bu�er, and ( x ,n) is the state in which it contains the value n.
Thus, di�erently from the structural rules in (6), x yields transition systems with (in�nitely
many) di�erent states, and the state determines possible observations at any point in the execution.
In general, given a term c in Circs , states are pairs (c, s) where s is a vector of natural numbers that
stores the internal state of each bu�er.
For the sake of completeness, we update the rules in (6): for the basic stateless generators, s is

always � , the unique vector of N0.

( , �) n�!� ( , �) ( , �) n�!n
n

( , �) ( , �)
n
m���!n+m ( , �) ( , �) ��!0 ( , �)

( , �) ��!n ( , �) ( , �)
n
n�!n ( , �) ( , �) ��!� ( , �) ( , �) n�!n ( , �)

( , �)
n
m��!m
n

( , �)
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Example: 
computing 
Fibonacci

1-x-x2x = x
x

x x

x
x

x x

=

x

x

=

x
=

x
=

x

x
x

x
x

x
=

x
x



Graphical Diophantine 
Algebra

String diagrams f.g. additive relations 
monoidal functor

• Definition. An additive relation of type k->l is a subset R⊆Nk×Nl s.t. (0,0) ∈ R and, if (a,b), 
(a’,b’) ∈ R then (a+a’,b+b’) ∈ R 

• An additive relation is f.g. if we can find a finite basis: i.e. every element can be 
expressed as a sum of basis elements


• These form a prop AddRel as a subprop of Rel× 


• proving f.g. additive relations are closed under composition is a cute application of 
Dickson’s Lemma

Bonchi, Holland, Piedeleu, S, Zanasi. Diagrammatic algebra: from Linear to Concurrent Systems. PoPL 2019


Same syntax as before, and…. sound and fully complete axiomatisation



From control to 
concurrency

• For linear relations, adding state yielded a compositional 
account of signal flow graphs


• For additive relations, adding state yields a compositional 
account of Petri nets

Diagrammatic Algebra: From Linear to Concurrent Systems 25:3

when the stream 10000 . . . comes in on the left, the stream 12358 . . . is computed on the right.

f ib :=
x

x
(2)

By interpreting values as signals, one can think of such diagrams as signal �ow graphs, a funda-
mental combinatorial model in control theory. Indeed, signal �ow graphs faithfully embed into
the diagrammatic theory given by (1) plus x . In [Baez and Erbele 2015; Bonchi et al. 2014]
a complete axiomatisation, called the signal �ow calculus, is provided for this syntax. It o�ers
a principled, algebraic approach to a variety of tasks: circuit equivalence [Bonchi et al. 2014],
realising a speci�cation [Bonchi et al. 2015], deadlock removal [Bonchi et al. 2015], composition of
controllable systems [Fong et al. 2016], re�nement [Bonchi et al. 2017a] and more.

From Linear to Concurrent Systems. The above sketch demonstrates how (1) admits an ax-
iomatisation of a signi�cant family of behaviours (linear systems), capturing a well-known pre-
existing combinatorial model (signal �ow graphs). In the spirit of process algebra, the approach is
compositional, allowing for the representation of open systems and emphasising interaction; in the
spirit of Petri, the syntax is graphical, emphasising the connection topology of systems.

The theme of this paper is to show that the algebraic approach to linear systems can be successfully
transferred to the analysis of concurrent systems.What is most striking is that the setup is essentially
unaltered: the generators of the syntax are the same, and the only signi�cant change is modelling
their behaviour via a di�erent semiring, passing from R to N.

In order to explain this point, we anticipate two examples from Section 2.2.

c1 := c2 := x (3)

In the signal �ow calculus the behaviour of these diagrams, which can be computed by following
the above description for generators, is trivial: both are the full relation , relating any
input to any output. Indeed, the �rst diagram expresses the constraint that r 2 R on the left is
related to r 0 2 R on the right such that r 0 = r +r 00 for some r 00 2 R, which is the case for all r , r 0 2 R.
For the second diagram, assume some value s 2 R is currently in the register: here given input r , in
order to output r 0 one just needs to �nd r 00 such that r 0 + r 00 = s , which is always possible.

Now, suppose that instead of giving a linear interpretation of these diagrams we give a resource
interpretation: wires carry discrete tokens that cannot be borrowed (i.e. they cannot be a negative
quantity). This amounts to switching the signal space from R to N, the semiring of natural numbers.
To quip, we move from Graphical Linear Algebra to Graphical Diophantine Algebra.

The “Aha-Erlebnis” is that, once interpreted overN, the same diagrams with the same operational
understanding now model a non-trivial (and even familiar) behaviour. In the interpretation of
the �rst diagram, a value r 00 2 N is now only available if r 0 � r 00: thus it expresses an ordering
constraint. For the second diagram, the output r 0 2 N is now forced to be a number of tokens
smaller than the one k 2 N stored in the register, and the new value in the register will be r + (k�r 0).
In other words, the diagram now models the same behaviour as a place in a Petri net!

Additive Relations and the Resource Calculus. The appearance of Petri nets suggests that
the theory of signal �ow calculus can be adapted to capture concurrent phenomena. This is the path
we have taken. The �rst ingredient is to identify the domain of N-valued executions of a system. In
the linear case, the interpretation domain is the category LinRel where arrows are linear relations,
i.e. relations between R-vectors that are also linear subspaces. Analogously, we work in the domain
of �nitely generated additive relations, which are relations between N-vectors: we call AddRel the

Proc. ACM Program. Lang., Vol. 3, No. POPL, Article 25. Publication date: January 2019.



Graphical Affine Algebra

• The usual syntax extended with          that “outputs 1”

String diagrams affine relations 
monoidal functor

setting in which to perform open network analysis purely
diagrammatically.

Non-passive components, however, e.g. voltage and current
sources are not linear but affine. For example, a k volt source
constrains the voltage (�1, �2) and current (i) pairs to be the
following relation:

7�!
��

�1
i

�
,
�
�2
i

��
|�2 � �1 = k

 
(3)

Our motivating questions for the results presented in this
paper are, therefore, (i) can the syntax of GLA be extended
in a simple and principled fashion to capture R-affine and N-
affine relations? And, if so, (ii) can we give an equational
characterisation of denotational equality, arriving at a sound
and complete calculus for affine relations?

C. Extending GLA: Graphical Affine Algebra

The answer to the first question is positive, and surpris-
ingly simple. The syntax of Graphical Affine Algebra (GAA)
extends (1) with just one additional connector

expressing the ‘constant 1’ behaviour. In other words, can
be regarded as a circuit component that emits a constant unit
signal on its right interface: the intended relation is {(•, 1)}.
We will now sketch how this language extension allows us to
capture the aforementioned examples.

Let us first consider N-relations. Using , we define :

:= . (4)

The result is a wire that can only carry 0 or 1 (i.e., any natural
number  1). Given this, the mutual exclusion connector (2)
is simply the composition of with .

Let us now switch to R-relations. It is not difficult to see that
the relation (3) is expressed by the following GAA diagram:

(5)

Indeed, as we shall see, adding the generator is sufficient
for expressing both N- and R-affine relations— in fact, affine
relations over any field K.

As a final example, let us consider how to express the empty
relation ?—which is both N- and R-affine—using our syntax.

(6)

Here the new generator is composed with . Opera-
tionally, this amounts to asserting “1 = 0”; in terms of
the relational interpretation, the result is the composition of
{(•, 1)} with {(0, •)}, which gives the empty relation.

D. Equational Characterisations
The answer to the second question is also positive. As our

main technical contribution, we provide two sound and fully
complete axiomatisations for GAA over affine relations, for
the two semirings that are of interest in our applications: the
case R = N, and the case in which R is a field K.

The equational theories are simple, with only a few addi-
tional equations that govern the interaction of with the
remaining GLA primitives. A particularly interesting equation
is shared by the two theories and concerns the properties of the
empty relation (6). Recall that the composition of any relation
with the empty relation, as well as the cartesian product of any
relation with the empty relation, results in the empty relation.
Equationally, thus behaves analogously to logical false; in
particular, we ought to be able to prove that

c
lk = d

k l

for any diagrams c and d. We show that this can be accom-
plished with a single equation that “disconnects” a wire.

(?)
=

A similar axiom has been used for the ZX-calculus to capture
the behaviour of the scalar zero [16].

E. Outline
In Section II we introduce the syntax ACircR of circuit

diagrams—the basic language that we will use throughout
the paper—with its semantics, in terms of relations of R-
vectors. In Section III we restrict our focus to two domains of
interpretation: the prop A↵RelK of affine relations over a field
K and A↵RelN of affine relations over the natural numbers. In
Section IV we introduce two corresponding equational theories
AIHK and ARC, and prove that they are fully complete for
their intended semantics. The syntax, semantics, and equa-
tional theories involved are summarised in Fig. 1. The next
two sections are devoted to case studies that showcase the
expressivity of our calculus. The first, in Section V, uses
GAA over N to capture the calculus of stateless connectors,
a coordination language for distributed systems [14] closely
related to Reo [17] and BIP [18]. The second case study,
in Section VI, uses GAA over R(x) to model the behaviour
of electrical circuits, including not only passive components
as [15], but also current and voltage sources. We prove by
diagrammatic reasoning classic results about compositions of
these components, and show how GAA allows us to detect
undefined behaviour.

II. THE LANGUAGE OF CIRCUIT DIAGRAMS

A. Syntax and Semantics
We start with a simple language of circuit diagrams, given

by the grammar below. Values k in k range over elements
of a given semiring R.

c, d ::= | | | | | |
| k | | | | c ; d | c� d

(7)

Two sound and complete axiomatisations.

Bonchi, Piedeleu, Sobocinski, Zanasi. Graphical Affine Algebra. LiCS 2019



Fun application: electrical 
circuits

• Let’s go back to the R world. We will use Graphical Affine Algebra as a 
sound and complete diagrammatic proof system for open circuits like:

think of it as a functor up-to an idempotent1, representing the
inclusion of the subset {0, 1} ✓ N.

Theorem 27. Let ◆1 : A↵RelN ! RelN be the obvious
prop morphism embedding N-affine relations into RelN and
◆2 : Rel2 ! RelN be the mapping arising from the inclusion
2 ✓ N, interpreting a relation over 2 as a relation over N. 2

For all c in SCCirc, the diagram below commutes.

SCCirc
E(�)

//

hh�ii

✏✏

ARC

J · KN⇠=
✏✏

A↵RelN
◆1
✏✏

Rel2 ◆2
// RelN

Proof. By induction on SCCirc.

As a consequence of Theorem 27 we obtain a sound and
complete axiomatisation for equivalence of stateless connec-
tors by means of the axioms of ARC.

Corollary 28. For any two stateless connectors c and d in
SCCirc,

hhcii = hhdii iff E(c) = E(d)

Remark 29. Theorem 26 in [14] states that the connectors in
SCCirc can denote exactly those relations in Rel2 that contain
the vector 0. ACirc2 can express more relations of Rel2, for
instance the not relation denoted by the following diagram:

* +

N

= {(0, 1), (1, 0)}

In fact, all relations in Rel2 can be expressed by ACirc2 since
every finite subset of Nk ⇥ Nl is an N-affine relation k ! l,
so in particular every subset containing only 0s and 1s is in
A↵RelN.

VI. CASE STUDY II: ELECTRIC CIRCUITS

Elementary electrical engineering focusses on open linear
circuit analysis. An example is illustrated below.

+– 12V

8Ω

4Ω

6Ω
1 1

2

Such circuits may include voltage ( ) and current sources

( ), resistors ( ), junctions (filled nodes) and open
terminals (unfilled nodes).

The section is structured as follows. We begin by making
these open circuits formal as combinatorial structures. We
then present open circuits as algebraic structures, and give

1It is possible to make this notion precise using the idempotent completion
(or Karoubi envelope) of ARC. For details, see [24]

2Note that ◆2 is not a functor since it does not preserve identities.

a compositional semantics in terms of K-affine relations. In
Subsection VI-A, we use the axiomatisation of Section IV to
give a sound and complete calculus for the analysis of open
linear circuits. We end in Subsection VI-B by showing how
to handle circuits with time-dependent currents and voltages,

which also feature inductors ( ) and capacitors ( ).
We can make closed (i.e. those without open terminals)

circuits precise as combinatorial structures by considering
them as multigraphs with a mixture of directed and undirected
edges. Directed edges are either voltage and current sources,
while undirected edges are resistors. Finally, every edge is
labelled by a non-negative real, denoting either voltage (in
volts), current (in amperes) or resistance (in ohms). Formally,
then, a closed circuit is

{X, V, C ,R , vs, vt : V ! X, cs, ct : C ! X,

rc : R ! P2(X), q : V + C +R ! R+}

where X,V,C,R are, correspondingly, finite sets of nodes,
voltage sources, current sources and resistors, vs, vt, cs, ct, rc
give the connectivity of the edges, and q the labels.

To consider open circuits, we consider a certain category
of cospans. First, the category CCirc of closed circuits and
their obvious choice of morphism has pushouts. Next, any
finite ordinal can be considered as a discrete closed circuit,
with the ordinal serving as its set of nodes. We therefore
consider the full subcategory OCirc of the category of
cospans Cospan(CCirc) with objects finite ordinals. Having
ordinals as objects reflects the numbering the left and right
open terminals, as we have done in the example diagram
above. It is straightforward to verify that OCirc is a prop.

We now give a straightforward algebraic characterisation of
OCirc. The prop ECirc has signature
(

, ,

)

k2R+

[
⇢

, , ,

�
(24)

where the parameter k ranges over the non-negative reals.
Arrows m ! n of ECirc represent open linear electrical
circuits with m open terminals on the left and n open terminals
on the right. The following are the equations:

= = =

= = =

= =

=

The equations, apart from the last, are those of special
Frobenius monoids [25]. The final equation reflects the fact
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that resistors are bidirectional. We state the following without
proof, which is similar to [26, Proposition 3.2] and [27,
Theorem 3.3].

Proposition 30. As props, OCirc ⇠= ECirc.

Having established open circuits as both combinatorial
(OCirc) and algebraic (ECirc) structures, we can now give a
compositional semantics in terms of affine relations in Fig. 5.
For each generator we give its translation as AIHR-diagram
and the associated R-affine relation in symbolic notation. A
similar semantics was given by Baez and Coya [15], [28],
building on the work of Baez, Erbele and Fong [10], [29],
and Rosebrugh, Sabadini and Walters [26]. Components of
an electrical circuit denote a relationship between current and
voltage, traditionally modelled as real values. The semantics
of an open circuit of type m ! n is thus a relation from R2m

to R2n, with the behaviour of the individual elements given
by Kirchoff’s laws. We use � 2 R to range over voltages and
i 2 R to range over currents.

Proposition 31. I (�) : ECirc ! A↵RelR is a symmetric
strict monoidal functor.

Note that I (�) fails to be a morphism of props for the
simple reason that it is not identity on objects: a single wire
of an electrical circuit maps to two wires of AIHR, with these
used to keep track of the voltage and the current. Indeed, on
objects I (1) = 2.

A. AIHR as a Calculus of Electrical Circuits

Below we give a few examples of how AIHR can be used
to derive well-known properties of circuits.

Lemma 32 (Properties of resistors).
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Lemma 33 (Properties of voltage sources).
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Proof. We only prove the first equality.
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Remark 34. In engineering literature, parallel voltage sources
of different voltages are disallowed. It is nonetheless interest-
ing to see what happens in the semantics.
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This, as we have seen, is the way of expressing the empty
relation in graphical affine algebra.

Lemma 35 (Properties of current sources).
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that resistors are bidirectional. We state the following without
proof, which is similar to [26, Proposition 3.2] and [27,
Theorem 3.3].

Proposition 30. As props, OCirc ⇠= ECirc.

Having established open circuits as both combinatorial
(OCirc) and algebraic (ECirc) structures, we can now give a
compositional semantics in terms of affine relations in Fig. 5.
For each generator we give its translation as AIHR-diagram
and the associated R-affine relation in symbolic notation. A
similar semantics was given by Baez and Coya [15], [28],
building on the work of Baez, Erbele and Fong [10], [29],
and Rosebrugh, Sabadini and Walters [26]. Components of
an electrical circuit denote a relationship between current and
voltage, traditionally modelled as real values. The semantics
of an open circuit of type m ! n is thus a relation from R2m

to R2n, with the behaviour of the individual elements given
by Kirchoff’s laws. We use � 2 R to range over voltages and
i 2 R to range over currents.

Proposition 31. I (�) : ECirc ! A↵RelR is a symmetric
strict monoidal functor.

Note that I (�) fails to be a morphism of props for the
simple reason that it is not identity on objects: a single wire
of an electrical circuit maps to two wires of AIHR, with these
used to keep track of the voltage and the current. Indeed, on
objects I (1) = 2.

A. AIHR as a Calculus of Electrical Circuits

Below we give a few examples of how AIHR can be used
to derive well-known properties of circuits.

Lemma 32 (Properties of resistors).
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Remark 34. In engineering literature, parallel voltage sources
of different voltages are disallowed. It is nonetheless interest-
ing to see what happens in the semantics.
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This, as we have seen, is the way of expressing the empty
relation in graphical affine algebra.

Lemma 35 (Properties of current sources).
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that resistors are bidirectional. We state the following without
proof, which is similar to [26, Proposition 3.2] and [27,
Theorem 3.3].

Proposition 30. As props, OCirc ⇠= ECirc.

Having established open circuits as both combinatorial
(OCirc) and algebraic (ECirc) structures, we can now give a
compositional semantics in terms of affine relations in Fig. 5.
For each generator we give its translation as AIHR-diagram
and the associated R-affine relation in symbolic notation. A
similar semantics was given by Baez and Coya [15], [28],
building on the work of Baez, Erbele and Fong [10], [29],
and Rosebrugh, Sabadini and Walters [26]. Components of
an electrical circuit denote a relationship between current and
voltage, traditionally modelled as real values. The semantics
of an open circuit of type m ! n is thus a relation from R2m

to R2n, with the behaviour of the individual elements given
by Kirchoff’s laws. We use � 2 R to range over voltages and
i 2 R to range over currents.

Proposition 31. I (�) : ECirc ! A↵RelR is a symmetric
strict monoidal functor.

Note that I (�) fails to be a morphism of props for the
simple reason that it is not identity on objects: a single wire
of an electrical circuit maps to two wires of AIHR, with these
used to keep track of the voltage and the current. Indeed, on
objects I (1) = 2.

A. AIHR as a Calculus of Electrical Circuits

Below we give a few examples of how AIHR can be used
to derive well-known properties of circuits.

Lemma 32 (Properties of resistors).
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Lemma 33 (Properties of voltage sources).
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Proof. We only prove the first equality.
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Remark 34. In engineering literature, parallel voltage sources
of different voltages are disallowed. It is nonetheless interest-
ing to see what happens in the semantics.

=

= =

= =

This, as we have seen, is the way of expressing the empty
relation in graphical affine algebra.

Lemma 35 (Properties of current sources).
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that resistors are bidirectional. We state the following without
proof, which is similar to [26, Proposition 3.2] and [27,
Theorem 3.3].

Proposition 30. As props, OCirc ⇠= ECirc.

Having established open circuits as both combinatorial
(OCirc) and algebraic (ECirc) structures, we can now give a
compositional semantics in terms of affine relations in Fig. 5.
For each generator we give its translation as AIHR-diagram
and the associated R-affine relation in symbolic notation. A
similar semantics was given by Baez and Coya [15], [28],
building on the work of Baez, Erbele and Fong [10], [29],
and Rosebrugh, Sabadini and Walters [26]. Components of
an electrical circuit denote a relationship between current and
voltage, traditionally modelled as real values. The semantics
of an open circuit of type m ! n is thus a relation from R2m

to R2n, with the behaviour of the individual elements given
by Kirchoff’s laws. We use � 2 R to range over voltages and
i 2 R to range over currents.

Proposition 31. I (�) : ECirc ! A↵RelR is a symmetric
strict monoidal functor.

Note that I (�) fails to be a morphism of props for the
simple reason that it is not identity on objects: a single wire
of an electrical circuit maps to two wires of AIHR, with these
used to keep track of the voltage and the current. Indeed, on
objects I (1) = 2.

A. AIHR as a Calculus of Electrical Circuits

Below we give a few examples of how AIHR can be used
to derive well-known properties of circuits.

Lemma 32 (Properties of resistors).
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Lemma 33 (Properties of voltage sources).
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Remark 34. In engineering literature, parallel voltage sources
of different voltages are disallowed. It is nonetheless interest-
ing to see what happens in the semantics.
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This, as we have seen, is the way of expressing the empty
relation in graphical affine algebra.

Lemma 35 (Properties of current sources).
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Proof. We prove only the second equality.
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Remark 36. Just as different voltage sources cannot be put
in parallel (Remark 34), different current sources cannot be
put in series: a similar graphical calculation as in Remark 34
yields the empty relation.

B. From R to R(x): Inductors and Capacitors
To capture time-dependent currents and voltages, we extend

circuits with two additional kinds of undirected edges, induc-

tors and capacitors , each with labels from R+,
signifying inductance and capacitance. Omitting the details
of the straightforward formalisation, we obtain CCircs by
considering the category of such extended circuits and, via
cospans, the corresponding category of open circuits OCircs.

To obtain ECircs we extend the signature (24) with induc-

tors and capacitors

(
,

)

k2R+

and extend the set

equations of ECirc with those that indicate that these additional
elements are undirected

= =

The following is a simple extension of the correspondence
shown in Proposition 30.

Proposition 37. As props, OCircs
⇠= ECircs.

By moving from the reals R to the field of polynomial
fractions R(x), or equivalently, rational functions in one
variable, we can give a compositional semantics of circuits
with time-dependent currents and voltages. The idea is to let
multiplication by x express differentiation by the time variable,
as usually done in engineering via Laplace transforms. We
extend the mapping of Figure 5 as follows:
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We can then show that also the extended semantics is
functorial.

Proposition 38. I (�) : ECircs ! A↵RelR(x) is a symmetric
strict monoidal functor.

Proof. Follows from the proof of Proposition 31. It suffices to

check that the undirectedness of and is respected,
but the derivation given in the proof of Proposition 31 can
easily be adapted in each case.

Exploiting the isomorphism AIHR(x) ⇠= A↵RelR(x), we can
reason equationally also on this extended class of circuits. For
instance, one can show that inductors behave analogously to
resistors when put in series and in parallel— cf. Lemma 32.

This is mostly evident when observing the structural similarity
of their AIHR(x)-interpretation:

vs .
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that resistors are bidirectional. We state the following without
proof, which is similar to [26, Proposition 3.2] and [27,
Theorem 3.3].

Proposition 30. As props, OCirc ⇠= ECirc.

Having established open circuits as both combinatorial
(OCirc) and algebraic (ECirc) structures, we can now give a
compositional semantics in terms of affine relations in Fig. 5.
For each generator we give its translation as AIHR-diagram
and the associated R-affine relation in symbolic notation. A
similar semantics was given by Baez and Coya [15], [28],
building on the work of Baez, Erbele and Fong [10], [29],
and Rosebrugh, Sabadini and Walters [26]. Components of
an electrical circuit denote a relationship between current and
voltage, traditionally modelled as real values. The semantics
of an open circuit of type m ! n is thus a relation from R2m

to R2n, with the behaviour of the individual elements given
by Kirchoff’s laws. We use � 2 R to range over voltages and
i 2 R to range over currents.

Proposition 31. I (�) : ECirc ! A↵RelR is a symmetric
strict monoidal functor.

Note that I (�) fails to be a morphism of props for the
simple reason that it is not identity on objects: a single wire
of an electrical circuit maps to two wires of AIHR, with these
used to keep track of the voltage and the current. Indeed, on
objects I (1) = 2.

A. AIHR as a Calculus of Electrical Circuits

Below we give a few examples of how AIHR can be used
to derive well-known properties of circuits.
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Remark 34. In engineering literature, parallel voltage sources
of different voltages are disallowed. It is nonetheless interest-
ing to see what happens in the semantics.

=

= =

= =

This, as we have seen, is the way of expressing the empty
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Fig. 5. Compositional semantics of electrical circuits.

that resistors are bidirectional. We state the following without
proof, which is similar to [26, Proposition 3.2] and [27,
Theorem 3.3].

Proposition 30. As props, OCirc ⇠= ECirc.

Having established open circuits as both combinatorial
(OCirc) and algebraic (ECirc) structures, we can now give a
compositional semantics in terms of affine relations in Fig. 5.
For each generator we give its translation as AIHR-diagram
and the associated R-affine relation in symbolic notation. A
similar semantics was given by Baez and Coya [15], [28],
building on the work of Baez, Erbele and Fong [10], [29],
and Rosebrugh, Sabadini and Walters [26]. Components of
an electrical circuit denote a relationship between current and
voltage, traditionally modelled as real values. The semantics
of an open circuit of type m ! n is thus a relation from R2m

to R2n, with the behaviour of the individual elements given
by Kirchoff’s laws. We use � 2 R to range over voltages and
i 2 R to range over currents.

Proposition 31. I (�) : ECirc ! A↵RelR is a symmetric
strict monoidal functor.

Note that I (�) fails to be a morphism of props for the
simple reason that it is not identity on objects: a single wire
of an electrical circuit maps to two wires of AIHR, with these
used to keep track of the voltage and the current. Indeed, on
objects I (1) = 2.

A. AIHR as a Calculus of Electrical Circuits

Below we give a few examples of how AIHR can be used
to derive well-known properties of circuits.

Lemma 32 (Properties of resistors).
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Remark 34. In engineering literature, parallel voltage sources
of different voltages are disallowed. It is nonetheless interest-
ing to see what happens in the semantics.
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This, as we have seen, is the way of expressing the empty
relation in graphical affine algebra.

Lemma 35 (Properties of current sources).
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• inspired by process algebra - operational playing around leads 
to equations leads to denotations


• unlike process algebra, we are not reinventing the algebraic 
wheel: the basic operations for composing process are those 
of monoidal categories


• what most surprises me is robustness. 


• on the semantic side, the mathematics changes drastically


• equationally, in terms of the string diagrams, we change 
some basic interaction of GLA primitives

Fong, Rapisarda and Sobocinski, "A categorical approach to open and interconnected dynamical systems", LICS `16

https://www.southampton.ac.uk/~ps1a06/papers/ltids.pdf


Compositional systems and methods

• new compositionality group at Taltech: applications of 
category theory to concurrency, control, game theory, 
engineering, machine learning, … 


• come and visit!!


• SYCO 7 in Tallinn - March 30-31, 2020 - save the date!




