String diagrams from control to concurrency and beyond

Pawel Sobocinski
Tallinn University of Technology
IFIP WG 2.2 Vienna 24/09/19

Joint work with Filippo Bonchi, Fabio Zanasi and Robin Piedeleu

Compositionality

- for "nice" homomorphic translation
- syntactic operations correspond to natural operations on the semantic domain
- syntax expressive enough to capture enough of the semantic domain
- natural notions of semantic equivalence find an axiomatisation in the syntax

Our approach

- in computer science, the tradition is to start with some syntax and study formal semantics as a separate subject
- we think that it is useful to reverse the process
- start with the the algebra of the semantic domain (in CS, control, engineering, science, mathematics, ...)
- engineer an appropriate syntax to support that algebra

Behavioural control theory

> "Thinking of a dynamical system as a behavior, and of inter-connection as variable sharing, gets the physics right."

- Willems' thesis: abandon causality and functionality (paraphrasing mine)
- causal thinking is a disease of the brain (Russell, 1912)
- laws of physics are seldom functional
- functional modelling is seldom compositional
- Willems' tearing procedure produces relational, not functional, behaviours

[^0]
Compositionality

- What kind of algebra?
- first order logic, regular logic, relational algebra, datalog, allegories, ...
- What kind of relations?
- vanilla, additive, linear, affine, ...

Rel $_{x}$

- For Willems' intuitions, an appropriate universe seems to be the categorical algebra of the symmetric monoidal category Rel $_{\times}$
- objects: sets $\mathrm{X}, \mathrm{Y}, \mathrm{Z}, \ldots$
- arrows: (typed) relations, R: X $\rightarrow \mathrm{Y}, \mathrm{S}: \mathrm{Y} \rightarrow \mathrm{Z}$
- composition: relational composition

$$
R ; S=\{(x, z) \mid \exists y . x R y \wedge y S z\}
$$

- monoidal product: $\mathrm{R} \times \mathrm{R}^{\prime}: \mathrm{X} \times \mathrm{X}^{\prime} \rightarrow \mathrm{Y} \times \mathrm{Y}^{\prime}$

$$
R \times R^{\prime}=\left\{\left(\left(x, x^{\prime}\right),\left(y, y^{\prime}\right)\right) \mid x R y \wedge x^{\prime} R^{\prime} y^{\prime}\right\}
$$

String diagrams

- diagrammatic syntax for symmetric monoidal categories
- diagrammatic reasoning: the laws of symmetric monoidal categories are baked in to the diagrams

Compositionality

String diagrams

- syntax expressive enough?
- axiomatisations?

Graphical Linear Algebra

- String diagrams generated by the following syntax

String diagrams

Sound and fully complete axiomatisation - the theory of IH (Interacting Hopf algebras)

Signal flow graphs

- The IH construction is parametric wrt any PID
- Starting with $\mathbf{R}[x]$ we get linear relations over its field of fractions $\mathbf{R}(x)$
- This is yields a sound and complete equational system for reasoning about signal flow graphs: models of computation that compute solutions of rational functions

[^1]
The operational view

- The work on signal flow graphs emphasises the importance of the operational view

$$
\begin{aligned}
& \begin{array}{l}
\underset{\substack{\frac{a_{1}}{b_{1}} c^{\prime} \\
c \oplus d \frac{a_{2}}{a_{1}} \frac{a_{1}}{a_{2}} \frac{a_{2}}{b_{2}} d^{\prime} \\
b_{2}}}{ } d^{\prime} \oplus d^{\prime}
\end{array} \\
& (-\sqrt{x}-, m) \frac{n}{m}(-\sqrt{x}-, n)
\end{aligned}
$$

- For signal flow graphs, the signals come from a field, typically \mathbf{R} or \mathbf{Q}

Example:

 computingFibonacci

$=$

$=$

Graphical Diophantine Algebra

- Definition. An additive relation of type $k->\mid$ is a subset $R \subseteq \mathbf{N}^{k} \times \mathbf{N}^{\mathbf{N}}$ s.t. $(0,0) \in \mathbf{R}$ and, if (a, b), $\left(a^{\prime}, b^{\prime}\right) \in \mathbf{R}$ then $\left(a+a^{\prime}, b+b^{\prime}\right) \in \mathbf{R}$
- An additive relation is f.g. if we can find a finite basis: i.e. every element can be expressed as a sum of basis elements
- These form a prop AddRel as a subprop of Rel $_{\times}$
- proving f.g. additive relations are closed under composition is a cute application of Dickson's Lemma

Same syntax as before, and.... sound and fully complete axiomatisation

From control to concurrency

- For linear relations, adding state yielded a compositional account of signal flow graphs
- For additive relations, adding state yields a compositional account of Petri nets

Graphical Affine Algebra

String diagrams

- The usual syntax extended with \vdash that "outputs 1 "

Two sound and complete axiomatisations.

Bonchi, Piedeleu, Sobocinski, Zanasi. Graphical Affine Algebra. LiCS 2019

Fun application: electrical circuits

- Let's go back to the \mathbf{R} world. We will use Graphical Affine Algebra as a sound and complete diagrammatic proof system for open circuits like:

4Ω

Compiling to string diagrams

$$
\begin{aligned}
\mathcal{I}(\square) & =\sim \\
\mathcal{I}(\square) & =\square \\
\mathcal{I}(\bullet) & =\square \\
\mathcal{I}(\longrightarrow) & =\longrightarrow
\end{aligned}
$$

$$
\begin{aligned}
& \mathcal{I}\binom{k}{-m w}=\underbrace{\circ} \\
& \mathcal{I}(-\bigodot)= \\
& \mathcal{I}\left(-{ }_{-}^{\mathrm{k}}\right)=\xrightarrow{\bullet-} \\
& \mathcal{I}\left(\Omega_{m}^{k}\right)=\underbrace{-\infty-r^{-m}} \\
& \mathcal{I}(\xrightarrow{k})=\stackrel{\square}{x}
\end{aligned}
$$

Current sources in parallel are additive

Voltage sources in parallel are "illegal"

- inspired by process algebra - operational playing around leads to equations leads to denotations
- unlike process algebra, we are not reinventing the algebraic wheel: the basic operations for composing process are those of monoidal categories
- what most surprises me is robustness.
- on the semantic side, the mathematics changes drastically
- equationally, in terms of the string diagrams, we change some basic interaction of GLA primitives

Compositional systems and methods

- new compositionality group at Taltech: applications of category theory to concurrency, control, game theory, engineering, machine learning, ...
- come and visit!!
- SYCO 7 in Tallinn - March 30-31, 2020 - save the date!

[^0]: J. C. Willems, The behavioural approach to open and interconnected systems: modeling by tearing, zooming, and linking, IEEE Control Systems Magazine, 2007.

[^1]: F. Bonchi, P. Sobociński and F. Zanasi, "Full Abstraction for Signal Flow Graphs", In Principles of Programming Languages, POPL`15 F. Bonchi, P. Sobociński and F. Zanasi, "The Calculus of Signal Flow Diagrams I: Linear Relations on Streams", Inf Comput B. Fong, P. Rapisarda and P. Sobociński, "A categorical approach to open and interconnected dynamical systems", LICS `16
 F. Bonchi, J. Holland, D. Pavlovic and P. Sobociński, "Refinement for signal flow graphs", CONCUR `17

