
Unification of
the Lambda-Calculus and Combinatory Logic

Masahiko Sato
Graduate School of Informatics, Kyoto University

IFIP WG 2.2 Meeting
TU Wien

September 25, 2019

What are the Lambda-Calculus and Combinatory Logic?

The Preface of “Lambda-Calculus and Combinators, an
Introduction” by J.R. Hindley J.P. Seldin says:

The λ-calculus and combinatory logic are two systems of logic
which can also serve as abstract programming languages. They
both aim to describe some very general properties of programs that
can modify other programs, in an abstract setting not cluttered by
details. In some ways they are rivals, in others they support each
other.

What are the Lambda-Calculus and Combinatory Logic?

The Preface of “Lambda-Calculus and Combinators, an
Introduction” by J.R. Hindley J.P. Seldin says:

The λ-calculus and combinatory logic are two systems of logic
which can also serve as abstract programming languages. They
both aim to describe some very general properties of programs that
can modify other programs, in an abstract setting not cluttered by
details. In some ways they are rivals, in others they support each
other.

Plan of the talk

In this talk, I will argue that they are, in fact, one and the same
calculus. To show this we unify these two systems into a single
system whose syntax naturally contains the syntax of the two
systems.

The unification is carried out in three steps:

1 We start from Church’s syntax Λ (sometimes called raw
terms), but will provide a new way of looking at these terms
modulo α-equivalence.

2 We formalize Combinatory Logic by giving a completely new
syntax ∆ for Cobinatory Logic.

3 We obtain the ultimate system by simply taking the union of
Λ and ∆.

History of the calculi

Again from the Preface of “Lambda-Calculus and Combinators, an
Introduction”.

The λ-calculus was invented around 1930 by an American logician
Alonzo Church, as part of a comprehensive logical system which
included higher-order operators (operators which act on other
operators). . .

Combinatory logic has the same aims as λ-calculus, and can
express the same computational concepts, but its grammar is much
simpler. Its basic idea is due to two people: Moses Shönfinkel, who
first thought of it in 1920, and Haskell Curry, who independently
re-discovered it seven years later and turned it into a workable
technique.

History of the calculi

Again from the Preface of “Lambda-Calculus and Combinators, an
Introduction”.

The λ-calculus was invented around 1930 by an American logician
Alonzo Church, as part of a comprehensive logical system which
included higher-order operators (operators which act on other
operators). . .

Combinatory logic has the same aims as λ-calculus, and can
express the same computational concepts, but its grammar is much
simpler. Its basic idea is due to two people: Moses Shönfinkel, who
first thought of it in 1920, and Haskell Curry, who independently
re-discovered it seven years later and turned it into a workable
technique.

History of the calculi

Again from the Preface of “Lambda-Calculus and Combinators, an
Introduction”.

The λ-calculus was invented around 1930 by an American logician
Alonzo Church, as part of a comprehensive logical system which
included higher-order operators (operators which act on other
operators). . .

Combinatory logic has the same aims as λ-calculus, and can
express the same computational concepts, but its grammar is much
simpler. Its basic idea is due to two people: Moses Shönfinkel, who
first thought of it in 1920, and Haskell Curry, who independently
re-discovered it seven years later and turned it into a workable
technique.

The syntax of the Lambda Calculus and Combinatory Logic

X ::= x, y, z, · · ·
M,N ∈ Λ ::= x | λxM | (M N)

M,N ∈CL ::= x | I | K | S | (M N)

(M N) stands for the application of the function M to its
argument N . It is often written simply MN , but we will always
use the notation (M N) for the application.

The Lambda Calculus

M,N ∈ Λ ::= x | λxM | (M N)

λxM stands for the function obtained from M by abstracting x
in M . We will write λx0···xn−1M for λx0· · ·λxn−1M .
β-conversion rule

(λxM N)→ [x := N]M

Example

If x 6= y, and y is not free in M , then

((λxyx M) N)→ ([x := M]λyx N)

= (λy[x := M]x N)

= (λyM N)

→ [y := N]M

= M

Combinatory Logic

M,N ∈ CL ::= x | I | K | S | (M N)

Weak reduction rules

(I M)→M

((K M) N)→M

(((S M) N) P)→ ((M P) (N P))

These rules suggest the following identities.

I = λxx

K = λxyx

S = λxyz((x z) (y z))

By this identification, every combinatory term becomes a lambda
term. Moreover, the above rewriting rules all hold in the lambda
calculus.

Combinatory Logic (cont.)

What about the converse direction? We can translate every
lambda term to a combinatory term as follows.

x∗ = x

(λxM)∗ = [x]M∗

(M N)∗ = (M∗ N∗)

We used [−]− : X× CL→ CL above, which we define by:

[x]x := I

[x]y := (K y) if x 6= y

[x]M := (K M) if M = I,K, S

[x](M N) := ((S [x]M) [x]N)

Combinatory Logic (cont.)

The abstraction operator [−]− enjoys the following property.

([x]M N)→ [x := N]M

So, CL can simulate the β-reduction rule of the λ-calculus.
However, the simulation does not provide β-conversion preserving
isomorphism. Therefore, for example, the Church-Rosser property
for CL does not imply the CR property for the λ-calculus.

Still, the simulated β-reduction has the nice property that
substitution is always variable capture-avoiding since CL does not
have bound variables.

We will reformulate CL, keeping this nice proerty and at the same
time the simulated β-conversion will provide an isomorphism
between Λ (modulo α-equivalence) and reformulated CL.

The set X of variables

We write X for the set of variables we use in this talk, and use
x, y, z etc. as metavariables ranging over variables.

Moreover we assume that variables in X are enumertated as:

v0 v1 · · · vi · · ·

so that any variable x can be written as x = vi for some uniquely
determined natural number i.

This enumeration naturally defines a well-ordering on X definied
by: vi ≤ vj ⇐⇒ i ≤ j.

Height and Thickness of Λ-terms

Definition (Height (Ht), thickness (Th))

Ht(x) := 0

Ht(λxM) := Ht(M) + 1

Ht((M N)) := 0

Th(x) := 0

Th(λxM) := Th(M)

Th((M N)) := Th(M) + Th(N) + 1

Ht(M) counts the number of initial sequence of λ-binders, and
Th(M) counts the number of applications in M .

Free variables and Freeness of Λ-terms

Definition (Free variables (FV), freeness (Fn))

FV(x) := {x}
FV(λxM) := FV(M)− {x}

FV((M N)) := FV(M) ∪ FV(N)

Given a natural number n and a finite set V of variables, we say
that n covers V if n > i for any vi ∈ V . Then, the freeness of
M , Fn(M), is the smallest n which covers FV(M).

Note that Fn(M) = 0 if and only if FV(M) = {}.

Height, thickness and freeness are 3 key invariants on α-equivalent
terms.

Thread

We will call a term M a thread if Th(M) = 0, namely, if it is
constructed from a variable only by abstraction. So, a thread M
can be written as

M = λx0···xn−1y

where n = Ht(M), and if n = 0, then M = y.

A thread λx0···xn−1y is closed if y occurs in x0 · · ·xn−1, and it
is open otherwise.

We note that an open thread is characterized up to α-equivalence
by n and y, since the choice of xi are irrelevant as long as they
are chosen avoiding y.

Similarly, a closed thread is characterized by a pair of natural
numbers i and k such that y = xi, k = n− 1− i and y is not
in xi+1 · · ·xn−1. The number k is equal to de Bruijn index of
the thread.

Standard substitution

Definition (Standard substitution of N for x in M)

[N/x]x := N

[N/x]y := y if x 6= y

[N/x]λxM := λxM

[N/x]λyM := λy[N/x]M if x 6= y

[N/x](M1 M2) := ([N/x]M1 [N/x]M2)

Standard substitution is a total function on Λ× X×Λ, but in the
fourth case, if N has a free occurrence of y, then the standard
substitution gives an unwanted result.
Capture-avoiding substitution add a condition that N may not
contain free occurreces of y in case four. But, then it is not total
on Λ× X× Λ.

Standard term and standard form

Definition (n-standard term and n-standard form)

A Λ-term M is n-standard if n = Fn(M), i < n for any free
variable vi in M , and n ≤ i for any bound variable vi in M ,
We define the n-standard form of M (n ≥ 0) as follows.

[x]n := x

[λxM]n := λvn[vn/x][M]n+1

[(M N)]n := ([M]n [N]n)

Proposition

1 If n ≥ Fn(M), then [M]n is an n-standard term and
[[M]n]n = [M]n.

2 If P = (λxM N), n = Fn(P) and P is an n-standard
term, then [N/x]M is computed in a capture-avoiding way.

Canonical form of Λ-terms and α-equivalence

Definition (Canonical form)

Given M ∈ Λ, we define the α-canonical form of M by putting:

Mα := [M]Fn(M).

It is easy to see that (Mα)α = Mα.

Definition (α-equivalence)

Given two terms M and N , they are α-equivalent, written
M =α N , if Mα = Nα.

Remark

1 That this is indeed an equivalence relation is obvious.

2 If n ≥ Fn(M), then [M]n =α M .

Substitution on Λ-terms

Definition (Substitution on Λ-terms)

Given Λ-terms x, M and N , we put n = Fn((λxM N)) and
define the result of substituting N for x in M as follows.

[x := N]M := ([[N]n/vn][M]n+1)α

Substitution is a total function X× Λ× Λ.

Proposition

1 [x := N]M = [x := Nα]Mα.

2 If M1 =α M2 and N1 =α N2, then
[x := N1]M1 = [x := N2]M2.

The λβ-calculus (classical version)

x ∈ X M ∈ Λ N ∈ Λ
(λxM N)→β [x := N]M

β

M →β M
′

λxM →β λxM
′ ξx

M →β M
′ N →β N

′

(M N)→β (M ′ N ′)
A

M →β M
IM

M1 →β M2 M2 →β M3

M1 →β M3
C

A different view of Λ-terms

We will provide a different view of Λ-terms. This view is obtained
by introducing a systematic way of using any Λ-term M as an
abreviation of Mα. Namely, we will think of α-canotical terms as
‘real’ λ-terms and other non-canonical terms as ‘names’ of the
corresponding canonical terms.

Given a subset X of Λ, we put

[X] := {Mα |M ∈ X}

and introduce the following convention:

M : X ⇐⇒ Mα ∈ [X]

Proposition

M : X⇐⇒M ∈ X̄ := {M |M =α M ∈ [X]}

Classification of Λ-terms by height

We classify Λ-terms according to their height.
We put:

Λn := {M | Ht(M) ≥ n}
Λ=n := Λn − Λn+1

We have:

Λ = Λ0 =

∞⋃
n=0

Λ=n (disjoint union)

All the sets defined above commute with the operation [−]. For
example: [Λ] =

⋃∞
n=0 [Λ=n].

Application at height i

We generalize traditional application term (M N) to terms of the
form (M N)i (i ≥ 0) (application of M to N at height i) by
means of notational convention.

Suppose that M,N ∈ Λi and n = Fn((M N)). Then we
define (M N)i ∈ Λ=i by the rule:

[M]n = λvn···vn+i−1M
′ ∈ Λi [N]n = λvn···vn+i−1N

′ ∈ Λi

(M N)i := (λvn···vn+i−1(M ′ N ′))
α
∈ Λi

We note that (− −)i is a total function on Λi × Λi, and in
particular when i = 0, then it is total on Λ× Λ and
(M N)0 = (M N)α.

A different view of Λ-terms

We can now check that, for each n ≥ 0, [Λ=n] can inductively
generated by the following rules.

x0, . . . , xn−1, y ∈ X
λx0···xn−1y : Λ=n

M : Λn N : Λn

(M N)n : Λ=n

These rles provide us with simpler induction principle than the
traditional induction principle involving variable binding for the
case of abstraction.

A different view of Λ-terms (cont.)

We can also understand the above rules as a new form of
inducution principle on Λ-terms.

The first rule covers threads, namely, those terms whose thickness
is 0. Thus, as a base case of new induction priciple, we must first
settle this base case (with no IH).

The second rule covers terms with positive thickness, namely,
applications. Using the abbreviation just introduced, an application
can be written as (M N)i. The second case is the induction step
case, and our induction priciple allows us to use two IHs which
correscond to the cases for M and N .

Also while the traditional induction priciple has three cases for
induction, one for base case (variale) and two (abstaction and
application) cases for step cases, in our case we have one (thread)
for base case and one (application) for step case.

Instantiation on Λ-terms

Definition (Instatiation on Λ-terms)

Given M ∈ Λ1 and N ∈ Λ, we put n = Fn((M N)) and define
the result of instantiating M by N as follows.

〈M N〉 := ([[N]n/vn][M]n+1)α

Instantiation is a total function Λ1 × Λ.

Proposition

If M = λxM
′, then we have

〈M N〉 = [x := N]M ′.

Instatiation on Λ-terms at height i

We can naturally generalize the instatiation operation defined in
the previous slides and had the functionality:

〈− −〉 : Λ1 × Λ0 → Λ0

to instantiation operation at height i so that it will have the
functionality:

〈− −〉i : Λi+1 × Λi → Λi

and satisfies the equation:

〈λx0···xi−1λyM λx0···xi−1N〉
i =α λx0···xi−1〈λyM N〉

Instatiation on Λ-terms at height i (cont.)

This generalized instantiation operation enables us to reformulate
the classical λβ-calculus in such a way that we can apply
β-conversion to a redex inside several abstractions without
appealing to the ξ-rule.

The λβ-calculus (reformulated version)

M ∈ Λi+1 N ∈ Λi

(M N)i →β 〈M N〉i
β

M,N ∈ Λi M →β M
′ N →β N

′

(M N)i →β (M ′ N ′)i
A

M →β M
IM

M1 →β M2 M2 →β M3

M1 →β M3
C

For comparison, we show the classical version again in the next
slide.

The λβ-calculus (classical version)

(λxM N)→β [x := N]M
β

M →β M
′

λxM →β λxM
′ ξx

M →β M
′ N →β N

′

(M N)→β (M ′ N ′)
A

M →β M
IM

M1 →β M2 M2 →β M3

M1 →β M3
C

The datatype ∆ of derivations

In order to study the intrinsic structure of Λ we introduce the
datatype ∆ of derivations.

Definition (The datatype ∆ of derivations)

Λ 3M,N ::= x | λxM | (M N)

∆ 3 d, e ::= Vix | Pik | (d e)i

Vix are called lifted variables and Pik are called projections. Their
computational behaviors are characterized by the following
β-equalityies.

(Vix e1 · · · ei)
0

=β V0
x

(Pik e0 · · · ei+k)
0

=β ei

The datatype ∆ of derivations (cont.)

We may think of ∆-terms as a variant of CL-terms. For example,
combinators I, K and S are definable in ∆ as abbreviations:

I := P0
0

K := P0
1

S := ((P0
2 P2

0)
3

(P1
1 P2

0)
3
)
3
.

Abstraction operation in ∆

In ∆, we can mimic λ-abstraction in Λ by introducing the
following notational convention. Given a variable x and a ∆-term
d, [x]d stands for the following ∆-term.

[x]Vix := P0
i

[x]Viy := Vi+1
y if x 6= y

[x]Pik := Pi+1
k

[x](d e)i := ([x]d [x]e)i+1

Recall that, for CL, it was defined by:

[x]x := I

[x]y := (K y) if x 6= y

[x]M := (K M) if M = I,K, S

[x](M N) := ((S [x]M) [x]N)

Translation from Λ to ∆

We translate each Λ-term M into a ∆-term M∗ as follows.

x∗ := V0
x

(λxM)∗ := [x]M∗

(M N)∗ := (M∗ N∗)0

This translation naturally induces an instantiation preserving
isomorphism [Λ] ' ∆.

Unification of Λ and ∆

Definition (The unified syntax Λ∆)

Λ 3M,N ::= x | λxM | (M N)

∆ 3 d, e ::= Vix | Pik | (d e)i

Λ∆ 3 d, e ::= x | λxd | (d e) | Vix | Pik | (d e)i

We may think of Λ and ∆ as two sides of the same coin Λ∆.

In Λ∆, we can freely mix syntax from two languages Λ and ∆.

