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Outline

Methods of state space reductions

Some history of Partial Order Reductions (POR)

POR for temporal logics: LTL-X, CTL*-X

POR for epistemic logics: LTLK-X, CTL*K-X

POR for strategy logics: sATL*ir and sATL*iR
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Model checking for modal logics

Model checking problem

?
M, s |= ϕ

a Kripke model a modal formula

Complexity
From P-Time to undecidable.
But, |M| is typically exponential in the size of a system !!!
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Possible solutions

Symbolic model checking - BDD-based (Lomuscio, Raimondi),
SAT-based Unbounded Model Checking for ATL (Kacprzak,
Lomuscio, Penczek)

Abstractions - multi-valued model checking over abstract models
for variants of ATL(K) (Belardinelli, Lomuscio, Michaliszyn)

Bisimulation-based reductions - for ATLir (Belardinelli,
Condurache, Dima, ...)

Symmetry reductions - model checking over smaller models for
CTLK (see Cohen, Dams, Lomuscio, Qu)

Upper and lower approximations - for ATLir (Jamroga, Knapik,
Kurpiewski)

Partial order reductions - model checking over smaller models
for LTLK-X, CTLK-X, sATL* (Lomuscio, Penczek, Qu, Jamroga, ...)

Simpler strategies - counting strategies for TATL (Andre, Jamroga,
Knapik, Penczek, Petrucci)
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Partial Order Reductions

Idea
This is a method of generating reduced state spaces of
distributed systems which preserve properties of our
interest.

The reduction exploits the idea that when a property does
not distinguish between the interleavings of the same
(Mazurkiewicz) trace, then it is sufficient to generate a
reduced state space which contains only one interleaving
for each trace.

In practice one generates more than one interleaving per
trace, but as few as possible.
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History of Partial Order Reductions

Three Big Names

Antti Valmari, ICATPN 1989 - stubborn sets

Patrice Godefroid, CAV 1990, CAV 1991 - sleep sets

Doron Peled, CONCUR 1992 - ample sets
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Syntax

I assume that you are familiar with LTL, CTL*, and epistemic
logics ...

Syntax of ATL*:

φ ::= p | ¬φ | φ ∧ φ | φ ∨ φ | 〈〈A〉〉γ,

γ ::= φ | γ ∧ γ | γ ∨ γ | X γ | γ U γ | γRγ,

where p ∈ AP and A - a set o agents.
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Networks of automata - generators of models

W

T

A

G

R

W

T

A

Train1 Train2Controller

a1
a1a2

a2
a3

b1
b1b2

b2
b3

Figure: TC composed of two trains and the controler
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Interleaved Interpreted Systems

A Model is tuple
A = (Agents,Act ,Q,AP,V,prot , trans, {∼i | i ∈ Agents}), s.t.:

Agents is a finite set of all the agents,
Act = A1 ∪ . . . ∪ An is a finite set of actions,
Q = L1 × . . .× Ln is a finite set of global locations (states),
V : Q → 2AP is a valuation function,
proti : Li → 2Ai - a protocol function of agent i ,
ti : Li × Ai → Li - an i-local evolution partial function,
trans : Q× Act → Q - an interleaved evolution partial
function: trans((g1, . . . ,gn),act) = (g′1, . . . ,g

′
n) iff

ti(gi ,act) = g′i if act ∈ Ai and gi = g′i if act 6∈ Ai ,
g ∼i g′ iff gi = g′i for each i ∈ Agents - the
indistinguishabilty relations.

Wojciech Penczek et al. Partial Order Reductions for .... 9/26



Full and reduced model

the full model a reduced model

G, W, W

R, T, W R, W, T

G, A, W G, W, A

a3 b3

a1 b1

a2 b2

G, W, W

R, T, W R, W, T

G, A, W G, W, A

R, A, T R, T, A

G, A, A

a3 b3

a1 b1

a2 b2

b1 a1a3

b3

b2

a2

b3

a3
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Semantics

Semantics of ATL*: (Y ∈ {IR, iR, Ir , ir}).

M,g |=Y 〈〈A〉〉γ iff
there is a joint Y -strategy σA for agents A such that,

for each path π ∈ outM(g, σA), we have M, π |=Y γ, where

I - complete information, i - incomplete information,
R - perfect recall, r - imperfect recall.

Properties of TGC in ATL*:

〈〈c〉〉G(¬in_tunnel1) - the controller can keep Train 1 out,
〈〈c〉〉F (in_tunnel1 ∧ F¬in_tunnel1) - the controller can let
Train 1 through,
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Explaining the idea behind POR

POR aims at generating reduced models, preserving some
temporal formula ψ.

Independency of actions
Ind = {(a,b) | Agents(a) ∩ Agents(b) = ∅}, restricted such
that either a or b is invisible, i.e., does not change the
valuations of the atomic propositions used in ψ,
Two infinite sequences of global locations and actions:
g0a0g1a1 . . . and g0a′0g′1a′1 . . . that differ in the ordering of
independent actions only are called trace equivalent,
ψ does not distinguish between trace-equivalent sequences.

Wojciech Penczek et al. Partial Order Reductions for .... 12/26



Algorithm DFS-POR

DFS-POR is used to compute paths of the reduced model M ′.
A stack represents the path π = g0a0g1a1 · · · gn currently being visited.
For gn, the following three operations are computed in a loop:

1 The set en(gn) ⊆ Act of enabled actions is identified and
a subset E(gn) ⊆ en(gn) of necessary actions is heuristically
selected.

2 For any action a ∈ E(gn) compute the successor state g′ of gn

such that gn
a→ g′, and add g′ to the stack.

Recursively proceed to explore the submodel originating at g′.

3 Remove gn from the stack.

Catch
The problem of computing a minimal E(g) is NP-complete.
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Conditions for selection of E(g)

Basic Conditions
C1 Along each path π in M that starts at g, each action

a ∈ Act \ E(g) that is dependent on an action in
E(g) cannot be executed in π without an action in
E(g) is executed first.

C2 If E(g) 6= en(g), then each action in E(g) is
invisible,

C3 For every cycle in M ′ there is at least one node g in
that cycle for which E(g) = en(g).
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Equivalence on states and paths

 Figure: Two stuttering equivalent paths π and π′

A dotted line between two states g and g′ means that
V (g) = V (g′).
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POR for LTL-X

[Peled 1992]
Logic: LTL-X
Equivalence induced on models: stuttering trace
equivalence,
M ′ ⊆ M - the reduced model generated by DFS-POR
If E(g) satisfies C1, C2, C3, then
M,g0 |= ϕ iff M ′,g0 |= ϕ, for any LTL-X formula ϕ,
If E(g) satisfies C1,C3, then
M,g0 |=CF ϕ iff M ′,g0 |=CF ϕ, for any LTL-X formula ϕ.

CF Concurrency Fairness - no action can be eventually always
enabled in a path and be independent of the executed
actions.

Wojciech Penczek et al. Partial Order Reductions for .... 16/26



POR for LTL-X

[Peled 1992]
Logic: LTL-X
Equivalence induced on models: stuttering trace
equivalence,
M ′ ⊆ M - the reduced model generated by DFS-POR
If E(g) satisfies C1, C2, C3, then
M,g0 |= ϕ iff M ′,g0 |= ϕ, for any LTL-X formula ϕ,
If E(g) satisfies C1,C3, then
M,g0 |=CF ϕ iff M ′,g0 |=CF ϕ, for any LTL-X formula ϕ.

CF Concurrency Fairness - no action can be eventually always
enabled in a path and be independent of the executed
actions.

Wojciech Penczek et al. Partial Order Reductions for .... 16/26



POR for CTL∗-X

[Gerth, Kuiper, Peled, Penczek 1995]
Logic: CTL∗-X
Equivalence induced on models: stuttering bisimulation,
M ′ ⊆ M - the reduced model generated by DFS-POR
If E(g) satisfies C1, C2, C3, C4, then
M,g0 |= ϕ iff M ′,g0 |= ϕ, for any CTL∗-X formula ϕ,
If E(g) satisfies C1, C3, C4, then
M,g0 |=CF ϕ iff M ′,g0 |=CF ϕ, for any CTL∗-X formula ϕ.

C4 If E(g) 6= en(g), then E(g) is a singleton.
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Equivalence on states and paths

 Figure: Two J-stuttering equivalent paths π and π′

J ⊆ Agents. A dotted line between two states g and g′ means
that V (g) = V (g′) and g ∼J g′.

M,g |= Kiγ iff for all g′ ∈ Q if g ∼i g′ we have M,g′ |= γ.
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POR for LTLKJ-X (only Ki with i ∈ J)

[Lomuscio, Penczek, Qu, AAMAS 2010]

Logic: LTLKJ -X
Equivalence induced on models: J-stuttering trace
equivalence,
M ′ ⊆ M - the reduced model generated by DFS-POR
If E(g) satisfies C1, C2, C3, CJ, then
M,g0 |= ϕ iff M ′,g0 |= ϕ, for any LTLKJ -X formula ϕ,
If E(g) satisfies C1, C3, CJ, then
M,g0 |=CF ϕ iff M ′,g0 |=CF ϕ, for any LTLKJ -X formula ϕ.

CJ No action in E(g) changes local states of the agents in J.
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POR for CTL∗KJ-X (only Ki with i ∈ J)

[Lomuscio, Penczek, Qu, FI 2010]

Logic: CTL∗KJ -X
Equivalence induced on models: J-stuttering bisimulation,
M ′ ⊆ M - the reduced model generated by DFS-POR
If E(g) satisfies C1, C2, C3, C4, CJ, then
M,g0 |= ϕ iff M ′,g0 |= ϕ, for any CTL∗KJ -X formula ϕ,
If E(g) satisfies C1, C3, C4, CJ, then
M,g0 |=CF ϕ iff M ′,g0 |=CF ϕ, for any CTL∗KJ -X formula ϕ.

C4 If E(g) 6= en(g), then E(g) is a singleton.
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sATL* over interleaved models

Restrictions of ATL*
sATL* (simple ATL*) - ATL* without the next state operator
and without nested strategic operators,
sATLir , sATL∗ir
Model checking sATLir and sATL∗ir is PSPACE-complete in
the size of the model representation and the length of a
formula.
sATLiR, sATL∗iR
Model checking sATLiR and sATL∗iR is undecidable.
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POR for sATL∗ir

[Dembiński, Jamroga, Mazurkiewicz, Penczek, AAMAS 2018,
Best Paper Award Nomination]

Logic: sATL∗ir
Equivalence induced on models: ?!?
M ′ ⊆ M - the reduced model generated by DFS-POR
If E(g) satisfies C1, C2, C3, then
M,g0 |= ϕ iff M ′,g0 |= ϕ, for any sATL∗ir formula ϕ that
refers only to coalitions A, where the actions of A are visible,
If E(g) satisfies C1,C3, then
M,g0 |=CF ϕ iff M ′,g0 |=CF ϕ, for any sATL∗ir formula ϕ.

Remark: the above theorem does not hold for sATL∗Ir .
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POR for sATL∗iR

[Jamroga, Penczek, Sidoruk, 2019]
Logic: sATL∗iR
Equivalence induced on models: ?!?
M ′ ⊆ M - the reduced model generated by DFS-POR
If E(g) satisfies C1, C2, C3, then
M,g0 |= ϕ iff M ′,g0 |= ϕ, for any sATL∗iR formula ϕ that
refers only to coalitions A, where the actions of A are visible,
If E(g) satisfies C1,C3, then
M,g0 |=CF ϕ iff M ′,g0 |=CF ϕ, for any sATL∗iR formula ϕ.

Remark: the above theorem does not hold for sATL∗IR.
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Experimental Results - Trains and Controller (TC)

Modified partial order reduction algorithms for LTL-X can be
used for sATL∗ir and sATL∗iR.

Property: Controller has a strategy to keep Train 1 out of the
tunnel:

〈〈c〉〉G(¬in_tunnel1)

Models for n trains

F (n) ≥ 2n+1 - the size of the full model.
R(n) = 2n + 1 - the size of the reduced model.
The reduced model is exponentially smaller than the full one.

More benchmarks
We have experimental results for Faulty TGC, Simple Voting
Protocol, and Bridge Endplays with n cards, amounting to
40%− 90% reductions of the state spaces.
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Future work

Combining POR with model checking methods for sATL*ir

Symbolic on-the-fly model checking for sATL*ir

Application to e-voting protocols
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Thank You !
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