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Challenges

Mobile equipments as attack platforms

I > 3M malicious applications on Google Play (G-Data, 2018)
I ubiquity of phones and tablets attracts attackers

Safeguarding the network

I prevent attacks mounted from mobile terminals
I network infrastructure enables protective measures

Programmable networks (SDN)

I allow for flexible network reconfiguration
I virtual routers deployed in a cloud infrastructure
I complex configuration rules are error-prone
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SDN Architecture

Two layers of processing rules

I control plane: rules for forwarding packets to routers
I data plane: process packets, mostly based on header information
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SDN Programming and Verification

Pyretic: a DSL for programming SDN controllers [Foster et al. 2013]

I higher-level programming abstractions, compiled to OpenFlow

I atomic rules: identity, drop, match, modify
(plus some operators defined in libraries)

I sequential and parallel composition: �, +

match(dstip=127.93.256.*)�
((match(port=4000) + match(port=5000))� drop)

Existing work for verifying SDN rules

I data plane: Vericon [Ball et al. 2014], FlowChecker [Shaer et al. 2010], . . .

I control plane: Kinetic [Kim et al. 2015]
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Formal Verification of Control and Data Planes

1 Encoding of Pyretic programs in SMTlib

I represent addresses and ports by formal constants

I match, modify: equations on header fields

I �, + represented as conjunction and disjunction

I drop: negate expression describing rejected packets

I properties express constraints about accepted / rejected traffic

2 Encoding as nuXmv models

I represent control flow as finite state machine

I constraints on headers processed in data plane

I express properties as LTL or CTL formulas
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Performance evaluation

Varying size of control plane Varying width of data plane

nuXmv is both expressive and fast
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Objectives

Generate security chains for mobile applications

I observe the network traffic that an application generates

I represent the network behavior as a Markov chain

I synthesize an SDN program enforcing network policies

Network traffic represented as flows

I information about packets for same destination

I ignore packet contents (often encrypted anyway)

I useful for detecting attacks (DoS, port scanning, botnets etc.)

I collect on device: associate flow with application

I existing data sets [CTU 2013, Flowoid]
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From Network Flows to Markov Chains

States correspond to network destinations

I record which servers an application contacts

I aggregate IP addresses according to their orgname

Transitions reflect successions of destinations

I record in which order destinations are visited

I transition probabilities according to frequency of visits

Adaptation of techniques for process learning

I favorable comparison with existing tools (Synoptic, Invarimint)
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Example: Automaton for Pokemon Go
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Classify Application Behavior

Detect potential malicious behavior

I basis: network behavior represented by Markov chain
I appeal to BGP ranking service: trustworthiness of destinations
I operator-defined thresholds for identifying attacks
I take into account application permissions (spyware)

Encode classification rules as Horn clauses

I declarative representation for ease of modification
I basis for reasoning about properties of synthesized chains

Example of classification rule

dos(a) ← ∧ f ∈ tapp ∧ a = f .dstaddr∧ (lf , p, lf ) ∈ Tapp
∧ p ≥ attack limit∧ count(a, lf ) ≥ ip limit
∧ avg interval(lf ) ≤ min interval∧ avg size(lf ) ≤ min size
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Infer High-Level Representation of Security Chains (1)

Determine which elementary rules should be deployed

I forward, block or limit the number of packets

I ensure that packets match protocol type (tcp, udp, http, . . . )

I invoke filtering or deep packet inspection services

deployblock(a, pt) ← botnet(a, pt)
deploylimit(a) ← dos(a)

deployforward(a) ← ¬worm(a, pt) ∧ ¬botnet(a, pt)

Define the effect of elementary rules on network traffic

forward(a, t) = restrict(t, λpk : pk.dstaddr = a)
block(a, pt, t) = restrict(t, λpk : pk.dstaddr 6= a∧ pk.dstport 6= pt)

limit(a, t) = cut(forward(a, t), ip limit)
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Infer High-Level Representation of Security Chains (2)

Group inferred rules into security functions

stateless firewall(t) =⊕ { forward(a, t) : deployforward(a), a ∈ ADDR }
⊕ ⊕ { block(a, pt, t) : deployblock(a, pt), a ∈ ADDR, pt ∈ PORT }

ids(t) =
⊕ { limit(a, t) : deploylimit(a), a ∈ ADDR }

stateful firewall(t) = . . .

Build chains from security functions

dos chain = stateless firewall � ids � stateful firewall

Properties of chains ensured by construction

I absence of loops and black holes
I shadowing freedom, coherence of single chains
I chains for different applications need not be coherent
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Evaluation of Generated Chains

Method of evaluation
I 7000 network flows corresponding to 10 applications
I use 70% of each flow for generating the chains
I inject port scanning attack into remaining 30%

application # dests. # rules avg. acc.
disneyland 5 44 0.992
dropbox 17 311 0.997
faceswitch 30 425 0.812
lequipe 208 1640 0.518
meteo 90 716 0.837
ninegag 124 930 0.509
pokemongo 24 485 0.743
ratp 3 28 0.940
skype 442 6529 0.998
viber 176 4163 0.683

⇒ Improve detection for applications whose destinations vary
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Combine Chains for Different Applications

Must handle packets generated from different applications

I naive approach: parallel composition or joint learning
 large chains, learning effort, risk of incoherence

I in practice, many chains have common elements

Algorithm for merging security chains

I merge functions of same type (firewall, IDS, . . . )
I combine the rules for these functions
I identify conflicting rules and choose between them

Properties of combined chains

I absence of loops and black holes, shadowing freedom
I coherence of overall chains, but risk of loss of precision
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Experimental Evaluation

Number of rules when composing chains

Accuracy of attack detection unchanged
I no conflicting rules in our experiments
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Placement of Security Chains

Assign rules to switches, forward packets according to chain

I preserve the order of rules within a chain

I respect capacities of switches and of interconnection network

I optimize for network utilization, service congestion, availability

Encode the problem using (non-)linear integer programming

I aggregate destinations based on channel capacity

I aggregate switches into network paths

I constraints represent resource requirements of the chain

I objective functions express (normalized) optimization criteria

I use Simplex, MINLP, and optimizing SMT solvers
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Performance Evaluation

Preliminary evaluation over crafted examples

I Simplex is robust to the number of destination aggregates . . .

I . . . but highly sensitive to number of network paths
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Summing Up

Use of formal techniques in the context of SDN

I verification techniques (SMT, model checking)

I automaton learning for characterizing application behavior

I declarative programming for chain synthesis

I merging and optimization for the deployment of chains

Experiences and perspectives

I promising experiments in simulated environments

I improve accuracy of chains in the case of varying destinations

I enable on-the-fly adaptations of chains

I better take into account application permissions and privacy risks
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