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Solving one Fixpoint Equation

We are interested in techniques for solving (systems of) fixpoint
equations over a lattice

One-equation case

Solve the equation E given as

x =η f (x)

where

f : L→ L is a monotone function over a complete lattice
(L,v)

η ∈ {µ, ν}, indicating whether we are interested in the least
(µ) or greatest (ν) fixpoint

The solution of E is denoted by sol(E )

Applications in concurrency theory, model checking, program
analysis
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Solving one Fixpoint Equation

Solution techniques

The Knaster-Tarski theorem guarantees the existence of least
and greatest fixpoints for monotone functions

Kleene iteration: whenever f is (co-)continuous

η = µ (least fixpoint): sol(E ) =
⊔

i∈N f i (⊥)

η = ν (greatest fixpoint): sol(E ) =
d

i∈N f i (>)

In order to check whether l v sol(E ) for some l ∈ L:

η = µ (least fixpoint): use ranking functions
η = ν (greatest fixpoint): construct a postfix-point l ′

(l ′ v f (l ′)) such that l v l ′
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Solving one Fixpoint Equation

Fix(f )
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If f is not (co-)continuous:
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Solving one Fixpoint Equation

Examples

Bisimilarity characterized as a greatest fixpoint

Behavioural metric characterized a a least fixpoint
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Solving (Systems of) Fixpoint Equations

System of fixpoint equations

Let L be a lattice. A system of equations E over L is of the
following form, where fi : Lm → L are monotone functions and
ηi ∈ {µ, ν}.

x1 =η1 f1(x1, . . . , xm)

. . .

xm =ηm fm(x1, . . . , xm)

The solution of E , denoted sol(E ) ∈ Lm, is defined inductively as
follows:

sol(∅) = ()

sol(E ) = (sol(E [xm := sm]), sm)

where sm = ηm(λx . fm(sol(E [xm := x ]), x))
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Solving (Systems of) Fixpoint Equations

Remarks:

E [xm := x ] is a system of m− 1 equations that one obtains by
fixing the value of xm as x and removing the last equation.

Intuitively we fix the value of xm as x , solve the remaining
equation systems parameterized over x and then perform a
fixpoint iteration (least or greatest) over x .

The order of the equations matters.

The solution is a fixpoint of the equation system (one of
typically many fixpoints).
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Solving (Systems of) Fixpoint Equations

Example: µ-calculus model checking

We consider the modal µ-calculus with 2 (“all successor states
satisfy . . . ”), 3 (“some successor state satisfies . . . ”), least and
greatest fixpoints.

a b

P

νx2.(µx1.(3x1 ∨ (P ∧3x2)) ∧2x2)

Equations over the powerset lattice of states:

x1 =µ 3x1 ∪ (P ∩3x2)

x2 =ν x1 ∩2x2
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Solving (Systems of) Fixpoint Equations

Example: µ-calculus model checking

a b

P

Equations over the powerset lattice of states:

x1 =µ 3x1 ∪ (P ∩3x2)

x1: “there exists a path such that eventually P holds and x2 holds
for some successor”

x2 =ν x1 ∩2x2

x2: “x1 holds and all successors satisfy x2”

Combined: “from all reachable states there is a path along which
P holds infinitely often”
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Solving (Systems of) Fixpoint Equations

Efficient algorithms for µ-calculus model-checking

n: number of states d : alternation depth of formula

Naive approach: use the definition ; O(nd)

Reduce model-checking problem to a parity game and
determine whether the existential player has a winning
strategy

Local on-the fly algorithms [Stevens, Stirling]
that perform an on-the fly search for a winning strategy
of the existential player (proving that a given state
satisfies a formula)

Progress measures [Jurdzinski] ; O(n
d
2 )

Quasi-polynomial algorithms [Calude, Jain, Khoussainov,
Bakhadyr, Li, Stephan] ; O(ndlog de+c)
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Solving (Systems of) Fixpoint Equations

Example: lattice-valued µ-calculi

Variants: Non-boolean µ-calculi that do not check whether a
formula holds in a state, but measure the “degree” with respect to
which a formula is satisfied:

x |= ϕ is replaced by JϕK : X → L

Latticed µ-calculus [Kupferman, Lustig]
; over a lattice L

Quantitative probabilistic µ-calculus [Huth, Kwiatkowska]
; over the real interval L = [0, 1]

 Lukasiewicz µ-calculus [Mio, Simpson]
; over the real interval L = [0, 1]

; we require methods and techniques for solving fixpoint
equations over general lattices (as opposed to powerset lattices)
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Fixpoint Games

Aim: consider a game perspective for solving systems of fixpoint
equations for general lattices

Let E be a system of m equations over a lattice L with a basis BL

(BL ⊆ L such that every l ∈ L can be obtained as l =
⊔
B ′ where

B ′ ⊆ BL). Let sol(E ) = (s1, . . . , sm) be the solution.

Given b ∈ BL, i ∈ {1, . . . ,m} the existential player (∃, Eve)
wants to prove that b v si .

The universal player (∀, Adam) is the adversary of ∃ and
wants to show that b 6v si .

Precursor games:

Parity games
Unfolding games [Venema]

are being played on a powerset lattice
single fixpoint equation
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Fixpoint Games

Fixpoint game (first version)

Position Player Moves

(b, i) ∃ (l1, . . . , lm) such that b v fi (l1, . . . , lm)
(l1, . . . , lm) ∀ (b′, j) such that b′ v lj

b, b′ ∈ BL, ⊥ 6∈ BL, (l1, . . . , lm) ∈ Lm

Winning condition (“parity condition”)

∃ ∀
Finite game ∀ unable to move ∃ unable to move
Infinite game ηh = ν ηh = µ

Where h ∈ {1, . . . ,m} is the highest equation index occurring
infinitely often.
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Fixpoint Games

We play the game on the powerset lattice L = P({a, b}) with basis
BL = {{a}, {b}} for b = {a}, i = 2:

a b

P

x1 =µ 3x1 ∪ (P ∩3x2) = f1(x1, x2)

x2 =ν x1 ∩2x2 = f2(x1, x2)

Remember: the second component of the solution contains all
states such that “from all reachable states there is a path along
which P holds infinitely often”
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Fixpoint Games

Notation:

Game positions (nodes) of ∃: 3

Game positions (nodes) of ∀: 2
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Fixpoint Games

({a}, 2)

({a}, {a, b})

({a}, 1) ({b}, 2)

({a}, ∅) ({b}, ∅) ({b}, {b})

({b}, 1) (∅, {b})

Only minimal moves of ∃ are given. Thick arrows: winning
strategy of ∃
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Fixpoint Games

Is the game correct and complete for all lattices?
(“∃ has a winning strategy for (b, i) ⇐⇒ b v si”)

Counterexample

L = N ∪ {ω}, BL = L\{0}
f : L→ L, f (n) = n + 1, f (ω) = ω

x =µ f (x)

We play a game to check whether ω is below the
solution (= least fixpoint):

ω
∃
; ω

∀
; ω . . .

∀ would win this game . . . This means that something is
wrong!

0

1

2

ω
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Fixpoint Games

In this case ω v
⊔

i∈N f i (0), but ω 6v f i (0) for all i ∈ N.

However, in order to win, ∃ has to descend in the lattice in order
to reach ⊥ = 0 and enforce a finite game. (∃ has to be able to go
beyond the “limit ordinals” in the fixpoint iteration.)

Solution: play with basis BL = N\{0}. This forces ∀ to pick some
n ∈ N.

What are the restrictions on the basis in general?
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Way-Below Relation, Algebraic and Continuous Lattices

Way-below relation (definition)

Given two elements l , l ′ ∈ L we say that l is way-below l ′, written
l � l ′ when for all directed set D ⊆ L, if l ′ v

⊔
D then there

exists d ∈ D such that l v d .

It holds that ω 6� ω, since ω v
⊔
N, but ω is not below any

element of the directed set N.

For two sets Y ,Y ′ ∈ P(X ) it holds that Y � Y ′ iff Y ⊆ Y ′

and Y finite.

For x , x ′ ∈ [0, 1] it holds that x � x ′ iff x < x ′ or x = 0.
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Way-Below Relation, Algebraic and Continuous Lattices

Algebraic lattice (definition)

An element l ∈ L is compact if l � l .
A lattice L is algebraic if the compact elements form a basis.

Every powerset lattice is algebraic.

N ∪ {ω} is algebraic.

[0, 1] is not algebraic. (Only 0 is compact.)

Soundness and completeness of the fixpoint game (first version)

The game is

always correct (“∃ has a winning strategy for (b, i) ⇒ b v si”)

and complete (“b v si ⇒ ∃ has a winning strategy for (b, i)”)
iff BL consists of compact elements (and hence L is algebraic).
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Way-Below Relation, Algebraic and Continuous Lattices

Continuous Lattice [Scott]

A lattice L is continuous if for all l ∈ L it holds that
l =

⊔
{l ′ ∈ L | l ′ � l}.

Every algebraic lattice is continuous.

[0, 1] is a continuous lattice.

The lattice to the right is not continuous:
a 6� a, so

⊔
{l ∈ L | l � a} = 0 6= a.

0

1

2

ω

a
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Way-Below Relation, Algebraic and Continuous Lattices

Fixpoint game (second version)

Position Player Moves

(b, i) ∃ (l1, . . . , lm) such that b v fi (l1, . . . , lm)
(l1, . . . , lm) ∀ (b′, j) such that b′� lj

b, b′ ∈ BL, ⊥ 6∈ BL, (l1, . . . , lm) ∈ Lm

The winning conditions stay unchanged.

Soundness and completeness of the fixpoint game (second version)

The game is

always complete

and correct iff L is continuous.
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Conclusion

Further contributions

Progress measures: computing the strategy of the existential
player (global algorithm)

Local algorithm for checking whether a lattice element is
below the solution

Integration with up-to techniques for stopping earlier

Variant of the game: play on the powerset of the basis (sound
and complete for all complete lattices)
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Conclusion

Open question

Does the theory developed here help to solve fixpoint equations
over the reals, metrics and other infinite lattices?
. initial experiments with SMT solvers
. methods for approximating the solution
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