On Proving Almost-Sure Termination

Joost-Pieter Katoen

Talk 2019 Meeting IFIP WG 2.2, Vienna

IFIP WG 2.2, 2019

Termination of programs that roll dice?

Certain termination

This program never diverges. This holds for all integer inputs i.

Almost-sure termination

For 0 an arbitrary probability:

```
bool c := true;
int i := 0;
while (c) {
    i++;
    (c := false [p] c := true)
}
```

This program does not always terminate. It diverges with probability zero. It almost surely terminates.

Non almost-sure termination

P :: skip [1/2] { call P; call P; call P }

This program terminates with probability $\frac{\sqrt{5}-1}{2} < 1$.

$$X = \frac{1}{2} \cdot 1 + \frac{1}{2} \times \times \times$$

IFIP WG 2.2, 2019

Nuances of termination

Olivier Bournez Florent Garnier

..... certain termination

..... termination with probability one

 \implies almost-sure termination

..... in an expected finite number of steps

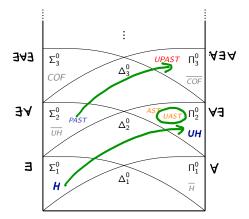
⇒ "positive" almost-sure termination

..... in an expected infinite number of steps

⇒ "null" almost-sure termination

IFIP WG 2.2, 2019

Hardness of almost sure termination



Adding non-determinism does not change the picture. Neither for approximating termination probabilities.

[Kaminski & JPK, 2015]

Proving almost-sure termination

What?

- Termination with probability one
- For all possible inputs

Why?

- Reachability can be encoded as termination
- Often a prerequisite for proving correctness
- Often implicitly assumed

Why is it hard in practice?

Requires proving lower bound 1 for termination probability

Almost-sure termination

"[Ordinary] termination is a purely topological property [...], but almost-sure termination is not. [...] Proving almostsure termination requires arithmetic reasoning not offered by termination provers."

Javier Esparza CAV 2012

How to prove termination?

Use a variant function on the program's state space whose value — on each loop iteration — is monotonically decreasing with respect to a (strict) well-founded relation.

Alan Mathison Turing Checking a large routine 1949

Variant functions

 $V: \Sigma \to \mathbb{R}_{\geq 0}$ for loop while(G) P is variant function if every state s:

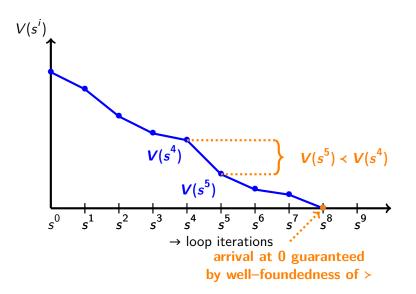
1. If $s \models G$, then P's execution on s terminates in a state t with:

 $V(t) \leq V(s) - \varepsilon$ for some fixed $\varepsilon > 0$, and

2. If $V(s) \leq 0$, then $s \notin G$.

$$(\mathbb{R}_{\geq 0}, <_{\varepsilon})$$
 for $\varepsilon > 0$ is well-founded

Termination proofs



Examples

while (x > 0) { x-- }

Ranking function V = x.

Ranking function V = x + y.

Proving almost-sure termination so far

Hart/Sharir/Pnueli: Termination of Probabilistic Concurrent Programs. POPL 1982 Bournez/Garnier: Proving Positive Almost-Sure Termination. RTA 2005 McIver/Morgan: Abstraction, Refinement and Proof for Probabilistic Systems. 2005 Esparza et al.: Proving Termination of Probabilistic Programs Using Patterns. CAV 2012 Chakarov/Sankaranarayanan: Probabilistic Program Analysis w. Martingales. CAV 2013 Fioriti/Hermanns: Probabilistic Termination: Soundness, Completeness, and Compositionality. POPL 2015 Chatterjee et al.: Algorithmic Termination of Affine Probabilistic Programs. POPL 2016 Agrawal/Chatterjee/Novotný: Lexicographic Ranking Supermartingales. POPL 2018

Key ingredient: super- (or some form of) martingales

On super-martingales

A stochastic process X_1, X_2, \ldots is a martingale whenever:

$$\mathbb{E}(X_{n+1} \mid X_1, \ldots, X_n) = X_n$$

It is a super-martingale whenever:

$$\mathbb{E}(X_{n+1} \mid X_1, \ldots, X_n) \leq X_n$$

Our aim

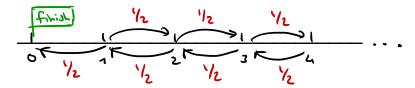
A powerful, simple proof rule for almost-sure termination. At the source code level.

No "descend" into the underlying probabilistic model. No severe restrictions on programs. IFIP WG 2.2, 2019

Proving almost-sure termination $V_{=} \times = \exists \epsilon \ \mathbf{\Sigma} \ \mathbf{E}(V^{k+i}) \in V^{k} - \epsilon$

The symmetric random walk:

while $(x > 0) \{ x := x-1 [0.5] x := x+1 \}$



Proving almost-sure termination

The symmetric random walk:

while $(x > 0) \{ x := x-1 [0.5] x := x+1 \}$

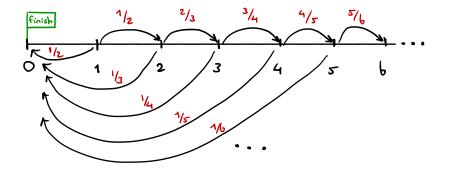
Is out-of-reach for many proof rules.

A loop iteration decreases x by one with probability 1/2This observation is enough to witness almost-sure termination!

Are these programs almost surely terminating?

Escaping spline:

while $(x > 0) \{ p := 1/(x+1); x := 0 [p] x++ \}$

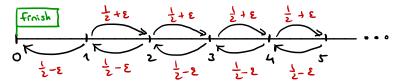


Are these programs almost surely terminating?

Escaping spline: while (x > 0) { p := 1/(x+1); x := 0 [p] x++}

A slightly unbiased random walk:

p := 0.5-eps ; while (x > 0) { x-- [p] x++ }



Are these programs almost surely terminating?

Escaping spline: while (x > 0) { p := 1/(x+1); x := 0 [p] x++}

A slightly unbiased random walk: p := 0.5-eps ; while (x > 0) { x-- [p] x++ }

```
A symmetric-in-the-limit random walk:

while (x > 0) { p := x/(2*x+1) ; x-- [p] x++ }

2/3

3/5

4/7

5/3

3/5

4/7

5/3

4/7

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3

5/3
```

X

Proving almost-sure termination

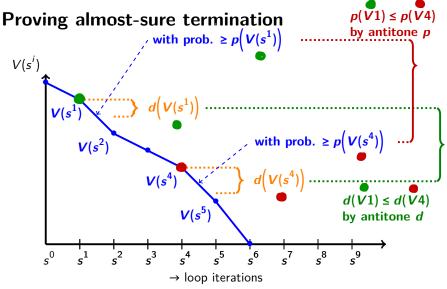
Goal: prove a.s.-termination of while(G) P, for all inputs

Ingredients:

▶ A supermartingale V mapping states onto non-negative reals

- $\mathbb{E}\left\{V(s_{n+1}) \mid V(s_0), \ldots, V(s_n)\right\} \leq V(s_n)$
- Running body P on state s ⊨ G does not increase E(V(s))
- Loop iteration ceases if V(s) = 0
- and a progress condition: on each loop iteration in s'
 V(sⁱ) = v decreases by ≥ d(v) > 0 with probability ≥ p(v) > 0
 with antitone p ("probability") and d ("decrease") on V's values

Then: while(G) P a.s.-terminates on every input



The closer to termination, the more V decreases and this becomes more likely

The symmetric random walk

Recall:

while
$$(x > 0) \{ x := x-1 [0.5] x := x+1 \}$$

Witnesses of almost-sure termination:

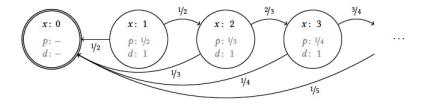
1/ \ 1

$$V = x$$

$$p(v) = 1/2$$
 and $d(v) = 1$

That's all you need to prove almost-sure termination!

The escaping spline



Consider the program:

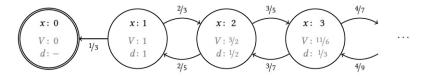
while (x > 0) { p := 1/(x+1); x := 0 [p] x++}

Witnesses of almost-sure termination:

$$\blacktriangleright V = x$$

•
$$p(v) = \frac{1}{v+1}$$
 and $d(v) = 1$

A symmetric-in-the-limit random walk



Consider the program:

while
$$(x > 0) \{ p := x/(2*x+1) ; x-- [p] x++ \}$$

Witnesses of almost-sure termination:

V = H_x , where H_x is x-th Harmonic number $1 + \frac{1}{2} + \ldots + \frac{1}{x}$

•
$$p(v) = \frac{1}{3}$$
 and $d(v) = \begin{cases} \frac{1}{x} & \text{if } v > 0 \text{ and } H_{x-1} < v \le H_x \\ 1 & \text{if } v = 0 \end{cases}$

Formal proof rule

Let *I* be a predicate, variant function $V : \Sigma \to \mathbb{R}_{\geq 0}$, probability function $p : \mathbb{R}_{\geq 0} \to (0, 1]$ be antitone, decrease function $d : \mathbb{R}_{\geq 0} \to \mathbb{R}_{>0}$ be antitone. If:

- 1. [1] is a wp-subinvariant of while(G) P w.r.t. [1]
- 2. V is a super-invariant of while(G) P w.r.t. V
- 3. V = 0 indicates termination, i.e. $[\neg G] = [V = 0]$
- 4. V satisfies the progress condition:

 $p \circ (V \cdot [G] \cdot [I]) \leq \lambda s. wp(P, [V \leq V(s) - d(V(s))])(s)$

Then: the loop while(G) P terminates from any state s with $s \models I$, i.e.,

$$[I] \leq wp(while(G) P, \mathbf{1}).$$

Some remarks

Checking if V, p and d satisfy the sufficient conditions is simple.

This proof rule covers many a.s.-terminating programs that are out-of-reach for many existing proof rules

The proof rule is applicable to program with nondeterminism too

Questions and discussion

Are/can similar proof techniques be used elsewhere?

- Completeness? For a certain set of programs?
- Synthesis of functions V, p, and d?
- Complexity issues
- PAST is harder than AST, but AST seems more difficult. Why?

Automation?

Common knowledge

- A program either terminates or not (on a given input)
- Terminating programs have a finite run-time
- Having a finite run-time is compositional

 $\begin{array}{c} r_{t}(P) < \infty \\ r_{t}(Q) < \nabla \end{array} \right\} \quad r_{t}(P;Q) < \infty$

A radical change

- A program either terminates or not (on a given input)
- Terminating programs have a finite run-time
- Having a finite run-time is compositional

All these facts do not hold for probabilistic programs!

Epilogue

Take-home messages

- Flavours of termination for probabilistic programs
- Positive almost-sure termination is difficult
- A powerful proof rule for almost-sure termination

Extensions

- Expected run-times
- Non-determinism
- Conditioning
- Pointer programs

A big thanks to my co-authors!

Benjamin Kaminski, Christoph Matheja, Annabelle McIver, Carroll Morgan Federico Olmedo

Further reading

B. KAMINSKI, JPK, C. MATHEJA.
 On the hardness of analysing probabilistic programs. MFCS 2015/Acta Inf. 2019.

- B. KAMINSKI, JPK, C. MATHEJA, AND F. OLMEDO.
 Expected run-time analysis of probabilistic programs. ESOP 2016/J. ACM 2018.
- A. MCIVER, C. MORGAN, B. KAMINSKI, JPK. A new proof rule for almost-sure termination. POPL 2018.
- M. HARK, B. KAMINSKI, J. GIESL, JPK. Aiming low is harder: Induction for lower bounds in probabilistic program verification. POPL 2020?