
Programming Collective Adaptive Systems

by relying on

Attribute-based Communication

Rocco De Nicola

Joint work with
M. Loreti, Y. Abd Alrahman and Tan Duong

IFIP W.G. 2.2 - Wien - September 2019

IMT- School for Advanced Studies - Lucca

Outline

Languages for supporting the engineering of different classes of modern distributed
systems

I network-aware programming

I service-oriented computing

I autonomic computing.

Programming collective adaptive systems

AbC: A calculus for Attribute based Programming

I Syntax

I Semantics

I Implementations

I Verification

Introduction and Motivations Rocco De Nicola 1/32

Why a Languages based Approach

Languages

Languages play a key role in the engineering of systems

I Systems must be specified as naturally as possible

I Distinctive aspects of the domain need to be first-class citizens

I Intuitive/concise specifications are possible and encodings can be avoided

Models

Models strictly related to languages are at least as important for effective analysis

I high-level abstract models guarantee feasible investigations

I the scrutiny of results (e.g., counterexample) based on system features, rather
than on their low-level representation, guarantees better feedbacks.

Introduction and Motivations Rocco De Nicola 2/32

Language-based methodology

Major challenge

The big challenge for language designers is to devise appropriate abstractions and
linguistic primitives to deal with the specificities of the systems under consideration
while relying on an appropriate semantic model.

A possible approach

Combined use of formal methods with model-driven software engineering. Key
ingredients are

1. A specification language equipped with a formal semantics

2. A programming framework with associated runtime environment

3. A number of verification techniques and associated tools

Introduction and Motivations Rocco De Nicola 3/32

Our Contributions: A timeline

1998 Klaim

2006-2009 SCC - COWS - CASPIS 2016 AbC

2012 SCEL

Network-aware programming
- awareness of the network infrastructure
- asynchronous interactions
- open-ended non-determ. environment
- computation mobility

Service-oriented computing
- services composition
- heterogeneous components
- code reuse
- interoperability

Autonomic compuFng
- reduced maintenance cost
- no human interven:on
- con:nuous monitoring
- adapta:on

Collective adaptive systems progr.
- large number of components
- decentralised control
- unpredictable environment
- emergent behaviour

Introduction and Motivations Rocco De Nicola 4/32

Collective Adaptive Systems

We are surrounded by examples of collective systems, in the natural world

I Bees, Fishes, Birds, . . .

Introduction and Motivations Rocco De Nicola 5/32

Collective Adaptive Systems

... and in the man-made world

I Traffic, Epidemics, Robots, . . .

Introduction and Motivations Rocco De Nicola 6/32

Collective Adaptive Systems

Many components

From a computer science perspective, collective adaptive systems can be viewed as
consisting of a large number of interacting entities.

Local behaviour

Each entity may have its own properties, objectives and actions and at the system
level the entities combine to create the collective - emergent - behaviour.

Mutual Influence

The behaviour of the system is dependent on that of the individual entities and the
behaviour of the individuals will be influenced by the state of the overall system.

No Central Control

CAS need to operate without centralised control or direction. When conditions
within the system change it may not be feasible to have human intervention to
adjust behaviour appropriately and systems must autonomously adapt.

Introduction and Motivations Rocco De Nicola 7/32

The Scel language: ensembles

Ensembles formation

I Attributes are used by the system components to dynamically organize
themselves into ensembles

I Predicates P over attributes are used by components to specify the targets of
communication actions.

Knowledge
K

Processes

PΠ
Policies

Knowledge
K

Processes

PΠ
Policies

id = robot1
providedTasks = {exploreArena,dragObject}

Knowledge
K

Processes

PΠ
Policies

Pea = exploreArena ∈ ProvidedTask

id = robot2
providedTasks = {exploreArena}

id = robot3
providedTasks = {dragObject}

Pdo = dragObject ∈ ProvidedTask

I Ensembles are determined by the predicates validated by each component

I There is no coordinator, hence no bottleneck or critical point of failure

I A component might be part of more than one ensemble

Introduction and Motivations Rocco De Nicola 8/32

The Scel language

Introduced to deal with the challenges posed by the design of ensembles of
autonomic components

An autonomic component in Scel:

Knowledge
K

Processes

P

I Interface

Π
Policies

I Knowledge repositories where components store and retrieve information
about their working environment and to use it for determining and adapting
their behaviour

I Policies regulating the inter- and intra-components interaction

I Interfaces consisting of a collection of attributes, like provided functionalities,
spatial coordinates, group memberships, trust level, response time, ...

Introduction and Motivations Rocco De Nicola 9/32

A Calculus for Attribute based Communication

Yehia Abd Alrahman, Rocco De Nicola, Michele Loreti:
On the Power of Attribute-Based Communication

FORTE 2016 and Information and Computation 2019
...
...

Rocco De Nicola, Tan Duong, and Michele Loreti:
ABEL - A DSL for programming with attribute-based communication

Coordination 2019

AbC Rocco De Nicola 10/32

AbC: a calculus distilled from SCEL

I Systems are represented as sets of parallel components, each equipped with a
set of attributes whose values can be modified by internal actions.

I Communication actions (send and receive) are decorated with predicates over
attributes that partners have to satisfy to make the interaction possible.

I Communication takes place in an implicit multicast fashion: partners are
selected via predicates over the attributes exposed in their interfaces.

I Components are unaware of the existence of each other and receive messages
only if they satisfy senders requirements.

I Components can offer different views of themselves and can communicate
with different partners according to different criteria.

I Semantics for output actions is non-blocking while input actions are blocking:
they can take place through synchronization with an available sent message.

AbC Rocco De Nicola 11/32

AbC: basic ingredients.

An AbC system consists of a set components that contain

I a behaviour - a set of running processes

I an environment - a map from attributes names to values

P

Q

R

a1 = v1

a2 = v2
a3 = v3

...

Processes can:

I send a message to all the components satisfying a given predicate;

I receive a message from a component satisfying a given predicate;

I change the environment;

I wait until a given predicate is locally satisfied.

AbC Rocco De Nicola 12/32

AbC Syntax

Components C ::= Γ :IP | C1‖C2 | [C]/f | [C].f

Processes P ::= 0 | Π(x̃).U | (Ẽ)@Π.U | 〈Π〉P |
P1 + P2 | P1|P2 | K (x1, . . . , xn)

Updates U ::= [a := E]U | P

Predicates Π ::= tt | ff | pk(E1, . . . ,Ek) | Π1 ∧ Π2 | Π1 ∨ Π2 | ¬Π

Expressions E ::= v | x | a | this.a | ok(E1, . . . ,Ek)

AbC Rocco De Nicola 13/32

AbC: Interfaces

A basic component, Γ :I P, is a process P associated with an attribute
environment Γ, and an interface I .

I The attribute environment Γ:A 7→ V is a partial map from attribute
identifiers with a ∈ A to values v ∈ V where A ∩ V = ∅. A value could be a
number, a name (string), a tuple, etc.

I The interface I ⊆ A consists of a finite set of attributes names that are
exposed by a component to control the interactions with other components.

I Attributes in I are public, and to those in dom(Γ)− I are private.

AbC Rocco De Nicola 14/32

AbC: Controlling Interaction

Two operators [C]/f and [C].f are introduced to restrict information flow.
Function f associates a predicate Π to each tuple of values ṽ ∈ V∗ and attribute
environment Γ.

I [C].f is used to restrict the messages that component C can send.

I When the message outgoes [C].f , the target predicate is updated to
consider also predicate Π′ = f (Γ, ṽ)

I Only components satisfying Π ∧ Π′ will receive the message.
I To prevent a specific secret s from being spread outside C , one can use

fs(Γ, ṽ) = tt if s 6∈ ṽ and fs(Γ, ṽ) = ff otherwise.

I [C]/f is used to restrict the messages that component C can receive.

I If a component with public attribute environment Γ sends a message ṽ
to components C satisfying Π, only those components in C that satisfy
Π ∧ f (Γ, ṽ) are eligible to receive the message.

AbC Rocco De Nicola 15/32

AbC: Processes

A process P can be the:

I inactive process 0,

I action-prefixed process, act.U, where act is a communication action and U is
a process possibly preceded by an attribute update,

I self-aware process 〈Π〉P, blocks the execution of P until predicate Π is
satisfied within the attribute environment where the process is executing and
triggers execution of P when the environment changes and Γ |= Π

I nondeterministic choice between two processes P1 + P2,

I interleaving composition of two processes P1|P2, processes can only
communicate indirectly through the attribute environment they share

I parametrised process call with a unique identifier K and a sequence of formal
parameters (x1, . . . , xn) used in the process definition K (x1, . . . , xn) , P.

AbC Rocco De Nicola 16/32

Predicate based communication

Using attributes

I attribute-based output (Ẽ)@Π is used to send the evaluation of the sequence
of expressions Ẽ to the components whose attributes satisfy the predicate Π.

I attribute-based input Π(x̃) is used to receive messages from any component
whose attributes (and possibly transmitted values) satisfy the predicate Π;
the sequence x̃ acts as a placeholder for received values.

I attribute update [a := E] is used to assign the result of the evaluation of E to
the attribute identifier a. Updates are only possible after communication
actions: they can be viewed as side effects of interactions. Execution of a
communication action and the following update(s) is atomic.

Predicates can refer to public and private attributes of components.

(“Req”, 1, 3)@(i ≥ this.i)

can be used to send the message (“Req”, 1, 3) to all components whose attribute i
is not less than this.i.

AbC Rocco De Nicola 17/32

Semantics rules: Potential Communications

JẼKΓ = ṽ {Π1}Γ = Π

Γ:I (Ẽ)@Π1.U
Γ↓I.Π(ṽ)7−−−−−→ ⦃Γ:I U⦄

Brd

Expressions in Ẽ are evaluated to ṽ , and the closure Π of predicate Π1 under Γ is
computed then ṽ , {Π1}Γ and Γ ↓ I . Environment updates may be applied.

Γ′ |= {Π1[ṽ/x̃]}Γ1 Γ1 ↓ I |= Π

Γ1:I Π1(x̃).U
Γ′.Π(ṽ)7−−−−−→ ⦃Γ1:I U[ṽ/x̃]⦄

Rcv

A message can be received when Γ1 ↓ I satisfies sender’s predicate Π, and the
environment of the sender Γ′ satisfies the receiving predicate {Π1[ṽ/x̃]}Γ1 .
Updates U under substitution [ṽ/x̃] may be applied.

Atomicity of Communications and Updates

⦃C ⦄ =

{
⦃Γ[a 7→ JEKΓ]:I U ⦄ C = Γ:I [a := E]U

Γ:I P C = Γ:I P

AbC Rocco De Nicola 18/32

Semantics rules: Actual Interactions

C1
Γ.Π(ṽ)−−−−→ C ′1 C2

Γ.Π(ṽ)−−−−→ C ′2

C1 ‖ C2
Γ.Π(ṽ)−−−−→ C ′1 ‖ C ′2

Sync
C1

Γ.Π(ṽ)−−−−→ C ′1 C2
Γ.Π(ṽ)−−−−→ C ′2

C1 ‖ C2
Γ.Π(ṽ)−−−−→ C ′1 ‖ C ′2

ComL

I Sync states that C1 and C2 can receive the same message.

I ComL governs communication between components C1 and C2.

C
Γ.Π(ṽ)−−−−→ C ′ f (Γ, ṽ) = Π′

[C].f
Γ.Π∧Π′(ṽ)−−−−−−→ [C ′].f

ResO
C

Γ.Π∧Π′(ṽ)−−−−−−→ C ′ f (Γ, ṽ) = Π′

[C]/f
Γ.Π(ṽ)−−−−→ [C ′]/f

ResI

I ResO: if C evolves to C ′ via Γ . Π(ṽ) and f (Γ, ṽ) = Π′ then [C].f evolves
via Γ . Π ∧ Π′(ṽ) to [C ′].f .

I ResI: [C]/f will receive ṽ and evolve to [C ′]/f with a label Γ . Π(ṽ) only

when C
Γ.Π∧Π′(ṽ)−−−−−−→ C ′ where f (Γ, ṽ) = Π′.

AbC Rocco De Nicola 19/32

Behavioural Theory for AbC

Observable Barbs

Let C↓Π mean that component C can send a message with a predicate Π′ l Π

(i.e., C
νx̃Π′ṽ−−−−→ where Π′ l Π and Π′ 6l ff). We write C ⇓Π if C _∗ C ′ ↓Π.

Barb Preservation

R is barb-preserving iff for every (C1,C2) ∈ R, C1↓Π implies C2 ⇓Π

Weak Reduction Barbed Congruence Relations

A Weak Reduction Barbed Relation is a symmetric relation R over the set of
AbC-components which is barb-preserving, reduction-closed, and context-closed.

Barbed Bisimilarity

Two components are weakly reduction barbed congruent, written C1
∼= C2, if

(C1,C2) ∈ R for some weak reduction barbed congruent relation R.

AbC Rocco De Nicola 20/32

Full Abstraction

Weak Bisimulation

A symmetric binary relation R over the set of AbC-components is a weak
bisimulation if and only if for any (C1,C2) ∈ R and for any λ1

C1
λ1−→ C ′1 implies ∃λ2 : λ1 l λ2 such that C2

λ̂2=⇒ C ′2 and (C ′1,C
′
2) ∈ R

Two components C1 and C2 are weakly bisimilar, written C1 ≈ C2 if there exists a
weak bisimulation R relating them.

Theorem (Soundness)

C1 ≈ C2 implies C1
∼= C2, for any two components C1 and C2.

Theorem (Completeness)

C1
∼= C2 implies C1 ≈ C2, for any two components C1 and C2.

AbC Rocco De Nicola 21/32

Encoding other paradigms

A number of alternative communication paradigms can be easily modelled by
relying on AbC primitives.

Explicit Message Passing

A bπ-calculus process P is rendered as an AbC component Γ:P where Γ = ∅ and
the communication channel is sent as a part of the transmitted values with the
receiver checking its compatibility.

Group based Communications

The group name is encoded as an attribute in AbC. The constructs for joining or
leaving a given group can be encoded as attribute updates.

Publish-Subscribe

A Publisher sends tagged messages for all subscribers by exposing from his
environment only the current topic while subscribers check compatibility of
messages according to their subscriptions.

AbC Rocco De Nicola 22/32

Implementations issues

Many challenges:

I Which kind of Middleware?

I Centralized?
I Distributed?

I Whom checks the predicates?

I the sender?
I the receiver?
I a central entities?

I For the moment: four implementations

I one in Java
I two in Erlang
I one in Go

Implementations Rocco De Nicola 23/32

AbC implementations

I AbaCus - Java: a centralized broker, broadcast, missed performance
evaluation [ISOLA’16]

I AErlang - Erlang: a centralized broker with different dispatching policies
[COORD’17]

I Broadcast: Receivers checks both sending and receiving predicates
I Push: broker checks sending predicates, receivers check receiving

predicates
I Pull: broker checks receiving predicates, receivers check sending

predicates
I Push-pull: broker checks both sending and receiving predicates

dynamically handling messages, good performance, deviated semantics

I GoAt - Go: a set of broker connected in different shapes [ISOLA’18]

I Semantics preserving implementation
I Performance evaluation showed a tree-based structure performs best
I However, deriving Goat code from AbC code is not immediate

Implementations Rocco De Nicola 24/32

ABEL - A programming framework for AbC

ABEL - Erlang) is a recent implementation of AbC combining previous experience
[COORD’19]

I Providing Inter-coordinators (tree-based) and intra-coordinators interaction

I Supporting total-ordering and relaxed ordering of message delivery

Implementations Rocco De Nicola 25/32

ABEL - A programming framework for AbC

ABEL API offers a one-to-one correspondence with AbC constructs

C ::= new component(comp name,Env , I) Create

start component(C ,BRef) Start

BDef ::= proc(C, 〈vars〉)→ Com. Definition

BRef ::= fun(〈vars〉)→ proc(C , 〈vars〉) end Reference

| nil

Act ::= {〈g〉,m, s, 〈u〉} Output

| {〈g〉, r , 〈u〉} Input

Com ::= prefix(C, {Act,BRef }) Prefix

| choice(C, [{Act,BRef }]) Choice

| parallel(C, [BRef]) Parallel

| call(C,BRef) Call

Implementations Rocco De Nicola 26/32

A model-driven approach to AbC programming

Implementations Rocco De Nicola 27/32

An example: Stable Marriage with Attributes

I Match men and women based on their preferences on partner’s attributes

I attributes: agents characteristics
I preferences: interested values of partners attributes
I An examples with 2 attributes and 2 preferences

I Man: iteratively proposes while gradually relaxing expectations (predicates)

I Woman: performs “select and swaps”

Implementations Rocco De Nicola 28/32

Stable Marriage with Attributes in AbC

Two types of components M and W :

I Mi , Γmi :{id,w ,b,pe,ph,...} PM

I Wj , Γwj :{id,e,h,pw ,pb,...} PW

Specification for M: PM , Q | P | A | R

(Proposing) P , 〈partner = 0 ∧ send = 1 ∧ . . .〉
(‘propose’, this.id , m̃sg)@(Π).[send := 0]P + . . .

(Positive answer) A , (x = ‘yes’)(x , y).(H(y) | A)

H(y) , (〈partner = 0〉(‘confirm’)@(id = y).[partner := y]0

+ 〈partner > 0〉(‘toolate’)@(id = y).0

(Rejection answer) R , (x = ‘split’)(x , y).[send := 1, partner := 0, . . .]R

+ (x = ‘no’)(x , y).[send := 1, . . .]R

Implementations Rocco De Nicola 29/32

Writing AbC in ABEL

R , (x = ‘split’)(x , y).[. . . , send := 1, partner := 0]R

+ (x = ‘no’)(x , y).[. . . , send := 1]R

r(C)→
. . . defining actions and continuations

Ref = fun()→ r(C) end ,

choice(C, [{Act1,Ref}, {Act2,Ref}]).

RP1 =fun(L,M,R)→
size(M) == 2 andalso msg(1,M) == ’split’

end

U1 =[{send , 1}, {partner , 0}, . . .]
Act1 ={RP1,U1}

Implementations Rocco De Nicola 30/32

SMA properties checking with UMC

We verified for all input spaces of problems of size of 2

I Termination - True

I Soundness of outcomes:

I completeness - True
I symmetry - True
I uniqueness - False

I Liveness properties:

I If a woman sends ‘yes’ she will eventually receive a ‘toolate’ or ‘confirm’
message - True

I If a man receives a ‘split’, he will eventually send a new proposal - False
(he may immediately receive another ’yes’, and settle down)

Implementations Rocco De Nicola 31/32

Thank you!

Implementations Rocco De Nicola 32/32

	Introduction and Motivations
	Attribute-based communication

	AbC
	Implemenations of AbC

