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Program Equivalence
I Let ≡ ⊆ Λ× Λ be a notion of equivalence. What are the

minimal requirements we should put on ≡?

I Adequacy: for every M,N ,

M ≡ N =⇒ Obs(M) = Obs(N)

where Obs : Λ→ X is the observation function.
I Congruence: for every M,N,C,

M ≡ N =⇒ C[M ] ≡ C[N ].

I Examples, the realm of λ-calculus:
I The largest adequate congruence, context equivalence

[Morris1968].
I Logical relations [Plotkin1973].
I Applicative [Abramsky1990] or open bisimilarity.

I What if X is a metric space?
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Program Distance

I Let δ : Λ× Λ→ R.

I Adequacy: for every M,N ,

δ(M,N) ≥ δX(Obs(M),Obs(N))

I Non-Expansiveness: for every M,N,C,

δ(M,N) ≥ δ(C[M ], C[N ])

I In probabilistic computation, one is naturally lead to
observe a quantitative property, and X is simply R.

I But even when computation is deterministic, one could well
work with X = R when real numbers are part of the
underlying language [ReedPierce2010,AGHKC2017].
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What if the environment feeds the function with
values close to 0, only?
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Differential Logical Relations

Distance Spaces

The distance between two pro-
grams of type τ → ρ is a func-
tion which:
I Given an input in JτK. . .
I And a distance in (|τ |). . .
I Returns a distance in (|ρ|).

DLRs as Ternary Relations

Theorem (Fundamental Lemma, Version I)
For every `M : τ , there is d ∈ (|τ |) such that δτ (M,d,M).
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On the Fundamental Lemma — So What?
I Why not null distances?

I The distance between a program M and itself is null, isn’t
it?

I In fact, this is true only at ground types.
I Example: the distance between MID and itself is something

like λλ〈x, ε〉.ε.
I Too weak?

I The distance d is arbitrary, and can even be infinite.
I In ordinary logical relations, the FL enables compositional

reasoning, when applied to the environment, the context.
I The same here:

C : τ → REAL

M,N : τ

(C, d,C) ∈ δτ→REAL

(M, e,N) ∈ δτ
⇓

(C[M ], d(JMK, e), C[N ]) ∈ δREAL
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Back to the Example

Claim

δREAL→REAL(MID , λλ〈x, y〉.y + |x− sinx|,MSIN )

Proof.
Consider any pairs of real numbers r, s ∈ R such that
|r − s| ≤ ε, where ε ∈ R∞≥0. We have that:

| sin r − s| = | sin r − r + r − s| ≤ | sin r − r|+ |r − s|
≤ | sin r − r|+ ε = f(r, ε)

| sin s− r| = | sin s− sin r + sin r − r|
≤ | sin s− sin r|+ | sin r − r| ≤ |s− r|+ | sin r − r|
≤ ε+ | sin r − r| = f(r, ε).

where f = λλ〈x, y〉.y + |x− sinx|.
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Back to the Example

I Now, consider, e.g., the context C = (λx.x(xθ))[·].

I C can be seen as a term having type
τ = (REALS → REALS )→ REALS . A self-distance d for
C can thus be defined as an element of

LτM = JREALS → REALSK×LREALS → REALS M→ JREALSK.

namely F = λλ〈g, h〉.h(g(θ), h(θ, 0)).
I This allows for compositional reasoning about program

distances: the overall impact of replacing MSIN by MID can
be evaluated by computing F (JMIDK, f) or F (JMSIN K, f).

I Of course the context C needs to be taken into account, but
once and for all: the functional F can be built without
knowing either MSIN or MID .
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Different Kinds of Distances

Hereditarily Null Distances

This is much larger than
{λλ〈x, y〉.0}

Hereditarily Finite Distances

Lemma
Whenever `M,N : τ , M is logically related to N iff δτ (M,d,N)
where d ∈ (|τ |)0.

Theorem (Fundamental Lemma, Version II)
For every `M : τ , there is d ∈ (|τ |)<∞ such that δτ (M,d,M).



Different Kinds of Distances

Hereditarily Null Distances

This is much larger than
{λλ〈x, y〉.0}

Hereditarily Finite Distances

Lemma
Whenever `M,N : τ , M is logically related to N iff δτ (M,d,N)
where d ∈ (|τ |)0.

Theorem (Fundamental Lemma, Version II)
For every `M : τ , there is d ∈ (|τ |)<∞ such that δτ (M,d,M).



Different Kinds of Distances

Hereditarily Null Distances

This is much larger than
{λλ〈x, y〉.0}

Hereditarily Finite Distances

Lemma
Whenever `M,N : τ , M is logically related to N iff δτ (M,d,N)
where d ∈ (|τ |)0.

Theorem (Fundamental Lemma, Version II)
For every `M : τ , there is d ∈ (|τ |)<∞ such that δτ (M,d,M).



Different Kinds of Distances

Hereditarily Null Distances

This is much larger than
{λλ〈x, y〉.0}

Hereditarily Finite Distances

Lemma
Whenever `M,N : τ , M is logically related to N iff δτ (M,d,N)
where d ∈ (|τ |)0.

Theorem (Fundamental Lemma, Version II)
For every `M : τ , there is d ∈ (|τ |)<∞ such that δτ (M,d,M).



Different Kinds of Distances

Hereditarily Null Distances

This is much larger than
{λλ〈x, y〉.0}

Hereditarily Finite Distances

Lemma
Whenever `M,N : τ , M is logically related to N iff δτ (M,d,N)
where d ∈ (|τ |)0.

Theorem (Fundamental Lemma, Version II)
For every `M : τ , there is d ∈ (|τ |)<∞ such that δτ (M,d,M).



Conclusions

I Other Interesting Results
I Differential logical relations are examples of generalized

metric domains, which (contrarily to metric spaces) form a
cartesian closed category.

I Not only logical relations, but also metric logical relations
can be seen as special kinds of distances.

δ(x, 0, y)⇒ x = y

δ(x, d, y)⇒ δ(y, d, x)

δ(x, d, y) ∧ δ(y, e, y) ∧ δ(y, f, z)⇒ δ(x, d+ e+ f, z)

I Further Work
I Capture more expressive constructs and calculi (e.g.

recursion by way of step-indexing).
I Higher-order continuity?
I Abstracting functional distances by way of step functions.
I Make behavioral metrics context-dependent.
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Thank You!

Questions?


