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Adequacy: for every M, N,
M=N = O0bs(M)= Obs(N)

where Obs : A — X is the observation function.

Congruence: for every M, N, C,

M=N = C[M]=CIN].

Examples, the realm of A-calculus:

» The largest adequate congruence, context equivalence
[Morris1968].

> Logical relations [Plotkin1973].

» Applicative [Abramsky1990] or open bisimilarity.

What if X is a metric space?
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Program Distance

> Letd: A xA—R.
» Adequacy: for every M, N,

5(M,N) > 65 (Obs(M), Obs(N))

» Non-Expansiveness: for every M, N, C,

6(M, N) = 6(C[M], CIN])

» In probabilistic computation, one is naturally lead to
observe a quantitative property, and X is simply R.

» But even when computation is deterministic, one could well
work with X = R when real numbers are part of the
underlying language [ReedPierce2010,AGHKC2017|.
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. INTRODUCTION

As large-scale apphcauons such as sclennﬁc computing, social media and financial
analysis gain promi the nal and storage d ds of modern systems
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d(Mip, Msin) = 400

What if the environment feeds the function with
values close to 0, only?
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Abstract

An approximate program transformation is a trans-
formation that can change the semantics of a program
within a specified empirical error bound. Such trans-
formations have wide applications: they can decrease
computation time, power consumption, and memory
usage, and can, in some cases, allow implementations
of incomputable operations. Correctness proofs of ap-
proximate program transformations are by definition
quantitative. Unfortunately, unlike with standard pro-
gram transformations, there is as of yet no modular

as floating-point numbers, lossy compression, and ap-
proximation algorithms for NP-hard problems. Such
techniques are often used to trade off accuracy of the
result for reduced resource usage, for resources such
as computation time, power, and memory. In addition,
some approximation technigues are also used to ensure
computability. For example, true representations of
real numbers (e.g., [7]l, [1I), require some operations,
such as ison, to be i floating-point
comparison, in contrast, is efficiently decidable on
modern computers.

Recently, there has been a growing interest in

P I -

way to prove correctness of an transfor-
mation itself. Error bounds must be proved for each
transformed program individually, and must be re-
proved each time a program is modified or a different
set of approximations are applied.

P where
program_ transformations arc performed by the pro-
gramming language environment [21], [12], [19], [18],
[, [3], [T6]. Such approaches allow the user to give an
exact program as a specification, and then apply some
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A Toy Language

Types
T, P = REAL|T—>p|T><p.

Typing Rules
z:7€el fn € Fn Dz:7HM:p
I'ka:7r I'tr:REAL 'tk fn: REAL™ — REAL 'FXeM:7—p
'-M:7—p I'EN:7T I'FM:m TEN:p
THMN:p 'E(M,N):7Xxp Thkm:TXp—>T Thm:TXp—=p
'FM:7 TEN:T I'FM:7r—»7 I'EN:7
I'+iflz M else N : REAL — 7 '+ iter M base N : REAL — 1

Denotational Semantics
[REAL] = R; [T = ol =[] = [r]: [ x ol =[] x [o]-
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A
The distance between two pro-
grams of type 7 — p is a func-
tion which:

» Given an input in [7]. ..
» And a distance in (7). ..

» Returns a distance in (pl).
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Distance Spaces
(REAL) = RSy; (r = o) =[] x () = (o (m % p) = () x (o)

DLRs as Ternary Relations
Srgar(M,r,N) & |[NF(M) — NF(N)| < r;
8w p(M, (dy,ds), N) & 6, (w1 M, dy, 1 N) A5, (s M, dy, 75 N)
br—p(M,d,N) < (YV € CV(7). Yz € (7). YW € CV(7).
5, (V, 2, W) = 6,(MV,d([V],z), NW) A 5,(MW,d([V], ), NV)).

Theorem (Fundamental Lemma, Version I)
For every = M : 7, there is d € (7| such that 6-(M,d, M). J
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On the Fundamental Lemma — So What?

» Why not null distances?
» The distance between a program M and itself is null, isn’t
it?
» In fact, this is true only at ground types.
» FEzample: the distance between M;p and itself is something
like Nz, ¢).e.
» Too weak?

» The distance d is arbitrary, and can even be infinite.

» In ordinary logical relations, the FL enables compositional
reasoning, when applied to the environment, the context.

» The same here:

C:7— REAL (C,d,C) € 0 REAL
M,N:t (M,e,N) € 6,
\
(C[M],d([M],e), C[N]) € 0rpaL






Back to the Example

Claim

drEAL—REAL(MIp, Nz, y).y + |z — sinz|, Mgn)

Proof.

Consider any pairs of real numbers 7, s € R such that
|r — 5| < e, where e € RS. We have that:

|sinr —s| = |sinr —r+r—s| <|sinr—r|+|r—s|

N

|sinr —r| +¢e = f(r,e)

|sins —r| = |sins —sinr +sinr — 7|
< |sins —sinr| + |sinr —r| < |s—r|+ |sinr — r|
< e+ |sinr —r| = f(r,e).

where f = XNz,y).y + |z — sinz|.
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Back to the Example

» Now, consider, e.g., the context C' = (Azx.z(z0))[].

> (' can be seen as a term having type
7= (REALS — REALS) — REALS. A self-distance d for
C' can thus be defined as an element of

() = [REALS — REALS|x(REALS — REALS|) — [REALS].

namely F' = X(g, h).h(g(0), h(0,0)).
» This allows for compositional reasoning about program

distances: the overall impact of replacing Mgy by Mjp can
be evaluated by computing F([M;p], f) or F([Msin], f)-

» Of course the context C' needs to be taken into account, but
once and for all: the functional F' can be built without
knowing either Mgy or Mjp.
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This is much larger than

{XNz,y).0}
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Different Kinds of Distances

Hereditarily Null Distances
(REAL)® = {0} (< p)° = (r)° x (p)°

(r =) ={f | Vo € [r].Vy € (r)°.f(z,y) € (n)°}

Hereditarily Finite Distances
(REAL)=> = Rxo; (m > )= = ()= x (o) =>;

)

(r= o= ={felr— o) | Voe[r]Vt € ()=%.f(x,1) € ()=}

Lemma

Whenever = M, N : 7, M is logically related to N iff 6-(M,d, N)
where d € (7)°.

v

Theorem (Fundamental Lemma, Version II)
For every = M : 7, there is d € (7)< such that §.(M,d, M).

V.
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0(x,0,y) =z =y
6(z,d,y) = 0(y,d,z)
Oz, d,y) No(y,e,y) No(y, f,z) = d(x,d+ e+ f,2)




Conclusions

» Other Interesting Results

» Differential logical relations are examples of generalized
metric domains, which (contrarily to metric spaces) form a
cartesian closed category.

» Not only logical relations, but also metric logical relations
can be seen as special kinds of distances.

» Further Work

» Capture more expressive constructs and calculi (e.g.
recursion by way of step-indexing).

» Higher-order continuity?

» Abstracting functional distances by way of step functions.

» Make behavioral metrics contezt-dependent.
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