Differential Logical Relations

Joint work with Francesco Gavazzo and Akira Yoshimizu

Ugo Dal Lago

ALMA MATER STUDIORUM o jopormariques, S mothématiques

‘Té UNIVERSITA DI BOLOGNA W

IFIP WG 2.2 Annual Meeting, Vienna, September 23rd 2019



European Research Council

Established by the European Commission

This work has been supported by
the ERC CoG DIAPASoN, GA 818616.



Comparing Interacting Programs

<
I




Comparing Interacting Programs

<
I

=

Q
<
I




Program Equivalence

» Let = C A x A be a notion of equivalence. What are the
minimal requirements we should put on =7



Program Equivalence

» Let = C A x A be a notion of equivalence. What are the
minimal requirements we should put on =7

» Adequacy: for every M, N,
M=N = O0bs(M)= Obs(N)

where Obs : A — X is the observation function.



Program Equivalence

» Let = C A x A be a notion of equivalence. What are the
minimal requirements we should put on =7

» Adequacy: for every M, N,
M=N = O0bs(M)= Obs(N)

where Obs : A — X is the observation function.

» Congruence: for every M, N, C,

M=N = C[M]=CIN].



Program Equivalence

>

>

Let = C A x A be a notion of equivalence. What are the
minimal requirements we should put on =7

Adequacy: for every M, N,
M=N = O0bs(M)= Obs(N)

where Obs : A — X is the observation function.

Congruence: for every M, N, C,

M=N = C[M]=CIN].

Examples, the realm of A-calculus:
» The largest adequate congruence, context equivalence
[Morris1968].
> Logical relations [Plotkin1973].
» Applicative [Abramsky1990] or open bisimilarity.



Program Equivalence

>

>

Let = C A x A be a notion of equivalence. What are the
minimal requirements we should put on =7

Adequacy: for every M, N,
M=N = O0bs(M)= Obs(N)

where Obs : A — X is the observation function.

Congruence: for every M, N, C,

M=N = C[M]=CIN].

Examples, the realm of A-calculus:

» The largest adequate congruence, context equivalence
[Morris1968].

> Logical relations [Plotkin1973].

» Applicative [Abramsky1990] or open bisimilarity.

What if X is a metric space?



» Let 6 : A xA—=R



Program Distance

> Letd: A xA—R.
» Adequacy: for every M, N,

5(M,N) > 6x(Obs(M), Obs(N))



Program Distance

> Letd: A xA—R.
» Adequacy: for every M, N,

5(M,N) > 65 (Obs(M), Obs(N))

» Non-Expansiveness: for every M, N, C,

6(M, N) = 6(C[M], CIN])



Program Distance

> Letd: A xA—R.
» Adequacy: for every M, N,

5(M,N) > 65 (Obs(M), Obs(N))

» Non-Expansiveness: for every M, N, C,

6(M, N) = 6(C[M], CIN])

» In probabilistic computation, one is naturally lead to
observe a quantitative property, and X is simply R.



Program Distance

> Letd: A xA—R.
» Adequacy: for every M, N,

5(M,N) > 65 (Obs(M), Obs(N))

» Non-Expansiveness: for every M, N, C,

6(M, N) = 6(C[M], CIN])

» In probabilistic computation, one is naturally lead to
observe a quantitative property, and X is simply R.

» But even when computation is deterministic, one could well
work with X = R when real numbers are part of the
underlying language [ReedPierce2010,AGHKC2017|.



An Example

A Survey Of Techniques for Approximate Computing

Sparsh Mittal, Oak Ridge National Laboratory

trades off fon quality with the effort expended and as rising performance
demands confront with plateauing resource budgets, approximate computing has become, not merely at-
tractive, but even imperative. In this paper, we present a survey of techniques for approximate computing
(AC). We discuss strategies for finding approximable program portions and monitoring output quality, tech-
niques for using AC in different processing units (e.g;, CPU, GPU and FPGA), processor components, memory

et and p for AC. We classify these techniques based on several key
their similarities and The aim of this paper is to provide insights to
into workmg of AC techniques and inspire more efforts in this area to make AC the mainstream

computing approach in future systems.

Categories and Subject Descri [General and Surveys and overviews; [Hardware]:
Power and energy; [Computer systems organization]: Processors and memory architectures

General Terms: Design, Performance

Additional Key Words and Phrases: Review, classification, approximate computing technique (ACT), approx-
imate storage, quality configurability, CPU, GPU, FPGA, neural networks

ACM Reference Format:

S. Mittal, “A Survey Of Techniques for Approximate Computing”, 20xx. ACM Comput. Suru. a, b, Article 1 (
2015), 34 pages.

DOI:http/dx.doi.org/10.1145/0000000.0000000

. INTRODUCTION

As large-scale apphcauons such as sclennﬁc computing, social media and financial
analysis gain promi the nal and storage d ds of modern systems




An Example

Mip = \z.x Mgy = Az.sinx



An Example
Mip = \z.x Mgy = Ax.sin x

[ [

A AN
VIRV




An Example

MID = \z.x

[

A

[

Mgy = Az.sinx

A

AN

\




An Example
Mip = \z.x Mgy = Ax.sin x

[ [

A AN
VIRV

d(Mip, Msin) = 400

What if the environment feeds the function with
values close to 0, only?



An Example

1vl [cs.PL] 19 Apr 2013

AS ics for Appl

Program Transformations

Edwin Westbrook and Swarat Chaudhuri
Department of Computer Science, Rice University
Houston, TX 77005
Email: {emw4,swarat} @rice.edu

Abstract

An approximate program transformation is a trans-
formation that can change the semantics of a program
within a specified empirical error bound. Such trans-
formations have wide applications: they can decrease
computation time, power consumption, and memory
usage, and can, in some cases, allow implementations
of incomputable operations. Correctness proofs of ap-
proximate program transformations are by definition
quantitative. Unfortunately, unlike with standard pro-
gram transformations, there is as of yet no modular

as floating-point numbers, lossy compression, and ap-
proximation algorithms for NP-hard problems. Such
techniques are often used to trade off accuracy of the
result for reduced resource usage, for resources such
as computation time, power, and memory. In addition,
some approximation technigues are also used to ensure
computability. For example, true representations of
real numbers (e.g., [7]l, [1I), require some operations,
such as ison, to be i floating-point
comparison, in contrast, is efficiently decidable on
modern computers.

Recently, there has been a growing interest in

P I -

way to prove correctness of an transfor-
mation itself. Error bounds must be proved for each
transformed program individually, and must be re-
proved each time a program is modified or a different
set of approximations are applied.

P where
program_ transformations arc performed by the pro-
gramming language environment [21], [12], [19], [18],
[, [3], [T6]. Such approaches allow the user to give an
exact program as a specification, and then apply some




A Toy Language

EA’EYFD'?S% p | T X p.
T,p:=R



A Toy Language

Types
T, P = REAL|T—>p|T><p.

Typing Rules

z:T7el fn € Fn Tz:7HM:p
I'ka:7r I'tr:REAL 'tk fn: REAL™ — REAL 'FXeM:7—p
'-M:7—p I'EN:7T I'FM:m TEN:p
THMN:p 'E(M,N):7Xxp Thkm:TXp—>T Thm:TXp—=p
'FM:7 TEN:T I'FM:7r—»7 I'EN:7

I'+iflz M else N : REAL — 7 '+ iter M base N : REAL — 1



A Toy Language

Types
T, P = REAL|T—>p|T><p.

Typing Rules
z:7€el fn € Fn Dz:7HM:p
I'ka:7r I'tr:REAL 'tk fn: REAL™ — REAL 'FXeM:7—p
'-M:7—p I'EN:7T I'FM:m TEN:p
THMN:p 'E(M,N):7Xxp Thkm:TXp—>T Thm:TXp—=p
'FM:7 TEN:T I'FM:7r—»7 I'EN:7
I'+iflz M else N : REAL — 7 '+ iter M base N : REAL — 1

Denotational Semantics
[REAL] = R; [T = ol =[] = [r]: [ x ol =[] x [o]-



Differential Logical Relations

Distance Spaces
(REAL) = RSy; (r = o) =[] x () = (o (m % p) = () x (o)



Differential Logical Relations

Distance Spaces
(REAL) = RG; (r = p) = [r] x (7D = (o; (% p) = (7 x (o)
A
The distance between two pro-
grams of type 7 — p is a func-
tion which:

» Given an input in [7]. ..
» And a distance in (7). ..

» Returns a distance in (pl).




Differential Logical Relations

Distance Spaces
(REAL) = RSy; (r = o) =[] x () = (o (m % p) = () x (o)

DLRs as Ternary Relations
SppaL(M,r,N) & |NF(M) — NF(N)| < r;
8w p(M, (dy,ds), N) & 6, (w1 M, dy, 1 N) A5, (s M, dy, 75 N)
br—p(M,d,N) < (YV € CV(7). Yz € (7). YW € CV(7).
5, (V, 2, W) = 6,(MV,d([V],z), NW) A 5,(MW,d([V], ), NV)).



Differential Logical Relations

Distance Spaces
(REAL) = RSy; (r = o) =[] x () = (o (m % p) = () x (o)

DLRs as Ternary Relations
Srgar(M,r,N) & |[NF(M) — NF(N)| < r;
8w p(M, (dy,ds), N) & 6, (w1 M, dy, 1 N) A5, (s M, dy, 75 N)
br—p(M,d,N) < (YV € CV(7). Yz € (7). YW € CV(7).
5, (V, 2, W) = 6,(MV,d([V],z), NW) A 5,(MW,d([V], ), NV)).

Theorem (Fundamental Lemma, Version I)
For every = M : 7, there is d € (7| such that 6-(M,d, M). J




On the Fundamental Lemma — So What?

» Why not null distances?

» The distance between a program M and itself is null, isn’t
it?



On the Fundamental Lemma — So What?

» Why not null distances?

» The distance between a program M and itself is null, isn’t
it?

» In fact, this is true only at ground types.

» FEzample: the distance between M;p and itself is something
like XNz, ).e.



On the Fundamental Lemma — So What?

» Why not null distances?

» The distance between a program M and itself is null, isn’t
it?
» In fact, this is true only at ground types.
» FEzample: the distance between M;p and itself is something
like Nz, ¢).e.
» Too weak?

» The distance d is arbitrary, and can even be infinite.
» In ordinary logical relations, the FL enables compositional
reasoning, when applied to the environment, the context.



On the Fundamental Lemma — So What?

» Why not null distances?

» The distance between a program M and itself is null, isn’t
it?
» In fact, this is true only at ground types.
» FEzample: the distance between M;p and itself is something
like Nz, ¢).e.
» Too weak?

» The distance d is arbitrary, and can even be infinite.

» In ordinary logical relations, the FL enables compositional
reasoning, when applied to the environment, the context.

» The same here:



On the Fundamental Lemma — So What?

» Why not null distances?
» The distance between a program M and itself is null, isn’t
it?
» In fact, this is true only at ground types.
» FEzample: the distance between M;p and itself is something
like Nz, ¢).e.
» Too weak?
» The distance d is arbitrary, and can even be infinite.
» In ordinary logical relations, the FL enables compositional
reasoning, when applied to the environment, the context.
» The same here:

C:7— RFAL
M,N :1



On the Fundamental Lemma — So What?

» Why not null distances?
» The distance between a program M and itself is null, isn’t
it?
» In fact, this is true only at ground types.
» FEzample: the distance between M;p and itself is something
like Nz, ¢).e.
» Too weak?
» The distance d is arbitrary, and can even be infinite.
» In ordinary logical relations, the FL enables compositional
reasoning, when applied to the environment, the context.
» The same here:

C:7— REAL (C,d,C) € 0 REAL
M,N : 1 (M,e,N) € 6,



On the Fundamental Lemma — So What?

» Why not null distances?
» The distance between a program M and itself is null, isn’t
it?
» In fact, this is true only at ground types.
» FEzample: the distance between M;p and itself is something
like Nz, ¢).e.
» Too weak?

» The distance d is arbitrary, and can even be infinite.

» In ordinary logical relations, the FL enables compositional
reasoning, when applied to the environment, the context.

» The same here:

C:7— REAL (C,d,C) € 0 REAL
M,N:t (M,e,N) € 6,
\
(C[M],d([M],e), C[N]) € 0rpaL






Back to the Example

Claim

drEAL—REAL(MIp, Nz, y).y + |z — sinz|, Mgn)

Proof.

Consider any pairs of real numbers 7, s € R such that
|r — 5| < e, where e € RS. We have that:

|sinr —s| = |sinr —r+r—s| <|sinr—r|+|r—s|

N

|sinr —r| +¢e = f(r,e)

|sins —r| = |sins —sinr +sinr — 7|
< |sins —sinr| + |sinr —r| < |s—r|+ |sinr — r|
< e+ |sinr —r| = f(r,e).

where f = XNz,y).y + |z — sinz|.




Back to the Example

» Now, consider, e.g., the context C' = (Azx.z(z0))[].



Back to the Example

» Now, consider, e.g., the context C' = (Azx.z(z0))[].

> (' can be seen as a term having type
7= (REALS — REALS) — REALS. A self-distance d for
C' can thus be defined as an element of

() = [REALS — REALS|x(REALS — REALS|) — [REALS].

namely F' = X(g, h).h(g(0), h(0,0)).



Back to the Example

» Now, consider, e.g., the context C' = (Azx.z(z0))[].

> (' can be seen as a term having type
7= (REALS — REALS) — REALS. A self-distance d for
C' can thus be defined as an element of

() = [REALS — REALS|x(REALS — REALS|) — [REALS].

namely F' = X(g, h).h(g(0), h(0,0)).
» This allows for compositional reasoning about program

distances: the overall impact of replacing Mgy by Mjp can
be evaluated by computing F([M;p], f) or F([Msin], f)-



Back to the Example

» Now, consider, e.g., the context C' = (Azx.z(z0))[].

> (' can be seen as a term having type
7= (REALS — REALS) — REALS. A self-distance d for
C' can thus be defined as an element of

() = [REALS — REALS|x(REALS — REALS|) — [REALS].

namely F' = X(g, h).h(g(0), h(0,0)).
» This allows for compositional reasoning about program

distances: the overall impact of replacing Mgy by Mjp can
be evaluated by computing F([M;p], f) or F([Msin], f)-

» Of course the context C' needs to be taken into account, but
once and for all: the functional F' can be built without
knowing either Mgy or Mjp.



Different Kinds of Distances

Hereditarily Null Distances
(REAL)® = {0} (< p)° = (r)° x (p)°

(r =) ={f | Vo € [r].Vy € (r)°.f(z,y) € (n)°}



Different Kinds of Distances

Hereditarily Null Distances
(REAL)® = {0} (< p)° = (r)° x (p)°

(r =) ={f | Vo € [r].Vy € (r)°.f(z,y) € (n)°}

This is much larger than

{XNz,y).0}




Different Kinds of Distances

Hereditarily Null Distances
(REAL)® = {0} (< p)° = (r)° x (p)°

(r— ) ={f |z € [r]-Vy € (1)°.f(z.y) € (o)}
Hereditarily Finite Distances
(REAL)=* = Rxo; (m > )= = ()= x (o) =
(r= = ={felr—p) | Yoelr]Vte (r)~*.f(z,1) € ()=}



Different Kinds of Distances

Hereditarily Null Distances
(REAL)® = {0} (< p)° = (r)° x (p)°

(r =) ={f | Vo € [r].Vy € (r)°.f(z,y) € (n)°}

Hereditarily Finite Distances
(REAL)=> = Rxo; (m > )= = ()= x (o) =
(r= o= ={felr— o) | Voe[r]Vt € ()=%.f(x,1) € ()=}

Lemma

Whenever = M, N : 7, M is logically related to N iff 6-(M,d, N)
where d € (7)°.




Different Kinds of Distances

Hereditarily Null Distances
(REAL)® = {0} (< p)° = (r)° x (p)°

(r =) ={f | Vo € [r].Vy € (r)°.f(z,y) € (n)°}

Hereditarily Finite Distances
(REAL)=> = Rxo; (m > )= = ()= x (o) =>;

)

(r= o= ={felr— o) | Voe[r]Vt € ()=%.f(x,1) € ()=}

Lemma

Whenever = M, N : 7, M is logically related to N iff 6-(M,d, N)
where d € (7)°.

v

Theorem (Fundamental Lemma, Version II)
For every = M : 7, there is d € (7)< such that §.(M,d, M).

V.




Conclusions

» Other Interesting Results

» Differential logical relations are examples of generalized
metric domains, which (contrarily to metric spaces) form a
cartesian closed category.

» Not only logical relations, but also metric logical relations
can be seen as special kinds of distances.



Conclusions

» Other Interesting Results
» Differential logical relations are examples of generalized

metric dognains, which (contrarily to metric spaces) form a
cartesian ki(ategory.

» Not only logiN relations, but also metric logical relations

0(x,0,y) =z =y
6(z,d,y) = 0(y,d,z)
Oz, d,y) No(y,e,y) No(y, f,z) = d(x,d+ e+ f,2)




Conclusions

» Other Interesting Results

» Differential logical relations are examples of generalized
metric domains, which (contrarily to metric spaces) form a
cartesian closed category.

» Not only logical relations, but also metric logical relations
can be seen as special kinds of distances.

» Further Work

» Capture more expressive constructs and calculi (e.g.
recursion by way of step-indexing).

» Higher-order continuity?

» Abstracting functional distances by way of step functions.

» Make behavioral metrics contezt-dependent.



Thank You!

(Questions?



