Invariant-Based Verification and Synthesis for Hybrid Systems

Naijun Zhan

Institute of Software, Chinese Academy of Sciences

(Joint work with Hengjun Zhao, Jiang Liu, Deepak Kapur, Kim G. Larsen, Liang Zou, etc.)

> IFIP WG 2.2 Scientific Meeting, IMS, Singapore Sept. 12-16, 2016

Outline

Background

- Invariant and Verification
- Invariant-Based Synthesis
- Case Studies
- Conclusion

Outline

Background

- > Invariant and Verification
- Invariant-Based Synthesis
- Case Studies
- Conclusion

Classification of Dynamical Systems

Continuous + Discrete

Universal Law of Gravitation

by <u>Heer Rami</u> http://www.benettonplay.com/toys/flipbookdeluxe/player.php?id=294504

Hybrid Automata

HSs in Engineering

 \sim

 \mathbf{Q}_1

Electrical Circuits

Chemical Process

http://people.ee.ethz.ch/~mpt/2/docs/demos/twotanks.php

Embedded Control Systems

sensor

Safety Critical Systems

Motivation

- Develop formal methods for enhancing the trustworthiness of safety critical embedded systems
 - ➢ Problems: Verification and Design
 - System Requirements: mainly safety
 - ➢ Techniques: symbolic/rigorous computation

Outline

Background

Invariant and Verification

- Invariant-Based Synthesis
- Case Studies
- Conclusion

Deductive Verification

- Program
 - x:=1; while (x<=100000000) { x:=x+1; } x≦0
- > Inductive Invariant
 ∞ x=1 → x≧1
 ∞ x≧1 → x+1≧1
 ∞ x≧1 → ¬(x≦0)

Continuous system

$$\frac{\mathrm{d}x}{\mathrm{d}t} = f(x)$$

Inductiveness

Discrete

Inductiveness

$$x_k \in I \longrightarrow x_{k+1} \in I$$

Transition relation

$$x_{k+1} = \varphi(x_k)$$

Continuous

Inductiveness

$$x(t) \in I \longrightarrow x(t + \Delta t) \in I$$

> Transition relation $x(t + \Delta t) = x(t) + x(t) \Delta t$

Lie Derivatives and Invariant

Higher-Order Lie Derivatives

Criterion for Invariant

iff

- > f(x) and p(x) are polynomials
- Compute an upper bound N s.t.
- > p(x) ≥ 0 is an inductive invariant of $\frac{dx}{dt} = f(x)$

$$p = 0 \Longrightarrow \left(\frac{d^{1}p}{dt^{1}} > 0 \lor \frac{d^{1}p}{dt^{1}} > 0 \lor \frac{d^{1}p}{dt^{1}} > 0 \lor \frac{d^{1}p}{dt^{2}} > 0 \lor \frac{d^{1}p}{dt^{2}}$$

$$\frac{\mathrm{d}^{1}p}{\mathrm{d}t^{1}} = 0 \wedge \frac{\mathrm{d}^{2}p}{\mathrm{d}t^{2}} = 0 \wedge \cdots \wedge \left(\frac{\mathrm{d}^{N}p}{\mathrm{d}t^{N}}\right)$$

Semi-algebraic set

$$\bigvee_{i=1}^{I}\bigwedge_{j=1}^{J_{i}}p_{ij}(\mathbf{x})\triangleright 0, \quad \triangleright \in \{\geq, >\}$$

First-order theory of real numbers is decidable
 Quantifier Elimination

Checking whether a semi-algebraic set is an inductive invariant of a polynomial continuous dynamical systems is decidable

Parametric Case

- Parametric polynomials p(u,x)
- > p(u,x) ≥ 0 is an inductive invariant of $\frac{dx}{dt} = f(x)$ iff *u* satisfies

 $p(u,x)=0 \Rightarrow \left(\frac{d^{1}p}{dt^{1}} > 0 \lor$ Use parametric polynomials and quantifier elimination (or other compution techniques) to automatically discovering inductive invariants

$$\frac{\mathrm{d}^{1} p}{\mathrm{d} t^{1}} = 0 \wedge \frac{\mathrm{d}^{2} p}{\mathrm{d} t^{2}} = 0 \wedge \cdots \wedge \frac{\mathrm{d}^{N} p}{\mathrm{d} t^{N}} \ge 0$$

Inductive Invariant of HSs

 $Init \implies Inv_1$ Inv_1, Inv_2 $Inv_1 \land G_{12} \Longrightarrow Inv_2$ $Inv_2 \land G_{21} \Longrightarrow Inv_1$

Safety Verification

Try to generate an invariant that implies the safety property

Example

Outline

Background

- Invariant and Verification
- Invariant-Based Synthesis
- Case Studies
- Conclusion

Problem Description

- Given an initial specification of a hybrid system and a safety requirement, construct a refined hybrid system such that the safety requirement is satisfied
 - Solution Soluti Solution Solution Solution Solution Solution Solution S
 - **∞** guards

Nuclear Reactor

http://commons.wikimedia.org/wiki/File:Control_rods_schematic.svg

Hybrid Automata Model

x: temperature of the reactor

p: fraction of the rod immersed into the reactor

Violation of Safety

Invariant for Refinement

Result

 $x \le \frac{6575}{12} \approx 547.92$

Optimization

- Further refine the hybrid system according to certain optimization criteria
- polynomial objective function + semi-algebraic feasible region
 Symbolic optimization

 $c_{3} = \inf_{\mathbf{u}_{3}} \sup_{\mathbf{u}_{2}} \min_{\mathbf{u}_{1}} g_{3}(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}) \quad \text{over } D_{3}(\mathbf{u}_{1}, \mathbf{u}_{2}, \mathbf{u}_{3}) \rightarrow \mathbf{H}$ $\exists \mathbf{u}_{3}. ((\exists \mathbf{u}_{1} \mathbf{u}_{2}. D_{3}) \land \forall \mathbf{u}_{2}. (\exists \mathbf{u}_{1}. D_{3} \Rightarrow \exists \mathbf{u}_{1}. (D_{3} \land g_{3} \leq z))) \Leftrightarrow z \triangleright c_{3}$

Outline

Background

- Invariant and Verification
- Invariant-Based Synthesis
- Case Studies
 - Solit pump
 - Lunar lander
- Conclusion

Oil Pump Switching

- First studied in
 [Cassez et al. HSCC09, 45% improvement]
- Provided by the German company HYDAC
- Determine the time points to switch the pump on/off s.t.

Safety: v(t) ∈ [V_{min}, V_{max}], ∀t ∈ [0,∞)
Soptimality: $\lim_{T\to\infty} \frac{1}{T} \int_{t=0}^{T} v(t) dt$

Synthesized Switching Controller

31

Performance

Safety

- Improve the optimal value of [HSCC09] by 7.5%
- > The synthesized controller is correct, also optimal 32

Soft Landing

Slow Descent Phase

Trajectory control

Sampling period: ΔT = 0.128s
Control objective: v = -2m/s

Hybrid Automata Model

Dynamics

Replace the non-polynomial term by a new variable: a = Fc/m

> Safety requirement: $|v - (-2)| \leq 0.05$

Kong, H., He, F., Song, X., Hung, W., Gu, M.: Exponential-condition-based barrier certificate generation for safety verification of hybrid systems. In: CAV'13. pp. 242–257 (2013)₃₆

Conclusion

- Hybrid systems attracts more and more interests with the development of safety critical embedded systems
- Invariant plays an important role in the study (formal verification, controller synthesis) of hybrid systems
- Semi-algebraic inductive invariant checking for polynomial continuous/hybrid systems is decidable

Conclusion

- Use parametric polynomials and symbolic computation to automatically discover invariants, and to perform optimization
 - Image: Book of the second second

 - ➢ Non-polynomial systems transformed to polynomials ones
- Case studies show good prospect of proposed methods

Related references

- Hengjun Zhao, Mengfei Yang, Naijun Zhan, Bin Gu, Liang Zou and Yao Chen (2014): Formal verification of a descent guidance control program of a lunar lander, in Proc. of FM 2014, Lecture Notes in Computer Science 8442, pp.733-748.
- Hengjun Zhao, Naijun Zhan and Deepak Kapur (2013): Synthesizing switching controllers for hybrid systems by generating invariants, in Proc. of the Jifeng Festschrift, Lecture Notes in Computer Science 8051, pp.354-373.
- Hengjun Zhao, Naijun Zhan, Deepak Kapur, and Kim G. Larsen (2012): A "hybrid" approach for synthesizing optimal controllers of hybrid systems: A Case study of the oil pump industrial example, in Proc. of FM 2012, Lecture Notes in Computer Science 7436, pp.471-485, 2012.
- Jiang Liu, Naijun Zhan and Hengjun Zhao (2011): Computing semi-algebraic invariants for polynomial dynamical systems, in Proc. of EMSOFT 2011, pp.97-106, ACM Press.

Thanks! Questions?